On the set-theoretic strength of the *n*-compactness of generalized Cantor cubes

by

Paul Howard (Ypsilanti, MI) and Eleftherios Tachtsis (Karlovassi)

Abstract. We investigate, in set theory without the Axiom of Choice AC, the set-theoretic strength of the statement

Q(n): For every infinite set X, the Tychonoff product 2^X , where $2 = \{0, 1\}$ has the discrete topology, is n-compact,

where n = 2, 3, 4, 5 (definitions are given in Section 1).

We establish the following results:

- (1) For n = 3, 4, 5, Q(n) is, in **ZF** (Zermelo–Fraenkel set theory minus **AC**), equivalent to the Boolean Prime Ideal Theorem **BPI**, whereas
- (2) Q(2) is strictly weaker than **BPI** in **ZFA** set theory (Zermelo–Fraenkel set theory with the Axiom of Extensionality weakened in order to allow atoms).

This settles the open problem in Tachtsis (2012) on the relation of Q(n), n = 2, 3, 4, 5, to **BPI**.

1. Introduction, terminology and known results. Let X be an infinite set. The collection $\mathcal{B}_X = \{[p] : p \in \operatorname{Fn}(X,2)\}$, where $\operatorname{Fn}(X,2)$ is the set of all finite partial functions from X into 2 and $[p] = \{f \in 2^X : p \subset f\}$, is the standard open base for the product topology on 2^X , where $2 = \{0, 1\}$ has the discrete topology. (In fact, for each $p \in \operatorname{Fn}(X,2)$, [p] is a clopen subset of 2^X , that is, [p] is simultaneously closed and open in 2^X .) The set $\mathcal{D}_X = \{2^X \setminus [p] : p \in \operatorname{Fn}(X,2)\}$ consisting of complements of standard open basic sets is called the standard closed base for the product topology. For every $n \in \mathbb{N} \ (= \omega \setminus \{0\}$, where ω denotes, as usual, the set of all natural numbers), let $\mathcal{B}_X^n = \{[p] \in \mathcal{B}_X : |p| = n\}$ (i.e., for each $[p] \in \mathcal{B}_X^n$, there is a

Received 10 January 2014; revised 20 December 2015. Published online 4 July 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 03E25; Secondary 03E35, 54B10, 54D30. Key words and phrases: Axiom of Choice, Boolean prime ideal theorem, compactness and n-compactness of generalized Cantor cubes, Fraenkel–Mostowski (FM) permutation models.

bijection $f: p \to n$) and $\mathcal{D}_X^n = \{2^X \setminus [p] : [p] \in \mathcal{B}_X^n\}$. For $n \in \mathbb{N}$, elements of \mathcal{B}_X^n are called *n*-basic open sets of 2^X and elements of \mathcal{D}_X^n are called *n*-basic closed sets. Clearly, $\mathcal{B}_X = \bigcup \{\mathcal{B}_X^n : n \in \mathbb{N}\}$ and $\mathcal{D}_X = \bigcup \{\mathcal{D}_X^n : n \in \mathbb{N}\}$.

The product space 2^{ω} is known as the *Cantor cube*. Replacing ω with any infinite set X, we call the corresponding Tychonoff product 2^X a generalized *Cantor cube*.

The following extension of compactness for generalized Cantor cubes was introduced in [7]:

DEFINITION 1.1. For X an infinite set and for $n \in \mathbb{N}$, 2^X is called *n*-compact if every cover $\mathcal{U} \subseteq \mathcal{B}_X^n$ of 2^X has a finite subcover.

Recall the following well-known notion:

DEFINITION 1.2. A non-empty family \mathcal{F} of subsets of a set X has the *finite intersection property*, which we shall abbreviate by fip, if $\bigcap \mathcal{G} \neq \emptyset$ for every (non-empty) finite subfamily \mathcal{G} of \mathcal{F} .

The concept of n-compactness could equivalently be formulated in terms of n-basic closed sets:

FACT 1. If X is an infinite set, then 2^X is n-compact if and only if every subset $\mathcal{D} \subseteq \mathcal{D}_X^n$ with the fip has a non-empty intersection.

FACT 2 ([7]). Assume that X is an infinite set. Then 2^X is n-compact if and only if for every collection \mathcal{F} of sets of the form

(1.1) $\left| \left| \{[p] : p \in S\} \right| \text{ where for some } Q \subset X \text{ such that } |Q| = n, S \subseteq 2^Q, \right|$

if \mathcal{F} has the fip, then \mathcal{F} has a non-empty intersection.

Sets of the form described in (1.1) above were introduced in Keremedis and Tachtsis [7] and studied there, in Morillon [8], in Tachtsis [12], and in Howard and Tachtsis [4] and [5]. For sets of the form (1.1), the authors of [7] used the term "restricted clopen sets", whereas the author of [8] called them "elementary closed sets". We call the reader's attention to the fact that for $n \in \mathbb{N}$, every *n*-basic closed set can be written in the form (1.1), while the converse is *not* necessarily true, that is, a closed set of the form (1.1) may not be an *n*-basic closed set.

In the interest of making our paper self-contained, we give an outline of the argument for Fact 2.

Proof of Fact 2. For a fixed $Q \subset X$ such that |Q| = n, the complement F' (in 2^X) of a set F of the form (1.1) can be written in the same form. Therefore, F is the complement of a finite union of n-basic open sets and hence F is the intersection of n-basic closed sets. Assuming that 2^X is n-compact and that \mathcal{F} is a family of sets of the form given by (1.1) which has the fip, the family $\mathcal{F}' = \{F' \in \mathcal{D}_X^n : \exists F \in \mathcal{F} \text{ such that } F \subseteq F'\}$ is a family of subsets of \mathcal{D}_X^n with the fip and by our observation at the beginning of the proof, $\bigcap \mathcal{F}' = \bigcap \mathcal{F}$. The assumption that 2^X is *n*-compact gives $\bigcap \mathcal{F}' \neq \emptyset$ and therefore $\bigcap \mathcal{F} \neq \emptyset$.

A related, and quite useful, fact is given by the following result.

FACT 3 ([7], [12]). Let X be an infinite set and assume that 2^X is ncompact for some $n \in \mathbb{N}$. Then every cover $\mathcal{V} \subseteq \bigcup \{\mathcal{B}_X^m : m \leq n\}$ of 2^X has a finite subcover. Equivalently, every collection \mathcal{W} of sets of the form

(1.2) $\bigcup \{ [p] : p \in S \}$ where for some $Q \subset X$ such that $|Q| \le n, S \subseteq 2^Q$,

with the fip, has a non-empty intersection. In particular, 2^X is m-compact for every positive integer m < n.

NOTATION 1. (1) For $n \in \mathbb{N}$, let (following the notation in [7] and [12]) Q(n) stand for the following statement:

Q(n): For every infinite set X, 2^X is n-compact.

(2) The Boolean Prime Ideal Theorem **BPI** is the principle: Every non-trivial Boolean algebra has a prime ideal. Equivalently, every proper filter of a non-trivial Boolean algebra is included in an ultrafilter (see [2] and [6]).

We conclude this section with a summary of what is known and not known about $Q(n), n \in \mathbb{N}$.

Q(1) is a theorem of **ZF** set theory (see [7]) and we have Mycielski's characterization of **BPI** in [9]:

FACT 4. The following statements are equivalent in **ZF**:

(i) **BPI**,

(ii) For every infinite set X, 2^X is compact.

It follows that **BPI** implies Q(n) for all $n \in \mathbb{N}$. Furthermore, Keremedis and Tachtsis [7] showed

FACT 5. For every integer n > 1, Q(n) implies AC_n (i.e., AC for families of n-element sets).

On the other hand, Tachtsis [12] established

FACT 6. For every integer $n \ge 6$, Q(n) is equivalent to **BPI**.

The set-theoretic strength of Q(n), n = 2, 3, 4, 5, and in particular the question of whether Q(n) is equivalent to **BPI** for n = 2, 3, 4, 5, is stated as an open problem in [12]. We settle this problem here. In particular, we establish in Theorem 3.1 below that, in **ZF**, Q(3) is equivalent to **BPI**, hence, by Fact 3, Q(n) is equivalent to **BPI** for every natural $n \ge 3$.

The situation with Q(2) is *strikingly different!* In particular, we will prove in Lemma 3.2 that in the FM model $\mathcal{N}2^*(3)$ of [2], Q(2) holds, whereas it is known (see [2] or [6]) that **BPI** fails in that model, hence we will infer in Theorem 3.4 that Q(2) does not imply **BPI** in **ZFA**. We do not know whether or not **BPI** is strictly stronger than Q(2) in the stronger theory **ZF**. So we pose the following:

QUESTION. Is there a model of ZF in which Q(2) is true and BPI is false?

2. Diagram of known and new results on Q(n). In the following diagram we summarize the known and new results which concern the set-theoretic strength of the principle Q(n), $n \in \mathbb{N}$.

Q(1) is a theorem of ${\sf ZF}$

Q(n) is, in **ZF**, equivalent to **BPI**, for every integer $n \ge 3$ (Theorem 3.1 and Fact 6)

> In **ZF**, **BPI** \rightarrow Q(2), but $Q(2) \not\rightarrow$ **BPI** in **ZFA** (Lemma 3.2 and Theorem 3.4)

3. The two main results. We begin by establishing the equivalence between **BPI** and Q(n) for n = 3, 4, 5. Prior to this, let us recall that if $(B, +, \cdot, 0_B, 1_B)$ is a Boolean algebra, then the binary relation \leq defined on B by requiring for all $x, y \in B, x \leq y$ if and only if $x \cdot y = x$, is a partial order on B, so that (B, \leq) is a complemented distributive lattice with smallest element 0_B and largest element 1_B . For $x, y \in B$, the supremum of $\{x, y\}$ is $\sup(\{x, y\}) = x + y + x \cdot y$ and the infimum of $\{x, y\}$ is $\inf(\{x, y\}) = x \cdot y$. The complement of an element $x \in B$ is the unique element $x' \in B$ such that $\sup(\{x, x'\}) = 1_B$ and $\inf(\{x, x'\}) = 0_B$. Note that for $x \in B, x' = x + 1$.

THEOREM 3.1. In **ZF**, Q(3) is equivalent to **BPI**. Hence, by Fact 3, for every integer $n \ge 3$, Q(n) is equivalent to **BPI**.

Proof. It suffices to show that Q(3) implies **BPI**. Assuming Q(3), we need to show that every proper filter of a non-trivial Boolean algebra is included in an ultrafilter. To this end, let $(B, +, \cdot, 0_B, 1_B)$ be a non-trivial Boolean algebra and let F be a proper filter of B. We will show that there exists an ultrafilter G of B which includes F. To this end, let L be a propositional language with propositional variables $p_a, a \in B$. The intended meaning of the variable p_a is that a belongs to the required ultrafilter. Let

$$\operatorname{Var} = \{ p_a : a \in B \}.$$

244

Diagram: The set-theoretic strength of $Q(n), n \in \mathbb{N}$.

Let \mathcal{F} be the set of all formulas in the language L, and let Σ be the subset of \mathcal{F} which consists of the following formulas:

- (a) p_a for each $a \in F$.
- (b) $p_a \to p_b$ for all $a, b \in B$ such that $a \leq b$.
- (c) $p_a \wedge p_b \to p_{a \cdot b}$ for all $a, b \in B$.
- (d) $p_a \vee p_{a+1}$ for all $a \in B$.

Consider the generalized Cantor cube 2^{Var} . We define the following clopen subsets of 2^{Var} :

For each $a \in F$, we let

$$K_a = [\{(p_a, 1)\}].$$

For all $a, b \in B$, we let

$$M_{(a,b)} = [\{(p_a, 0), (p_b, 0), (p_{a \cdot b}, 0)\}] \\ \cup [\{(p_a, 1), (p_b, 0), (p_{a \cdot b}, 0)\}] \\ \cup [\{(p_a, 1), (p_b, 1), (p_{a \cdot b}, 1)\}] \\ \cup [\{(p_a, 0), (p_b, 1), (p_{a \cdot b}, 0)\}]$$

Note that $M_{(a,b)} = M_{(b,a)}$ for all $a, b \in B$. Further, if $a, b \in B$ with $a \leq b$, then $M_{(a,b)}$ obtains the following simpler form:

$$M_{(a,b)} = [\{(p_a, 1), (p_b, 1)\}] \cup [\{(p_a, 0), (p_b, 0)\}] \cup [\{(p_a, 0), (p_b, 1)\}].$$

Finally, for each $a \in B$, we let

$$N_a = [\{(p_a, 1), (p_{a+1}, 0)\}] \cup [\{(p_a, 0), (p_{a+1}, 1)\}].$$

Note that for each $a \in B$, $N_a = N_{a+1}$. Set

 $\mathcal{W} = \{ K_a : a \in F \} \cup \{ M_{(a,b)} : a, b \in B \} \cup \{ N_a : a \in B \}.$

Clearly, \mathcal{W} is a collection of closed subsets of 2^{Var} of the form (1.2) in Fact 3; in our case here, n = 3. Furthermore, as every filter of a finite Boolean algebra A can be extended to an ultrafilter of A, it is reasonably easy to verify that \mathcal{W} has the fip. Indeed, if $\mathcal{V} = \{W_1, \ldots, W_n\} \subseteq \mathcal{W}$, let S be the set of all $a \in B$ such that for some $i, 1 \leq i \leq n, a$ appears as a subscript in the notation of W_i as K_x or $M_{(x,y)}$ or N_x . Let A be the Boolean subalgebra of B which is generated by S. Since A is finite, we may define effectively (i.e., without using any form of choice) an ultrafilter G of A which extends the filter base $F \cap A$, which without loss of generality we assume to be non-empty. Let f be such that for each $a \in A$, $f(p_a) = 1$ if and only if $a \in G$. Via induction on the complexity of all formulas in \mathcal{F} we may extend f to a valuation mapping $f' \in 2^{\mathcal{F}}$. Then $f' \upharpoonright \operatorname{Var} \in \bigcap \mathcal{V}$ and \mathcal{W} has the fip as asserted.

By our assumption, that is, by Q(3), and using Fact 3, let $f \in \bigcap \mathcal{W}$ and let $f' \in 2^{\mathcal{F}}$ be the valuation mapping which extends f. By the definition of

the members of \mathcal{W} , it easily follows that $f'(\phi) = 1$ for all $\phi \in \Sigma$. Let

$$G = \{a \in B : f'(p_a) = 1\}.$$

Then G is an ultrafilter of the Boolean algebra B which includes the filter F, since $f \in \bigcap \{K_a : a \in F\}$ and $f \subseteq f'$. This completes the proof of the theorem.

We show next that Q(2) does not imply **BPI** in **ZFA**, hence, Q(2) is strictly weaker than **BPI** in **ZFA**. We need to prove first the following lemma which asserts that Q(2) is valid in the FM model $\mathcal{N}2^*(3)$ of [2].

LEMMA 3.2. In the FM model $\mathcal{N}2^*(3)$ of [2], Q(2) is true.

Proof. To construct the model $\mathcal{N}2^*(3)$, we begin with a model \mathcal{M} of $\mathbb{ZFA} + \mathbb{AC}$ which has a countable set A of atoms written as a disjoint union $\bigcup_{n \in \omega} T_n$ of triples $T_n = \{a_n, b_n, c_n\}$. Unless otherwise specified we will work in the model \mathcal{M} . Let G be the group generated by the following permutations ψ_n of A:

 $\psi_n \upharpoonright T_n$ is the 3-cycle (a_n, b_n, c_n) and $\psi_n(x) = x$ for all $x \in A \setminus T_n$.

Note that G is commutative since the ψ_n s commute and that every nonidentity element of G has order 3. For any finite $E \subseteq A$ we let $\operatorname{fix}_G(E) = \{\phi \in G : \forall e \in E, \phi(e) = e\}$. Let Γ be the (normal) finite support filter of subgroups of G generated by $\{\operatorname{fix}_G(E) : E \in [A]^{<\omega}\}$, where $[A]^{<\omega}$ is the set of all finite subsets of A. $\mathcal{N}2^*(3)$ is the permutation model determined by G and Γ .

For the remainder of the proof we will use \mathcal{N} for $\mathcal{N}2^*(3)$. For each subgroup H of G and each element $x \in \mathcal{N}$ we let $\operatorname{Orb}_H(x)$ be the orbit of xunder the action of the group H. That is, $\operatorname{Orb}_H(x) = \{\phi(x) : \phi \in H\}$. If E is a finite subset of A and $H = \operatorname{fix}_G(E)$ we will abbreviate $\operatorname{Orb}_H(x)$ by $\operatorname{Orb}_E(x)$.

We will need the following fact about \mathcal{N} which follows from Lemma 4.2 of [3]:

(3.1) for all $x \in \mathcal{N}$ and for all subgroups H of G, $|\operatorname{Orb}_H(x)| = 3^k$ for some $k \in \omega$.

For the reader's convenience, we shall simplify here the notation for 1-basic open sets and 2-basic closed sets. In particular, let X be an element of \mathcal{N} , x an element of X and λ in $\{0, 1\}$. Then we let

$$\langle x, \lambda \rangle = \{ f \in 2^X \cap \mathcal{M} : f(x) = \lambda \}$$

or

$$\langle x, \lambda \rangle = \{ f \in 2^X : f(x) = \lambda \}$$

since we are working in \mathcal{M} , and we let

$$\langle x, \lambda \rangle_{\mathcal{N}} = \{ f \in 2^X \cap \mathcal{N} : f(x) = \lambda \} = \langle x, \lambda \rangle \cap \mathcal{N}.$$

(Using the notation of Section 1, we could have denoted $\langle x, \lambda \rangle$ by $[\{(x, \lambda)\}]$, which might be more cumbersome due to technical details appearing in the proof.) With this new notation, a 2-basic closed subset of 2^X in \mathcal{M} has the form

$$\langle x, \lambda \rangle \cup \langle y, \mu \rangle$$

and a 2-basic closed subset of 2^X in \mathcal{N} has the form

$$\langle x, \lambda \rangle_{\mathcal{N}} \cup \langle y, \mu \rangle_{\mathcal{N}} = (\langle x, \lambda \rangle \cup \langle y, \mu \rangle) \cap \mathcal{N}$$

for some x and y in X and some λ and μ in $\{0, 1\}$. We leave it to the reader to verify that the set of pairs $H = \{(\langle x, \lambda \rangle_{\mathcal{N}} \cup \langle y, \mu \rangle_{\mathcal{N}}, \langle x, \lambda \rangle \cup \langle y, \mu \rangle\})$: $x, y \in X$ and $\lambda, \mu \in \{0, 1\}\}$ is a one-to-one function from the 2-basic closed sets in \mathcal{N} onto the 2-basic closed subsets in \mathcal{M} . (Some care is required when x = y and $\lambda \neq \mu$, since for any $x \in X$ and distinct $\lambda, \mu \in \{0, 1\}$, $\langle x, \lambda \rangle_{\mathcal{N}} \cup \langle x, \mu \rangle_{\mathcal{N}} = 2^X \cap \mathcal{N}$.) Since $\mathcal{N} \subseteq \mathcal{M}$ we have

$$\langle x,\lambda\rangle_{\mathcal{N}}\cup\langle y,\mu\rangle_{\mathcal{N}}\subseteq\langle x,\lambda\rangle\cup\langle y,\mu\rangle=H(\langle x,\lambda\rangle_{\mathcal{N}}\cup\langle y,\mu\rangle_{\mathcal{N}}).$$

In order to prove that Q(2) is true in \mathcal{N} we assume that $X \in \mathcal{N}$ and that \mathcal{F} is a collection of 2-basic closed subsets of 2^X (in \mathcal{N}) with finite support E and with the fip (in \mathcal{N}). Let

$$\mathcal{F}' = \{ \langle x, \lambda \rangle \cup \langle y, \mu \rangle : \langle x, \lambda \rangle_{\mathcal{N}} \cup \langle y, \mu \rangle_{\mathcal{N}} \in \mathcal{F} \} \ (= \{ H(F) : F \in \mathcal{F} \}).$$

We first note that since \mathcal{F} has support E,

$$(3.2) \quad \forall \langle x, \lambda \rangle \cup \langle y, \mu \rangle \in \mathcal{F}', \, \forall \phi \in \operatorname{fix}_G(E), \quad \langle \phi(x), \lambda \rangle \cup \langle \phi(y), \mu \rangle \in \mathcal{F}'.$$

Or in more compact form

(3.3)
$$\forall F' \in \mathcal{F}', \forall \phi \in \operatorname{fix}_G(E), \quad \phi(F') \in \mathcal{F}'.$$

Since $F \subseteq H(F)$ for every $F \in \mathcal{F}$, the set \mathcal{F}' is a collection of 2-basic closed sets in \mathcal{M} which has the fip. Since **AC** is true in \mathcal{M} and Q(2) follows from **AC**, there is a function $f_0 \in \bigcap \mathcal{F}'$. Our plan is to use f_0 to define a function f_1 which is in $\bigcap \mathcal{F}'$ and in \mathcal{N} . This will suffice since such an f_1 will be in $\bigcap \mathcal{F}$.

For any finite subset Y of X with an odd number of elements, we let $\operatorname{Maj}(Y, f_0)$ be the element λ of $\{0, 1\}$ for which $|\{y \in Y : f_0(y) = \lambda\}|$ is largest. Since $\operatorname{Orb}_E(x)$ is finite and has an odd number of elements for every $x \in \mathcal{N}$ (by (3.1)), we may define $f_1 : X \to \{0, 1\}$ by

(3.4)
$$f_1(x) = \operatorname{Maj}(\operatorname{Orb}_E(x), f_0).$$

Since f_1 is constant on $\operatorname{Orb}_E(x)$ for all $x \in X$, f_1 has support E and is therefore in \mathcal{N} .

Now we argue that $f_1 \in \bigcap \mathcal{F}'$. Assume that $F \in \mathcal{F}'$ and that $F = \langle x, \lambda \rangle \cup \langle y, \mu \rangle$. The easiest case to handle is when x = y and $\lambda \neq \mu$ since in this case $F = 2^X$. For the remaining cases we note that, by (3.3), for every $J \in \operatorname{Orb}_E(F), f_0 \in J$. We will use this fact to show that $f_1 \in F$.

CASE 1: x = y and $\lambda = \mu$. In this case $F = \langle x, \lambda \rangle$ for some $x \in X$ and $\lambda \in \{0, 1\}$. Assume that $t \in \operatorname{Orb}_E(x)$. Then $t = \phi(x)$ for some $\phi \in \operatorname{fix}_G(E)$. By the comments preceding Case 1, $f_0 \in \phi(F) = \langle \phi(x), \lambda \rangle = \{f \in 2^X : f(t) = \lambda\}$. So $f_0(t) = \lambda$ for every $t \in \operatorname{Orb}_E(x)$. By the definition of f_1 , $f_1(x) = \lambda$ and therefore $f_1 \in F$.

CASE 2: $x \neq y$, $\operatorname{Orb}_E(x) = \operatorname{Orb}_E(y)$ and $\lambda \neq \mu$. Since x and y are in the same orbit and f_1 is constant on orbits $f_1(x) = \lambda = f_1(y)$ or $f_1(x) = \mu = f_1(y)$. In either case, $f_1 \in F$.

CASE 3: $x \neq y$, $\operatorname{Orb}_E(x) = \operatorname{Orb}_E(y)$ and $\lambda = \mu$. In this case $F = \langle x, \lambda \rangle \cup \langle y, \lambda \rangle$. Choose $\psi \in \operatorname{fix}_G(E)$ such that $\psi(x) = y$ and let $\psi^2(x) = z$. Since ψ has order 3, x, y and z are different elements of $\operatorname{Orb}_E(x)$ and $\psi(z) = x$.

For each $t \in \operatorname{Orb}_E(x)$ we let $C_t = \{t, \psi(t), \psi^2(t)\}$. Since ψ has order 3, we could also write

$$(3.5) C_t = \{\psi^n(t) : n \in \mathbb{Z}\}.$$

We also claim the following:

- (1) For $t \in \operatorname{Orb}_E(x)$ the set C_t has exactly three elements.
- (2) The set $P = \{C_t : t \in \operatorname{Orb}_E(x)\}$ is a partition of $\operatorname{Orb}_E(x)$.
- (3) The 2-basic closed sets $F_t = \langle t, \lambda \rangle \cup \langle \psi(t), \lambda \rangle$, $\psi(F_t) = \langle \psi(t), \lambda \rangle \cup \langle \psi^2(t), \lambda \rangle$ and $\psi^2(F_t) = \langle \psi^2(t), \lambda \rangle \cup \langle t, \lambda \rangle$ are in $\operatorname{Orb}_E(F)$, for all $t \in \operatorname{Orb}_E(x)$.

To prove item (1) we first note that $C_x = \{x, \psi(x), \psi^2(x)\} = \{x, y, z\}$ has three elements as we remarked above. If we choose an $\eta \in \text{fix}_G(E)$ such that $\eta(x) = t$, then

$$\eta(C_x) = \{\eta(x), \eta(\psi(x)), \eta(\psi^2(x))\} = \{t, \psi(t), \psi^2(t)\} = C_t$$

(where the second to last equality has used the fact that the group G is commutative). Since C_x has three elements and η is an isomorphism of the model, $\eta(C_x) = C_t$ has three elements.

For item (2) we show that for any t and t' in $\operatorname{Orb}_E(x)$, if $C_t \cap C_{t'} \neq \emptyset$ then $C_t = C_{t'}$. Using the characterization of C_t given in (3.5), it follows from the assumption $C_t \cap C_{t'} \neq \emptyset$ that there are integers m and k such that $\psi^m(t) = \psi^k(t')$. Using (3.5) again, it follows that $C_t = C_{t'}$.

For the proof of item (3) we assume $t \in \operatorname{Orb}_E(x)$ and that $t = \eta(x)$ where $\eta \in \operatorname{fix}_G(E)$. Then $\eta(F) = \langle \eta(x), \lambda \rangle \cup \langle \eta(y), \lambda \rangle = \langle t, \lambda \rangle \cup \langle \eta(\psi(x)), \lambda \rangle = \langle t, \lambda \rangle \cup \langle \psi(t), \lambda \rangle = F_t$. (The second to last equality uses the fact that G

is commutative.) So $F_t \in \operatorname{Orb}_E(F)$, and since $\psi \in \operatorname{fix}_G(E)$, it follows that $\psi(F_t)$ and $\psi^2(F_t)$ are also in $\operatorname{Orb}_E(F)$.

It follows from item (3) and (3.3) that for each $t \in \operatorname{Orb}_E(x)$, the three sets $F_t, \psi(F_t)$ and $\psi^2(F_t)$ are in \mathcal{F}' . Since $f_0 \in \bigcap \mathcal{F}', f_0 \in F_t \cap \psi(F_t) \cap \psi^2(F_t)$ from which it follows that $|\{s \in \{t, \psi(t), \psi^2(t)\} : f_0(s) = \lambda\}| \geq 2$. (If $f_0(s) = 1 - \lambda$ for two or more elements of $\{t, \psi(t), \psi^2(t)\}$ then it fails to be in at least one of the three sets $F_t, \psi(F_t)$ or $\psi^2(F_t)$.) Since the sets $\{t, \psi(t), \psi^2(t)\}$ for $t \in \operatorname{Orb}_E(x)$ partition $\operatorname{Orb}_E(x)$ we conclude that $\operatorname{Maj}(\operatorname{Orb}_E(x), f_0) = \lambda$. Therefore $f_1(t) = \lambda$ for all $t \in \operatorname{Orb}_E(x)$. In particular $f_1(x) = \lambda$, so $f_1 \in F$.

CASE 4: $x \neq y$, $\operatorname{Orb}_E(x) \neq \operatorname{Orb}_E(y)$. We first argue that

(3.6)
$$\operatorname{Maj}(\operatorname{Orb}_E(x)), f_0) = \lambda \text{ or } \operatorname{Maj}(\operatorname{Orb}_E(y), f_0) = \mu$$

(where, recall, $F = \langle x, \lambda \rangle \cup \langle y, \mu \rangle$ and $f_0 \in \bigcap \{ \phi(F) : \phi \in fix_G(E) \}$). Let

$$Orb_y(x) = \{\phi(x) : \phi \in fix_G(E) \text{ and } \phi(y) = y\},\$$

$$Orb_x(y) = \{\psi(y) : \psi \in fix_G(E) \text{ and } \psi(x) = x\}.$$

Let also

$$\mathbb{P}_x = \operatorname{Orb}_E(\operatorname{Orb}_y(x)) = \{\eta(\operatorname{Orb}_y(x)) : \eta \in \operatorname{fix}_G(E)\},\\ \mathbb{P}_y = \operatorname{Orb}_E(\operatorname{Orb}_x(y)) = \{\eta(\operatorname{Orb}_x(y)) : \eta \in \operatorname{fix}_G(E)\}.$$

LEMMA 3.3.

- (1) The sets \mathbb{P}_x and \mathbb{P}_y are finite and odd-sized partitions of $\operatorname{Orb}_E(x)$ and $\operatorname{Orb}_E(y)$, respectively.
- (2) The binary relation $R = \{(\eta(\operatorname{Orb}_y(x)), \eta(\operatorname{Orb}_x(y))) : \eta \in \operatorname{fix}_G(E)\}$ is a one-to-one function from \mathbb{P}_x onto \mathbb{P}_y .
- (3) For all $Z_1, Z_2 \in \mathbb{P}_x$, $|Z_1| = |Z_2|$, and for all $W_1, W_2 \in \mathbb{P}_y$, $|W_1| = |W_2|$.
- (4) For every $Z \in \mathbb{P}_x$, and for all $z \in Z$ and $w \in R(Z)$, the set $\langle z, \lambda \rangle \cup \langle w, \mu \rangle$ is in $Orb_E(F)$.

Proof. (1) We only prove (1) for \mathbb{P}_x . First note that by the definition of \mathbb{P}_x and (3.1), it readily follows that \mathbb{P}_x is a finite odd-sized set. Further, it is clear that $\bigcup \mathbb{P}_x = \operatorname{Orb}_E(x)$, hence in order to prove that \mathbb{P}_x is a partition of $\operatorname{Orb}_E(x)$, it suffices to assume that $\eta_1(\operatorname{Orb}_y(x)) \cap \eta_2(\operatorname{Orb}_y(x)) \neq \emptyset$, where η_1 and η_2 are in fix_G(E), and prove that $\eta_1(\operatorname{Orb}_y(x)) = \eta_2(\operatorname{Orb}_y(x))$. By the assumption there is an element t in the intersection which can therefore be written as

$$t = \eta_1(\phi_1(x)) = \eta_2(\phi_2(x))$$

where ϕ_1 and ϕ_2 are in fix_G(E) and $\phi_1(y) = \phi_2(y) = y$. Solving the displayed equation and using the fact that G is commutative we obtain

(3.7)
$$x = \eta_1^{-1} \eta_2 \phi_1^{-1} \phi_2(x).$$

Therefore if z is another element of $\eta_1(\operatorname{Orb}_y(x))$, $z = \eta_1(\phi_3(x))$ where $\phi_3 \in \operatorname{fix}_G(E)$ and $\phi_3(y) = y$, then by (3.7), we have $z = \eta_1(\phi_3(\eta_1^{-1}\eta_2\phi_1^{-1}\phi_2(x)))$ = $\eta_2\phi_3\phi_1^{-1}\phi_2(x)$ and therefore $z \in \eta_2(\operatorname{Orb}_y(x))$. Similarly every element of $\eta_2(\operatorname{Orb}_y(x))$ is in $\eta_1(\operatorname{Orb}_y(x))$.

(2) It is clear that every element of \mathbb{P}_x is in the domain of R and every element of \mathbb{P}_y is in the range of R. We will prove R is a function. The proof that R is one-to-one is similar and we take the liberty of omitting it. It suffices to prove that for all $\eta_1, \eta_2 \in \operatorname{fix}_G(E)$, if $\eta_1(\operatorname{Orb}_x(y)) \neq \eta_2(\operatorname{Orb}_x(y))$ then $\eta_1(\operatorname{Orb}_y(x)) \neq \eta_2(\operatorname{Orb}_y(x))$. Letting $\beta = \eta_2^{-1}\eta_1$ this is equivalent to showing that for all $\beta \in \operatorname{fix}_G(E)$, if $\beta(\operatorname{Orb}_x(y)) \neq \operatorname{Orb}_x(y)$ then $\beta(\operatorname{Orb}_y(x)) \neq$ $\operatorname{Orb}_y(x)$. Assume the hypothesis holds and the conclusion is false. Then $\beta(y) \notin \operatorname{Orb}_x(y)$ (otherwise, $\beta(\operatorname{Orb}_x(y)) \cap \operatorname{Orb}_x(y) \neq \emptyset$, hence $\beta(\operatorname{Orb}_x(y)) =$ $\operatorname{Orb}_x(y)$, since \mathbb{P}_y is a partition, a contradiction) and therefore $\beta(x) \neq x$ (by the definition of $\operatorname{Orb}_x(y)$ if $\beta(x) = x$ then $\beta(\operatorname{Orb}_x(y)) = \operatorname{Orb}_x(y)$). Since $\beta(\operatorname{Orb}_y(x)) = \operatorname{Orb}_y(x), \beta(x) \in \operatorname{Orb}_y(x)$ and therefore $\beta(x) = \phi(x)$ for some $\phi \in \operatorname{fix}_G(E)$ for which $\phi(y) = y$. But then $\phi^{-1}\beta(x) = x$ and therefore $\phi^{-1}\beta(y) \in \operatorname{Orb}_x(y)$. But $\phi^{-1}\beta(y) = \beta(y)$, contradicting our assumption that $\beta(y) \notin \operatorname{Orb}_x(y)$.

(3) Note that every $Z \in \mathbb{P}_x$ has the same cardinality as $\operatorname{Orb}_y(x)$ since for some $\eta \in \operatorname{fix}_G(E)$, $Z = \eta(\operatorname{Orb}_y(x))$ and η is an \in -isomorphism of the model \mathcal{M} . Similarly, any two elements of \mathbb{P}_y have the same cardinal number.

(4) Let $Z \in \mathbb{P}_x$, $z \in Z$ and $w \in R(Z)$. Then there is an $\eta \in \operatorname{fix}_G(E)$ such that $Z = \eta(\operatorname{Orb}_y(x))$ and $R(Z) = \eta(\operatorname{Orb}_x(y))$. There are also permutations ϕ_1 and ϕ_2 in $\operatorname{fix}_G(E)$ such that $\eta(\phi_1(x)) = z$, $\phi_1(y) = y$, $\eta(\phi_2(y)) = w$ and $\phi_2(x) = x$. The set $\eta\phi_1\phi_2(F)$ is in $\operatorname{Orb}_E(F)$ and

$$\eta\phi_1\phi_2(F) = \langle \eta\phi_1\phi_2(x), \lambda \rangle \cup \langle \eta\phi_1\phi_2(y), \mu \rangle$$
$$= \langle \eta\phi_1(x), \lambda \rangle \cup \langle \eta\phi_2(y), \mu \rangle = \langle z, \lambda \rangle \cup \langle w, \mu \rangle.$$

The conclusion of (4) follows.

By Lemma 3.3(4), we have

 $\forall Z \in \mathbb{P}_x, \, \forall z \in Z, \, \forall w \in R(Z), \quad \langle z, \lambda \rangle \cup \langle w, \mu \rangle \in \mathcal{F}'.$

Since $f_0 \in \bigcap \mathcal{F}'$ it follows that

(3.8) $\forall Z \in \mathbb{P}_x$, either $(\forall z \in Z, f_0(z) = \lambda)$ or $(\forall w \in R(Z), f_0(w) = \mu)$.

Let K_0 be the odd integer $|\mathbb{P}_x| = |\mathbb{P}_y| = |R|$. It follows from (3.8) that either

$$(3.9) \qquad |\{Z \in \mathbb{P}_x : \forall z \in Z, f_0(z) = \lambda\}| > K_0/2 \quad \text{or}$$

(3.10)
$$|\{W \in \mathbb{P}_{y} : \forall w \in W, f_{0}(w) = \mu\}| > K_{0}/2.$$

(Recall that \mathbb{P}_y is the image of \mathbb{P}_x under R. If both of the above inequalities fail then the set of all pairs $(Z, R(Z)) \in R$ such that $(\forall z \in Z, f_0(z) = \lambda)$ or $(\forall w \in R(Z), f_0(w) = \mu)$ has cardinality smaller than $K_0 = |R|$. There would then be a pair $(Z, R(Z)) \in R$ for which both $(\forall z \in Z, f_0(z) = \lambda)$ and $(\forall w \in R(Z), f_0(w) = \mu)$ are false. This contradicts (3.8).)

By Lemma 3.3(3), all elements of \mathbb{P}_x have the same cardinality. Therefore, if alternative (3.9) holds, then $\operatorname{Maj}(\operatorname{Orb}_E(x), f_0) = \lambda$. Similarly, if (3.10) holds, then $\operatorname{Maj}(\operatorname{Orb}_E(y), f_0) = \mu$. Therefore, either $f_1(x) = \lambda$ or $f_1(y) = \mu$ and in either case, $f_1 \in F$.

We have shown that $f_1 \in \bigcap \mathcal{F}'$, which, as remarked earlier, is sufficient to complete the proof.

THEOREM 3.4. In **ZFA**, Q(2) does not imply **BPI**, hence by Theorem 3.1, Q(2) does not imply Q(n), for any integer $n \ge 3$.

Proof. This follows from Lemma 3.2 and the known fact that **BPI** fails in the FM model $\mathcal{N}2^*(3)$ (see [2] or [6]).

We note that many consequences of the Axiom of Choice are known to hold in $\mathcal{N}2^*(3)$. Of particular interest to us are:

The Axiom of Multiple Choice MC: For every set X of non-empty sets there is a function f with domain X such that for each $y \in X$, f(y) is a non-empty finite subset of y,

and its consequence (see [8, Corollary 2])

Rado's Selection Lemma RL ([10]): Let \mathfrak{F} be a family of finite sets and suppose that to every finite subset F of \mathfrak{F} there corresponds a choice function ϕ_F whose domain is F such that $\phi_F(T) \in T$ for each $T \in F$. Then there is a choice function f whose domain is \mathfrak{F} with the property that for every finite subset F of \mathfrak{F} , there is a finite subset F' of \mathfrak{F} such that $F \subseteq F'$ and $f(T) = \phi_{F'}(T)$ for all $T \in F$.

(For an extensive study on Rado's selection lemma, the reader is referred to [1], [4], [8], [10], [11].)

On the other hand, a principle related to generalized Cantor cubes (which fails in $\mathcal{N}2^*(3)$, see Corollary 3.5 below), introduced and studied in [5], is the following:

MCP: For every infinite set X, the generalized Cantor cube 2^X has the minimal cover property, i.e., for every open cover \mathcal{U} of 2^X there is a subcover \mathcal{V} of \mathcal{U} with the property that for every $V \in \mathcal{V}, \mathcal{V} \setminus \{V\}$ does not cover 2^X .

The following is shown in [5]:

FACT 7. MCP implies $Q(2) + AC_{fin}$, where AC_{fin} is the Axiom of Choice for families of non-empty finite sets.

Many finite choice axioms, for example \mathbf{AC}_{3}^{ω} , the axiom of choice for countable sets of 3-element sets, are known to fail in $\mathcal{N}2^{*}(3)$ (see [2] or [6]). We also note that \mathbf{AC}_{2} , the axiom of choice for sets of 2-element sets, holds in $\mathcal{N}2^{*}(3)$ (see [2] or [6]). A fairly complete list of both kinds of forms can be found in [2]. As a consequence to the above discussion and results, we also have

COROLLARY 3.5. In **ZFA**, $(Q(2) + \mathbf{MC} (+\mathbf{RL}))$ does not imply \mathbf{AC}_{3}^{ω} , hence does not imply **MCP**.

Acknowledgements. We would like to thank the anonymous referee for his review work and, in particular, for his suggestion of adding in the paper the open question of whether Q(2) implies **BPI** in **ZF**.

References

- P. E. Howard, Rado's selection lemma does not imply the Boolean prime ideal theorem, Z. Math. Logik Grundlag. Math. 30 (1984), 129–132.
- [2] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr. 59, Amer. Math. Soc., Providence, RI, 1998.
- P. Howard and E. Tachtsis, On vector spaces over specific fields without choice, Math. Logic Quart. 59 (2013), 128–146.
- [4] P. Howard and E. Tachtsis, On a variant of Rado's selection lemma and its equivalence with the Boolean prime ideal theorem, Arch. Math. Logic 53 (2014), 825–833.
- [5] P. Howard and E. Tachtsis, On the Minimal Cover Property in ZF, Topology Appl. 173 (2014), 94–106.
- [6] T. Jech, *The Axiom of Choice*, Stud. Logic Found. Math. 75, North-Holland, Amsterdam, 1973.
- K. Keremedis and E. Tachtsis, Extensions of compactness of Tychonoff powers of 2 in ZF, Topology Proc. 37 (2011), 15–31.
- [8] M. Morillon, Some consequences of Rado's selection lemma, Arch. Math. Logic 51 (2012), 739–749.
- J. Mycielski, Two remarks on Tychonoff's product theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 439–441.
- [10] R. Rado, Axiomatic treatment of rank in infinite sets, Canad. J. Math. 1 (1949), 337–343.
- Y. Rav, Variants of Rado's selection lemma and their applications, Math. Nachr. 79 (1977), 145–165.
- [12] E. Tachtsis, BPI is equivalent to compactness-n, $n \ge 6$, of Tychonoff powers of 2, Topology Proc. 40 (2012), 21–28.

Paul Howard Department of Mathematics Eastern Michigan University Ypsilanti, MI 48197, U.S.A. E-mail: phoward@emich.edu Eleftherios Tachtsis Department of Mathematics University of the Aegean Karlovassi 83200, Samos, Greece E-mail: ltah@aegean.gr