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A Katznelson–Tzafriri type theorem for
Cesàro bounded operators

by

Luciano Abadias (Zaragoza)

Abstract. We extend the well-known Katznelson–Tzafriri theorem, originally stated
for power-bounded operators, to the case of Cesàro bounded operators of any order α > 0.
For this purpose, we use a functional calculus between a new class of fractional Wiener
algebras and the algebra of bounded linear operators, defined for operators with the cor-
responding Cesàro boundedness. Finally, we apply the main theorem to get ergodicity
results for the Cesàro means of bounded operators.

1. Introduction. Let A(T) be the convolution Wiener algebra formed
by all continuous periodic functions f(t) =

∑∞
n=−∞ a(n)eint, for t ∈ [0, 2π),

with the norm ‖f‖A(T) :=
∑∞

n=−∞ |a(n)|. This algebra is regular. We denote
by A+(T) the convolution closed subalgebra of A(T) where the functions
satisfy a(n) = 0 for n < 0. Note that A(T) and `1(Z) are isometrically
isomorphic. The same holds for A+(T) and `1(N0), where N0 = N ∪ {0}.
In the above, the sequence (a(n))n∈Z corresponds to the Fourier coefficients
of f, that is

a(n) := f̂(n) =
1

2π

2π�

0

f(t)e−int dt.

Let E be a closed subset of T and f ∈ A(T). We recall that f is of spectral
synthesis with respect to E if for every ε > 0 there exists fε ∈ A(T) such that
‖f− fε‖A(T) < ε with fε = 0 in a neighborhood of E. The above definition is
valid in any regular Banach algebra. For more details see [K, Chapter VIII,
Section 7]. Since supt∈[0,2π) |f(t)| ≤ ‖f‖A(T), if f is of spectral synthesis with
respect to E, then f vanishes on E.
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Let X be a complex Banach space and B(X) the Banach algebra of all
bounded linear operators on X. An operator T ∈ B(X) is power-bounded if
supn≥0‖Tn‖ < ∞. In 1986, Y. Katznelson and L. Tzafriri proved that if T
is a power-bounded operator on X and f ∈ A+(T) is of spectral synthesis in
A(T) with respect to σ(T ) ∩ T, then

lim
n→∞

‖Tnθ(̂f)‖ = 0,

where σ(T ) denotes the spectrum of T and θ : `1(N0) → B(X) is the func-
tional calculus given by

θ(f) :=
∞∑
j=0

f(j)T j , x ∈ X, f ∈ `1(N0)

(see [KT, Theorem 5]). Moreover, for T ∈ B(X) power-bounded, we have
limn→∞‖Tn−Tn+1‖ = 0 if and only if σ(T )∩T ⊆ {1} (see [KT, Theorem 1]).

Léka [L1] proved that for T power-bounded in a Hilbert space H, the
result of [KT, Theorem 5] still holds if f ∈ A+(T) just vanishes on the
peripheral spectrum. For contractions on H this had been proved in [ESZ2].

When the Fourier coefficients of f satisfy
∑

j≥0 j |̂f(j)| <∞, the same holds
in any Banach space [AOR]. If T is (C, 1)-bounded and σ(T ) ∩ T = {1},
but T is not power-bounded, then ‖Tn − Tn+1‖ need not converge to zero.
The first counter-examples were given in [TZ]. There is a counter-example
in a Hilbert space with σ(T ) = {1} in [L2].

A similar result for C0-semigroups was proved simultaneously in [ESZ1]
and [V2]. The result states that if (T (t))t≥0 ⊂ B(X) is a bounded C0-
semigroup generated by A, and f ∈ L1(R+) is of spectral synthesis in L1(R)
with respect to iσ(A) ∩ R, then

lim
t→∞
‖T (t)Θ(f)‖ = 0,

where Θ : L1(R+)→ B(X) is the Hille functional calculus given by

Θ(f)x :=

∞�

0

f(t)T (t)x, x ∈ X, f ∈ L1(R+).

In [CT, Theorem 5.5], there is a nice proof of this result, which has inspired
the proof of the main theorem of this paper (Theorem 3.4).

In [GMM], the authors give a similar theorem for α-times integrated
semigroups: Let α > 0, let (Tα(t))t≥0 ⊂ B(X) be an α-times integrated
semigroup generated by A such that supt>0 t

−α‖Tα(t)‖ < ∞, and let f ∈
T (α)
+ (tα) be of spectral synthesis in T (α)(|t|α) (both are Sobolev subalgebras

of L1(R+) and L1(R) respectively which have been studied in detail in [GM])
with respect to iσ(A) ∩ R. Then

lim
t→∞

t−α‖Tα(t)Θα(f)‖ = 0,
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where Θα : T (α)
+ (tα)→ B(X) is the bounded algebra homomorphism defined

by

Θα(f)x :=

∞�

0

Wα
+f(t)Tα(t)x, x ∈ X, f ∈ T (α)

+ (tα),

and Wα
+f is the Weyl fractional derivative of order α of f.

Let α > 0 and T ∈ B(X). We denote T (n) := Tn for n ∈ N0. The Cesàro
sum of order α > 0 of T is the family of operators (∆−αT (n))n∈N0 ⊂ B(X)
defined by

∆−αT (n)x :=
n∑
j=0

kα(n− j)T jx, x ∈ X, n ∈ N0,

and the Cesàro mean of orderα>0 ofT is the family of operators (Mα
T (n))n∈N0

given by

Mα
T (n)x :=

1

kα+1(n)
∆−αT (n)x, x ∈ X, n ∈ N0,

where

kα(n) :=
Γ (α+ n)

Γ (α)Γ (n+ 1)
=

(
n+ α− 1

α− 1

)
, n ∈ N0,

is the Cesàro kernel of order α. When the Cesàro mean of order α of T is
uniformly bounded, that is,

sup
n
‖Mα

T (n)‖ <∞,

the operator T is said to be Cesàro bounded of order α or simply (C,α)-
bounded. We extend the Cesàro kernel for α = 0 using that k0(n) :=
limα→0+ k

α(n) = δn,0 for n ∈ N0, where δn,j is the Kronecker delta. Then
(C, 0)-boundedness is equivalent to power-boundedness, and for α = 1 the
operator T is said to be Cesàro mean bounded (or simply Cesàro bounded).
From [Z, formulas (1.10) and (1.17), p. 77] it can be proved that for β > α ≥ 0

we have supn‖M
β
T (n)‖ ≤ supn‖Mα

T (n)‖ ≤ supn‖Tn‖; in particular if T is
a power-bounded operator then T is (C,α)-bounded for any α > 0. The
converse is not true in general (see [LSS, Propositions 4.3 and 4.4]). The
Assani matrix

T =

(
−1 2

0 −1

)
is (C, 1)-bounded but it is not power-bounded since

Tn =

(
(−1)n (−1)n+12n

0 (−1)n

)
, n ∈ N0

(see [Em, Section 4.7] and [SZ, Remark 2.3]).
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Lemma 1.1. Let α > 0. If T is (C,α)-bounded, then it has spectral
radius r(T ) ≤ 1.

Proof. This is a straightforward consequence of [SZ, Lemma 2.1] since
T is (C, [α] + 1)-bounded.

The study of mean ergodic theorems for operators which are not power-
bounded started with [H]. There are many results concerning ergodicity
[D, ED, Em, SZ, TZ, Y] and growth [LSS, S] of Cesàro sums and of Cesàro
means of order α.

In a recent paper [AL+1], it is proved that the algebraic structure of
the Cesàro sum of order α of a bounded operator is similar to the algebraic
structure of α-times integrated semigroups [AL+1, Theorem 3.3]. In [AL+1,
Section 2], certain weighted convolution algebras, denoted by τα(kα+1) and
contained in `1(N0), are constructed for any α > 0. Then (C,α)-boundedness
is characterized by the existence of an algebra homomorphism from τα(kα+1)
into B(X) [AL+1, Corollary 3.7].

The outline of this paper is as follows: In Section 2 we use Weyl fractional
differences to construct Banach algebras τα(|n|α) contained in `1(Z) (The-
orem 2.11). The techniques used are similar to those in [AL+1, Section 2],
and we follow the same steps as in the continuous case [GM], adapting the
proofs. In Section 3 we define fractional Wiener algebras of periodic contin-
uous functions, Aα+(T) and Aα(T), which are isometrically isomorphic via
the Fourier transform to τα(kα+1) and τα(|n|α), respectively. These algebras
allow us to state the main theorem of this paper (Theorem 3.4): Let α > 0,
let T ∈ B(X) be a (C,α)-bounded operator and let f ∈ Aα+(T) be of spectral
synthesis in Aα(T) with respect to σ(T ) ∩ T. Then

lim
n→∞

‖Mα
T (n)θα(̂f)‖ = 0,

where θα : τα(kα+1)→ B(X) is the bounded algebra homomorphism defined
by

θα(f)x :=

∞∑
n=0

Wα
+f(n)∆−αT (n)x, x ∈ X, f ∈ τα(kα+1),

and Wα
+f is the Weyl fractional difference of order α of f (see [AL+1, The-

orem 3.5]). Finally, in Section 4 we give two applications of ergodicity for
(C,α)-bounded operators (Theorems 4.1 and 4.3).

Notation. We denote by `1(Z) the set of complex sequences f : Z→ C
such that

∑∞
n=−∞ |f(n)| <∞, and by c0,0(Z) the set of complex sequences

with finite support. It is well known that `1(Z) is a Banach algebra with the
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usual (commutative and associative) convolution product

(f ∗ g)(n) =

∞∑
j=−∞

f(n− j)g(j), n ∈ Z.

The above is valid for sequences defined in N0 instead Z, and the corre-
sponding convolution product is

(f ∗ g)(n) =

n∑
j=0

f(n− j)g(j), n ∈ N0.

Moreover, if f is a sequence defined in N0, we can see it as a sequence defined
in Z with f(n) = 0 for all n < 0.

Throughout the paper, we use the variable constant convention, in which
C denotes a constant which may not be the same from line to line. The
constant is frequently written with subscripts to emphasize that it depends
on some parameters.

2. Fractional differences and convolution Banach algebras. For
α > 0, the Cesàro kernel of order α, (kα(n))n∈N0, plays a key role in the
main results of this paper. Many of its properties can be found in [Z, Vol. I,
p. 77]. We quote some of them: the semigroup property, kα ∗ kβ = kα+β for
α, β > 0; for α > 0,

(2.1) kα(n) =
nα−1

Γ (α)
(1 +O(1/n)), n ∈ N

(see [Z, Vol. I, (1.18)]); kα is increasing (as a function of n) for α > 1,
decreasing for 0 < α < 1 and k1(n) = 1 for n ∈ N [Z, Chapter III, Theorem
1.17]; kα(n) ≤ kβ(n) for β ≥ α > 0 and n ∈ N0; finally, for α > 0, there
exists Cα > 0 such that

(2.2) kα(2n) ≤ Cαkα(n), n ∈ N0

(see [AL+1, Lemma 2.1]). The Cesàro kernel kα has been introduced in order
to study fractional difference problems, see [AL], [AL+2] and [Li].

As mentioned in the introduction, for each α > 0 there exists a convolu-
tion Banach algebra τα(kα+1) contained in `1(N0) with continuous inclusions

τβ(kβ+1) ↪→ τα(kα+1) ↪→ `1(N0), β > α > 0,

and τ0(k1) ≡ `1(N0) (see [AL+1]). Now we are interested in obtaining some
similar spaces contained in `1(Z). For convenience, we denote τα(nα) :=
τα(kα+1) for α > 0.

In the following, let (f(n))n∈Z be a sequence of complex numbers. Some
results in this section can be extended immediately to vector-valued se-
quences, that is, when f takes values in a complex Banach space X. For
n ∈ Z we consider the usual forward and backward difference operators,
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∆f(n) = f(n+1)−f(n) and∇f(n) = f(n)−f(n−1), and the natural powers

∆mf(n) =

m∑
j=0

(−1)m−j
(
m

j

)
f(n+ j), n ∈ Z,

∇mf(n) =

m∑
j=0

(−1)j
(
m

j

)
f(n− j), n ∈ Z,

for m ∈ N0 (see for example [E, (2.1.1)] for ∆m; for ∇m it is a simple check
using ∆m). Observe that ∆m,∇m : c0,0(Z)→ c0,0(Z) for m ∈ N0.

For convenience, following the notation of [AL+1], we write W+ = −∆
and W− = ∇, Wm

+ = (−1)m∆m and Wm
− = ∇m for m ∈ N. The inverse

operators of W+ and W−, and their powers in c0,0(Z), are given by

W−m+ f(n) =
∞∑
j=n

km(j − n)f(j), n ∈ Z,

W−m− f(n) =
n∑

j=−∞
km(n− j)f(j), n ∈ Z,

for m ∈ N (see for example [GW, p. 307] in the case of W+ for sequences
defined in N0).

Definition 2.1. Let (f(n))n∈Z be a complex sequence and α > 0. The
Weyl sums of order α of f are given by

W−α+ f(n) :=
∞∑
j=n

kα(j − n)f(j), n ∈ Z,

W−α− f(n) :=

n∑
j=−∞

kα(n− j)f(j), n ∈ Z,

whenever the sums make sense, and the Weyl differences are

Wα
+f(n) := Wm

+ W
−(m−α)
+ f(n) = (−1)m∆mW

−(m−α)
+ f(n), n ∈ Z,

Wα
−f(n) := Wm

−W
−(m−α)
− f(n) = ∇mW−(m−α)− f(n), n ∈ Z,

for m = [α] + 1, whenever the right hand sides converge. In particular
Wα

+, W
α
− : c0,0(Z)→ c0,0(Z) for α ∈ R.

The above definitions have been considered in more restrictive contexts
in some papers [AL+1, GW]. The natural properties that are satisfied in
those contexts are generalized below, and the proof is similar to the proof
of [AL+1, Proposition 2.4].

Proposition 2.2. Let f ∈ c0,0(Z) and α, β ∈ R. Then:

(i) Wα+β
+ f = Wα

+W
β
+f.
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(ii) Wα+β
− f = Wα

−W
β
−f.

(iii) limα→0W
α
+f = limα→0W

α
−f = f.

Note that the Cesàro kernel can be considered in a more general setting.
For α ∈ R,

kα(n) =
α(α+ 1) · · · (α+ n− 1)

n!
for n ∈ N, kα(0) = 1.

Also if α < 0 with α 6= {0,−1,−2, . . .} we can write kα(n) = (−1)n
(−α
n

)
and (2.1) is valid too. It is known that

∞∑
n=0

kα(n)zn = (1− z)−α, |z| < 1.

Then we can deduce that kα ∗ kβ = kβ+α for α, β ∈ R. This allows us to
represent the Weyl differences in the following way.

Proposition 2.3. Let (f(n))n∈Z be a complex sequence and α ∈ R.
Then

Wα
+f(n) =

∞∑
j=n

k−α(j−n)f(j), Wα
−f(n) =

n∑
j=−∞

k−α(n−j)f(j), n ∈ Z,

whenever the Weyl differences of order α of f make sense.

Proof. We only prove the result for W+; the proof for W− is analogous.
If α ∈ N, then

Wα
+f(n) =

α∑
j=0

(−1)j
(
α

j

)
f(n+j) =

∞∑
j=0

k−α(j)f(n+j) =

∞∑
j=n

k−α(n−j)f(j).

Now let m− 1 < α < m with m ∈ N. Then

Wα
+f(n) = Wm

+ W
−(m−α)
+ f(n) =

m∑
j=0

(−1)j
(
m

j

) ∞∑
l=n+j

km−α(l − n− j)f(l)

=

n+m∑
l=n

f(l)

l−n∑
j=0

(−1)j
(
m

j

)
km−α(l − n− j)

+

∞∑
l=n+m+1

f(l)

m∑
j=0

(−1)j
(
m

j

)
km−α(l − n− j)

=

n+m∑
l=n

f(l)(k−m ∗ km−α)(l − n) +

∞∑
l=n+m+1

f(l)(k−m ∗ km−α)(l − n)

=
∞∑
l=n

k−α(l − n)f(l).
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Remark 2.4. The operators Wα
+ and W−α+ for α ∈ (0, 1) are tightly

connected to the definition of (I − T )α for any contraction T in a Banach
space, given in [DL]. If we denote by S the shift operator on `1(Z), that
is, Sf(n) = f(n + 1) for n ∈ Z, then Wα

+ = (I − S)α (compatible with
I−S = −∆), well-defined on the whole space `1(Z), andW−α+ = [(I−S)α]−1,
defined on the range of (I−S)α. Also these identities are valid for α > 0. The
author is currently studying these fractional powers of the operator I − S
as fractional powers of the generator of a uniformly bounded C0-semigroup
on a Banach space; the results will appear in a forthcoming paper.

Remark 2.5. Note that

Wm
+ f(n) =

m∑
j=0

(−1)j
(
m

j

)
f(n+ j),

Wm
− f(n) =

m∑
j=0

(−1)j
(
m

j

)
f(n− j)

for m ∈ N and n ∈ Z, therefore in general Wα
+f(n) 6= Wα

−f(n) for α > 0
and n ∈ Z (it suffices take 0 < α < 1 and the sequence given by f(n) = 1
for n = 0, 1, and f(n) = 0 otherwise). However, we have the following link
between Wα

+ and Wα
−; its proof is left to the reader.

Proposition 2.6. Let α be a positive real number and let f ∈ c0,0(Z)
be such that f(n) = f(−n) for all n ∈ Z. Then

Wα
+f(n) = Wα

−f(−n), n ∈ Z.

In particular Wα
+f(0) = Wα

−f(0).

Let (f(n))n∈Z be a complex sequence. We denote by (f+(n))n∈Z,
(f−(n))n∈Z and (f̃(n))n∈Z the sequences given by

f+(n) :=

{
f(n), n ≥ 0,

0, n < 0,
f−(n) :=

{
0, n ≥ 0,

f(n), n < 0,

and f̃(n) = f(−n) for n ∈ Z. It is a simple check that (W−α+ f )̃ (n) =

W−α− f̃(n), n ∈ Z, for α > 0 and f ∈ c00(Z). Then the following result is a
straight consequence.

Proposition 2.7. Let f ∈ c0,0(Z) and α > 0. Then:

(i) Wα
+f+(n) = Wα

+f(n), n ≥ 0.
(ii) Wα

−f−(n) = Wα
−f(n), n < 0.

(iii) (Wα
+f )̃ (n) = Wα

− f̃(n), n ∈ Z.
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Definition 2.8. Let α > 0. We denote by Wα : c0,0(Z) → c0,0(Z) the
operator given by

Wαf(n) :=

{
Wα

+f(n), n ≥ 0,

Wα
−f(n), n < 0,

for f ∈ c0,0(Z).

We are interested in the relation between the convolution product and
the fractional Weyl differences. If f, g ∈ c0,0(Z) then it is known that f ∗g ∈
c0,0(Z). In [AL+1, Lemma 2.7], the following equality is proved:

(2.3) Wα
+(f+ ∗ g+)(n) =

n∑
j=0

Wα
+g(j)

n∑
p=n−j

kα(p− n+ j)Wα
+f(p)

−
∞∑

j=n+1

Wα
+g(j)

∞∑
p=n+1

kα(p− n+ j)Wα
+f(p), n ≥ 0,

for f, g ∈ c0,0(Z) and α ≥ 0. The rest of this section is inspired by the
continuous case (see [GM]).

Lemma 2.9. Let f, g ∈ c0,0(Z) and α > 0. Then:

(i) Wα
+(f+ ∗ g−)(n) = (Wα

+f+ ∗ g−)(n), n ≥ 0.
(ii) Wα

−(f− ∗ g+)(n) = (Wα
−f− ∗ g+)(n), n < 0.

Proof. (i) Let n ≥ 0. Then

(f+∗ g−)(n) =
∞∑

j=n+1

W−α+ Wα
+f+(j)g−(n− j)

=
∞∑

j=n+1

Wα
+f+(j)

j∑
i=n+1

kα(j − i)g−(n− i)

=

∞∑
j=n+1

Wα
+f+(j)

j−1∑
u=n

kα(u− n)g−(u− j)

=
∞∑
u=n

kα(u− n)
∞∑

j=u+1

Wα
+f+(j)g−(u− j)=W−α+ (Wα

+f+ ∗ g−)(n),

where we have used Fubini’s Theorem and a change of variables, and then
Wα

+(f+ ∗ g−)(n) = Wα
+f+ ∗ g−(n).

(ii) Using Proposition 2.7 and part (i) we see for n < 0 that

Wα
−(f− ∗ g+)(n) = Wα

+(f− ∗ g+)̃ (−n) = Wα
+((f−)̃ ∗ (g+)̃ )(−n)

= Wα
+(f̃+ ∗ g̃−)(−n) = (Wα

+ f̃+ ∗ g̃−)(−n)

= ((Wα
+ f̃+)̃ ∗ (g̃−)̃ )(n) = (Wα

−f− ∗ g+)(n).
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Lemma 2.10. Let f, g ∈ c0,0(Z) and α > 0. Then

Wα(f ∗ g)(n) = (Wα
+f+ ∗ g−)(n) +Wα

+(f+ ∗ g+)(n) + (f− ∗Wα
+g+)(n),

for n ≥ 0, and

Wα(f ∗ g)(n) = (Wα
−f− ∗ g+)(n) +Wα

−(f− ∗ g−)(n) + (f+ ∗Wα
−g−)(n),

for n < 0.

Proof. It is a simple check that

(f ∗ g)(n) = (f+ ∗ g−)(n) + (f+ ∗ g+)(n) + (f− ∗ g+)(n), n ≥ 0,

(f ∗ g)(n) = (f− ∗ g+)(n) + (f− ∗ g−)(n) + (f+ ∗ g−)(n), n < 0.

Then by Lemma 2.9 we get the result.

For α ≥ 0 we define qα : c0,0(Z)→ [0,∞) by

qα(f) :=
∞∑

n=−∞
kα+1(|n|)|Wαf(n)|, f ∈ c0,0(Z).

Observe that for α = 0 this is the usual norm in `1(Z).

The following theorem is the main result of this section; it extends [AL+1,
Theorem 2.11] and [GW, Theorem 4.5].

Theorem 2.11. Let α > 0. The map qα defines a norm in c0,0(Z) and

qα(f ∗ g) ≤ Cαqα(f)qα(g), f, g ∈ c0,0(Z),

with Cα > 0 independent of f and g. Denote by τα(|n|α) the Banach algebra
obtained as the space of complex sequences f such that limn→∞ f(n) = 0
and the norm qα(f) converges. Furthermore, these spaces are continuously
embedded in each other in the following way:

τβ(|n|β) ↪→ τα(|n|α) ↪→ `1(Z)

for β > α > 0, and limα→0+ qα(f) = ‖f‖1 for f ∈ c0,0(Z).

Proof. It is clear that qα is a norm in c0,0(Z). We write

qα(f) =
−1∑

n=−∞
kα+1(−n)|Wα

−f−(n)|+
∞∑
n=0

kα+1(n)|Wα
+f+(n)|

:= q−α (f−) + q+α (f+).

We have to show that qα defines a Banach algebra. First we prove that

q+α ((f ∗ g)+) ≤ Cαqα(f)qα(g).

By Lemma 2.10,

Wα(f ∗ g)(n) = (Wα
+f+ ∗ g−)(n) +Wα

+(f+ ∗ g+)(n) + (f− ∗Wα
+g+)(n)
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for n ≥ 0. Now we work with each summand separately. For the first,
∞∑
n=0

kα+1(n)|(Wα
+f+ ∗ g−)(n)| ≤

∞∑
n=0

kα+1(n)
∞∑

j=n+1

|Wα
+f+(j)| |g−(n− j)|

=

∞∑
j=1

|Wα
+f+(j)|

j−1∑
n=0

kα+1(n)|g−(n− j)|

≤
∞∑
j=1

|Wα
+f+(j)|kα+1(j)

−1∑
u=−j

|g−(u)|

≤ q+α (f+)q−α (g−) ≤ qα(f)qα(g),

where we have used Fubini’s Theorem, a change of variables and the fact
that kα+1 is increasing (as a function of n) for α > 0. The bound on the third
summand is clear using the commutativity of the convolution and the bound
on the first summand. The bound on the second summand is a consequence
of Proposition 2.7(i) and [AL+1, Theorem 2.11].

To finish we have to estimate q−α ((f ∗ g)−). By Proposition 2.7(ii) we
have, for n < 0,

Wα
−(f ∗ g)(n) = Wα

+(f ∗ g)̃ (−n) = Wα
+(f̃ ∗ g̃)(−n)

= Wα
+((f̃ ∗ g̃)+)(−n),

so

q−α ((f ∗ g)−) ≤
∞∑
n=0

kα+1(n)|Wα
+(f̃ ∗ g̃)+(n)| ≤ Cαqα(f̃)qα(g̃)

= Cαqα(f)qα(g).

Finally note that if f ∈ τβ(|n|β), then

qα(f) =

∞∑
n=−∞

|Wαf(n)|kα+1(n) =
∞∑
n=0

kα+1(n)|
∞∑
j=n

kβ−α(j − n)W β
+f(j)|

+

−1∑
n=−∞

kα+1(−n)|
n∑

j=−∞
kβ−α(n− j)W β

−f(j)|

≤
∞∑
j=0

|W β
+f(j)|kβ+1(j) +

−1∑
j=−∞

|W β
−f(j)|kβ+1(−j)

=
∞∑

j=−∞
kβ+1(|j|)|W βf(j)| = qβ(f),

where we have applied Proposition 2.2 and the semigroup property of kα.
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Remark 2.12. Note that by (2.1) the norm qα is equivalent to the norm
qα where

qα(f) :=
∞∑
n=1

nα|Wα
−f(−n)|+ |f(0)|+

∞∑
n=1

nα|Wα
+f(n)|

= |f(0)|+
∞∑
n=1

nα
(
|Wα

+f(n)|+ |Wα
+ f̃(n)|

)
.

3. A Katznelson–Tzafriri type theorem for (C,α)-bounded op-
erators. For α > 0, we denote by Aα(T) a new Wiener algebra formed by

all continuous periodic functions f(t) =
∑∞

n=−∞ f̂(n)eint, for t ∈ [0, 2π], with
the norm

‖f‖Aα(T) :=
∞∑

n=−∞
|Wαf̂(n)|kα+1(|n|) <∞.

This algebra is regular since its characters are all defined on T, just as
for `1(Z), which is T. Similarly to the case α = 0, we denote by Aα+(T)

the convolution closed subalgebra of Aα(T) where the coefficients f̂(n) = 0
for n < 0. Note that Aα(T) and τα(|n|α) are isometrically isomorphic via
Fourier coefficients. The same holds for Aα+(T) and τα(nα).

Remark 3.1. Recall that in [AOR] a version of the original Katznelson–
Tzafriri Theorem is proved for periodic functions f whose Fourier coefficients
satisfy

∑
j≥0 j |̂f(j)| < ∞. Note that A1

+(T) includes these functions. Also,

if f ∈ A+(T) has decreasing Fourier coefficients then f ∈ A1
+(T), by the

remark at the beginning of the proof of [K, Theorem 4.1, Chapter 1] for the

sequence an =
∑

j≥n f̂(j). This class of functions is studied in [Z].

More generally, the subalgebras Am+ (T) for m ∈ N are larger than the
Korenblyum subalgebras defined in [GW]. In fact, f(t) =

∑
n≥1

1
nm+1 e

int ∈
Am+ (T) and f does not belong to the corresponding Korenblyum subalgebra.

Remark 3.2. The spaces Aα+(T) decrease as α increases, and they are
dense in A+(T), since by [GW] those with integer α are. Furthermore we
have the following:

(i) The proof of [AL+1, Theorem 2.10(iii)] shows that ‖f‖Aα+(T) ≤ ‖f‖Aβ+(T)
for 0 ≤ α < β, and so these spaces are continuously embedded in each other
with norm 1.

(ii) For 0 ≤ α < β we have Aβ+(T) ( Aα+(T). This is a consequence of the
characterization of (C,α)-boundedness by means of homomorphisms defined
on these spaces [AL+1, Corollary 3.7] and the existence of operators which
are (C, β)-bounded but not (C,α)-bounded [LSS, Propositions 4.3 and 4.4].
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(iii) For α > 0, the functions f such that
∑

j≥0 j
α |̂f(j)| <∞ are in Aα+(T).

In fact, there exists a sequence c ∈ `∞(N0) such that |̂f(n+ j)| < c(n)|̂f(n)|
for all j ≥ 0. By Proposition 2.3 and (2.1) for k−α we have

qα(̂f) ≤ |̂f(0)|+ ‖c‖∞
∞∑
j=0

|k−α(j)|
∞∑
n=0

nα |̂f(n)| <∞.

Let E be a closed subset of T and f ∈ Aα(T). We recall that f is of spectral
synthesis with respect to E if for every ε > 0 there exists fε ∈ Aα(T) such
that ‖f− fε‖Aα(T) < ε with fε = 0 in a neighborhood of E.

Let T ∈ B(X) and α > 0. We can express the (C,α)-boundedness of T
in the following way: there exists a constant C > 0 such that

‖∆−αT (n)‖ ≤ Ckα+1(n), n ∈ N0.

Furthermore, we have mentioned in the introduction that for α > 0 and
T ∈ B(X) a (C,α)-bounded operator, there exists a bounded algebra homo-
morphism θα : τα(nα)→ B(X) given by

θα(f)x =

∞∑
n=0

Wα
+f(n)∆−αT (n)x, x ∈ X, f ∈ τα(nα),

(see [AL+1, Theorem 3.5]).

Remark 3.3. Let T ∈ B(X) and α > 0. We can write T j = (k−α ∗
∆−αT )(j).

(i) Let m be a positive integer and T a (C,m)-bounded operator. Since
k−m ∈ c0,0(N0), we have ‖T j‖ = O(jm). So, if f belongs to the Korenblyum

subalgebra (
∑

j≥0 j
m |̂f(j)| < ∞) then

∑
j≥0 f̂(j)T

j converges in operator
norm. Moreover, by induction,

θm(̂f) = lim
N→∞

N∑
n=0

Wm
+ f̂(n)∆−mT (n)

= lim
N→∞

( N∑
j=0

f̂(j)T j + (−1)m+1
m−1∑
j=0

W j
+f̂(N + 1)∆−(j+1)T (N)

)

= lim
N→∞

( N∑
j=0

f̂(j)T j

+ (−1)m+1
m−1∑
j=0

( j∑
l=0

(−1)l
(
j

l

)̂
f(N + 1 + l)

)
∆−(j+1)T (N)

)

=

∞∑
j=0

f̂(j)T j .
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(ii) Let α > 0 be a positive non-integer and T a (C,α)-bounded operator.
First observe that the sign of k−α(j) is (−1)[α]+1 for all j ≥ [α] + 1. For
j ≥ [α] + 1, note that

‖T j‖ ≤ C
j∑

n=0

|k−α(j − n)|kα+1(n)

= C
(

(−1)[α]+1

j−[α]−1∑
n=0

k−α(j − n)kα+1(n) +

j∑
n=j−[α]

|k−α(j − n)|kα+1(n)
)

= C
(

(−1)[α]+1
j∑

n=0

k−α(j − n)kα+1(n)

+

j∑
n=j−[α]

(
|k−α(j − n)| − (−1)[α]+1k−α(j − n)

)
kα+1(n)

)
≤ Cα

(
(−1)[α]+1 + kα+1(j)

)
,

where we have used the fact that kα+1 is increasing and k−α ∗ kα+1 = k1.
Then ‖T j‖ = O(jα). So, if f belongs to the extended Korenblyum subal-

gebra (
∑

j≥0 j
α |̂f(j)| < ∞) then

∑
j≥0 f̂(j)T

j converges in operator norm.
Moreover,

θα(̂f) = lim
N→∞

N∑
n=0

Wα
+ f̂(n)∆−αT (n)

= lim
N→∞

N∑
j=0

T j
N∑
n=j

kα(n− j)
∞∑
l=n

k−α(l − n)̂f(l)

= lim
N→∞

N∑
j=0

T j
(̂
f(j) +

∞∑
l=N+1

f̂(l)
N∑
n=j

k−α(l − n)kα(n− j)
)

= lim
N→∞

( N∑
j=0

T j f̂(j) +

∞∑
l=N+1

f̂(l)

N∑
n=0

k−α(l − n)∆−αT (n)
)

=

∞∑
j=0

f̂(j)T j ,

where we have applied the fact that kα+1 is increasing,
∑N

n=0 |k−α(l−n)| ≤∑∞
n=0 |k−α(n)| ≤ Cα, and

∞∑
l=N+1

|̂f(l)|kα+1(N) ≤
∞∑

l=N+1

|̂f(l)|kα+1(l)→ 0

as N →∞.
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Theorem 3.4. Let α > 0, let T ∈ B(X) be a (C,α)-bounded operator
and let f ∈ Aα+(T) be of spectral synthesis in Aα(T) with respect to σ(T )∩T.
Then

lim
n→∞

‖Mα
T (n)θα(̂f)‖ = 0.

Proof. By assumption, for every ε > 0 there exists fε ∈ Aα(T) such that
‖f− fε‖Aα(T) < ε with fε = 0 in a neighborhood of σ(T ) ∩ T.

Let (hαn(j))j∈Z for each n ∈ N0 be given by

hαn(j) :=

{
kα(n− j), 0 ≤ j ≤ n,

0, otherwise,

the natural extension to Z of the sequences in N0 defined in [AL+1, Example
2.5(ii)]. Then

∆−αT (n)θα(̂f) = θα(hαn)θα(̂f) = θα(hαn ∗ f̂) =

∞∑
j=0

Wα
+(hαn ∗ f̂)(j)∆−αT (j)

(3.1)

=

∞∑
j=0

Wα
+(hαn ∗ ĝε)(j)∆−αT (j) +

∞∑
j=0

Wα
+(hαn ∗ f̂ε)(j)∆−αT (j),

where we have applied [AL+1, Theorem 3.5] and gε := f−fε. For convenience

we write f(n) = f̂(n) for n ∈ N0, fε(n) = f̂ε(n) and gε(n) = ĝε(n) =
f(n) − fε(n) for n ∈ Z (note that we suppose that f(n) = 0 for n < 0, as
mentioned in the introduction).

For the first summand, using Lemma 2.10, Wα
+(hαn) = en (see [AL+1,

Example 2.5(ii)]), (2.3) and Fubini’s Theorem we get

∞∑
j=0

Wα
+(hαn ∗ gε)(j)∆−αT (j) =

n−1∑
j=0

gε(j − n)∆−αT (j)

+
( ∞∑
j=n

j∑
p=j−n

−
n−1∑
j=0

∞∑
p=j+1

)
kα(p− j + n)Wα

+gε(p)∆
−αT (j)

=

n−1∑
j=0

gε(j − n)∆−αT (j)

+
( n∑
p=0

p+n∑
j=n

+
∞∑

p=n+1

p+n∑
j=p

−
n∑
p=1

p−1∑
j=0

−
∞∑

p=n+1

n−1∑
j=0

)
kα(p−j+n)Wα

+gε(p)∆
−αT (j).

We now show that each term above, when divided by kα+1(n), tends to 0
as n→∞, using ‖∆−αT (j)‖ ≤ Ckα+1(j) for j ∈ N0, the fact that kα+1(j)
is increasing as a function of j for α > 0, the semigroup property of the
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kernel kα and (2.2). By Theorem 2.11, for the first term we have

1

kα+1(n)

n−1∑
j=0

|gε(j − n)| ‖∆−αT (j)‖

≤ C
n−1∑
j=0

|gε(j − n)| ≤ C‖gε‖A(T) ≤ C‖gε‖Aα(T) < Cε;

for the second,

1

kα+1(n)

n∑
p=0

|Wα
+gε(p)|

p+n∑
j=n

kα(p− j + n)‖∆−αT (j)‖

≤ C
n∑
p=0

|Wα
+gε(p)|

kα+1(p+ n)

kα+1(n)

p+n∑
j=n

kα(p− j + n)

= C

n∑
p=0

|Wα
+gε(p)|

kα+1(p+ n)

kα+1(n)
kα+1(p) ≤ C

n∑
p=0

|Wα
+gε(p)|

kα+1(2n)

kα+1(n)
kα+1(p)

≤ Cα
n∑
p=0

|Wα
+gε(p)|kα+1(p) ≤ Cα‖gε‖Aα(T) < Cαε;

for the third,

1

kα+1(n)

∞∑
p=n+1

|Wα
+gε(p)|

p+n∑
j=p

kα(p− j + n)‖∆−αT (j)‖

≤ C
∞∑

p=n+1

|Wα
+gε(p)|

kα+1(p+ n)

kα+1(n)

p+n∑
j=p

kα(p− j + n)

= C

∞∑
p=n+1

|Wα
+gε(p)|kα+1(p+ n) ≤ Cα

∞∑
p=n+1

|Wα
+gε(p)|kα+1(p) < Cαε;

for the fourth,

1

kα+1(n)

n∑
p=1

|Wα
+gε(p)|

p−1∑
j=0

kα(p− j + n)‖∆−αT (j)‖

≤ C
n∑
p=1

|Wα
+gε(p)|

kα+1(p)

kα+1(n)

p−1∑
j=0

kα(p− j + n)

≤ C
n∑
p=1

|Wα
+gε(p)|

kα+1(p)

kα+1(n)

p+n∑
j=0

kα(p− j + n)
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= C

n∑
p=1

|Wα
+gε(p)|

kα+1(p)

kα+1(n)
kα+1(p+ n) ≤ Cα

n∑
p=1

|Wα
+gε(p)|kα+1(p) < Cαε;

and for the fifth,

1

kα+1(n)

∞∑
p=n+1

|Wα
+gε(p)|

n−1∑
j=0

kα(p− j + n)‖∆−αT (j)‖

≤ C
∞∑

p=n+1

|Wα
+gε(p)|

n−1∑
j=0

kα(p− j + n)

≤ C
∞∑

p=n+1

|Wα
+gε(p)|

p+n∑
j=0

kα(p− j + n) = C
∞∑

p=n+1

|Wα
+gε(p)|kα+1(p+ n)

≤ Cα
∞∑

p=n+1

|Wα
+gε(p)|kα+1(p) < Cαε.

On the other hand, for the second term in (3.1), we have to prove that

lim
n→∞

1

kα+1(n)

∞∑
j=0

Wα
+(hαn ∗ fε)(j)∆−αT (j) = 0.

It is known that

(λ− T )−1 =

(
λ− 1

λ

)α ∞∑
n=0

λ−n−1∆−αT (n) for |λ| > 1,

(see [AL+1, Theorem 4.11(iii)]). Noting that hαn∗fε ∈ τα(|n|α), if m = [α]+1
we get

∞∑
j=−∞

Wα
+(hαn ∗ fε)(−j)eijt =

∞∑
j=−∞

Wα
+(hαn ∗ fε)(j)e−ijt

= lim
λ→1+

( ∞∑
j=0

Wm
+ W

−(m−α)
+ (hαn ∗ fε)(j)(λ−1e−it)j

+
−1∑

j=−∞
Wm

+ W
−(m−α)
+ (hαn ∗ fε)(j)(λe−it)j

)
=

m∑
l=0

(−1)l
(
m

l

)
eitl lim

λ→1+

( ∞∑
v=l

W
−(m−α)
+ (hαn ∗ fε)(v)(λ−1e−it)v

+

l−1∑
v=−∞

W
−(m−α)
+ (hαn ∗ fε)(v)(λe−it)v

)
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= (1− eit)m lim
λ→1+

( ∞∑
u=l

u∑
v=l

km−α(u− v)(λ−1e−it)v(hαn ∗ fε)(u)

+

l−1∑
u=−∞

u∑
v=−∞

km−α(u− v)(λe−it)v(hαn ∗ fε)(u)

+

∞∑
u=l

l−1∑
v=−∞

km−α(u− v)(λe−it)v(hαn ∗ fε)(u)
)
.

Now, using

lim
λ→1+

∞∑
j=0

km−α(j)(λe−it)−j =
1

(1− eit)m−α
, t 6= 2πZ, 0 < m− α < 1

(see [AL+1, Section 4]), we find for t 6= 2πZ that

∞∑
j=−∞

Wα
+(hαn ∗ fε)(−j)eijt

= (1− eit)m
( ∞∑
u=l

(hαn ∗ fε)(u) lim
λ→1+

( u∑
v=l

+
l−1∑

v=−∞

)
km−α(u− v)(λe−it)v

+
l−1∑

u=−∞
(hαn ∗ fε)(u) lim

λ→1+

u∑
v=−∞

km−α(u− v)(λe−it)v
)

= (1− eit)α
∞∑

u=−∞
(hαn ∗ fε)(u)e−itu = (1− eit)αfε(−t)

n∑
j=0

kα(n− j)e−ijt,

If we define ∆−αT (n) = 0 for n < 0, note that the operator-valued
sequence (λ−(j+1)∆−αT (j))j∈Z for |λ| > 1 is summable. Then Parseval’s
identity implies that

∞∑
j=0

Wα
+(hαn ∗ fε)(j)∆−αT (j) = lim

λ→1+

∞∑
j=0

Wα
+(hαn ∗ fε)(j)λ−(j+1)∆−αT (j)

=
1

2π

2π�

0

fε(−t)
( n∑
j=0

kα(n− j)e−ijt
)
e−it(e−it − T )−1 dt

=
n∑
j=0

kα(n− j)Ĝ(j),

where G(t) = e−itfε(−t)(e−it − T )−1. Applying the Riemann–Lebesgue
Lemma we deduce that for all δ > 0 there exists an n0 ∈ N such that
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‖Ĝ(j)‖ < δ for all |j| ≥ n0. Then

1

kα+1(n)

∥∥∥ n∑
j=0

kα(n− j)Ĝ(j)
∥∥∥ ≤ 1

kα+1(n)

(n−n0∑
j=0

+
n∑

j=n−n0+1

)
kα(j)‖Ĝ(n− j)‖

≤ δ +

n∑
j=n−n0+1

α

(α+ j)
‖Ĝ(n− j)‖

≤ δ +
‖Ĝ‖∞(n0 − 1)

α+ n− n0 + 1
,

where we have applied the fact that kα+1(j) is increasing as a function of j,

and ‖Ĝ‖∞ = supj≥0‖Ĝ(j)‖. Taking n→∞ we get the result.

Remark 3.5. Parseval’s identity for the product of a scalar-valued func-
tion and a vector-valued function, and the Riemann–Lebesgue Lemma for
a vector-valued function, can be proved by applying linear functionals, and
using the scalar-valued results and the Hahn–Banach Theorem. The first
reference for these results is [B]. Analogous results for the continuous case
are in [ABHN, Theorem 1.8.1].

Remark 3.6. When T is a power-bounded operator, the proof of Theo-
rem 3.4 gives a short alternative proof of the Katznelson–Tzafriri Theorem
[KT, Theorem 5]:

Let f in A+(T) be of spectral synthesis in A(T) with respect to σ(T )∩T,
that is, for ε > 0 there exists fε ∈ A(T) such that ‖f − fε‖A(T) < ε with
fε = 0 in a neighborhood F of σ(T )∩T. We denote by (T (n))n∈Z the family
of operators given by T (n) = Tn for n ∈ N0 and T (n) = 0 for n < 0. Then
it is clear that ∥∥∥ ∞∑

j=−∞
f̂ε(j)T (n+ j)− Tnθ(̂f)

∥∥∥ < Cε,

since ‖Tn‖ ≤ C for all n ∈ N0. Now, using Parseval’s identity, we get
∞∑

j=−∞
f̂ε(j)T (n+ j) = lim

λ→1+

∞∑
j=−∞

f̂ε(j)λ
−(n+j+1)T (n+ j)

= lim
λ→1+

1

2π

2π�

0

e−it(n+1)fε(−t)(λe−it − T )−1 dt

=
1

2π

2π�

0

e−it(n+1)fε(−t)(e−it − T )−1 dt,

which converges to 0 by the Riemann–Lebesgue Lemma, and we conclude
the proof.



78 L. Abadias

4. Ergodic applications. Several authors have investigated the con-
nections between the stability of the Cesàro mean differences of size n and
n+ 1, that is,

(4.1) lim
n→∞

‖Mα
T (n+ 1) − Mα

T (n)‖ = 0,

and spectral conditions for (C,α)-bounded operators T ∈ B(X) (see [SZ]
and the references therein). We cannot get (4.1) using Theorem 3.4 directly,
because this problem is equivalent to finding a sequence f ∈ τα(nα) such
that

1

kα+1(n)
(hαn ∗ f) =

1

kα+1(n)
hαn −

1

kα+1(n+ 1)
hαn+1

for all n ∈ N0, which has no solution. However, the following theorem
shows how using Theorem 3.4 and other techniques we get the desired
result, which is a consequence of [SZ, Theorems 2.2(ii) and 3.1(i)] when
α ∈ N = {1, 2, . . .}.

Theorem 4.1. Let α > 0 and T ∈ B(X) be a (C,α)-bounded operator
such that σ(T ) ∩ T ⊆ {1}. Then

lim
n→∞

‖Mα
T (n+ 1) − Mα

T (n)‖ = 0.

Proof. Observe that if σ(T ) ∩ T = ∅, then r(T ) < 1 by Lemma 1.1, and
therefore ‖Tn‖ → 0 exponentially; in particular T is power-bounded. So, we
shall prove the result when σ(T ) ∩ T = {1}.

First we suppose that α ≥ 1. Then using the relation

n+ α+ 1

n+ 1
Mα
T (n+ 1)−Mα

T (n) =
α

n+ 1
Mα−1
T (n+ 1), n ∈ N0,

which is easy to get from the definition of Cesàro mean of order α, we can
write

Mα
T (n+ 1) − Mα

T (n) =
α

n+ 1
(Mα−1

T (n+ 1)− I) +
α

n+ 1
(I −Mα

T (n+ 1)).

Using the identity

Mα
T (n)(T − I) =

α

n+ 1
(Mα−1

T (n+ 1)− I), n ∈ N0,

which can easily be obtained from the definition of Cesàro mean of order α,
and applying Theorem 3.4 to the function f(t) = eit−1, we see that the first
summand goes to zero as n→∞. On the other hand, the second summand
goes to zero since T is (C,α)-bounded.

Now let 0 < α < 1. Using kα = k−(1−α) ∗ k1, we write

Mα
T (n) =

1

kα+1(n)
∆−αT (n)

=
1

kα+1(n)
(k−(1−α) ∗∆−1T )(n).
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So we can write

Mα
T (n+ 1) − Mα

T (n)

=
k−(1−α)(n+ 1)

kα+1(n+ 1)
I +

n∑
j=0

k−(1−α)(n− j)
(
∆−1T (j + 1)

kα+1(n+ 1)
− ∆−1T (j)

kα+1(n)

)

=
k−(1−α)(n+ 1)

kα+1(n+ 1)
I +

n+ 1

(n+ α+ 1)kα+1(n)

n∑
j=0

k−(1−α)(n− j)T j+1

− α

(n+ α+ 1)kα+1(n)

n∑
j=0

k−(1−α)(n− j)∆−1T (j),

where we have used

∆−1T (j + 1)

kα+1(n+ 1)
−∆

−1T (j)

kα+1(n)
=

1

(n+ α+ 1)kα+1(n)

(
(n+1)T j+1−α∆−1T (j)

)
.

If we add and subtract the term

n+ 1

(n+α+1)kα+1(n)

n∑
j=0

k−(1−α)(n− j)I =
(k−(1−α) ∗ k1)(n)

kα+1(n+1)
I =

kα(n)

kα+1(n+1)
I

we obtain

Mα
T (n+ 1) − Mα

T (n) =
kα(n+ 1)

kα+1(n+ 1)
I

+
n+ 1

(n+ α+ 1)kα+1(n)

n∑
j=0

k−(1−α)(n− j)(T j+1 − I)− α

n+ α+ 1
Mα
T (n).

The first term on the right hand side goes to zero as n → ∞ by (2.1).
Theorem 3.4 implies that the second term goes to zero since

Mα
T (n)(T − I) =

1

kα+1(n)

n∑
j=0

k−(1−α)(n− j)∆−1T (j)(T − I)

=
1

kα+1(n)

n∑
j=0

k−(1−α)(n− j)(T j+1 − I).

Finally, the third term goes to zero because T is (C,α)-bounded.

Observe that under the assumption of Theorem 4.1, T is also (C, [α]+1)-

bounded, so by [SZ, Theorems 2.2(ii) and 3.1(i)] we have 1
n‖M

[α]
T (n)‖ → 0

as n → ∞, and ‖Tn‖ = o(n[α]+1). Our next result extends [SZ, Theorem
2.2(ii)] for α ≥ 1.

Remark 4.2. Before stating the theorem, note that [SZ, Theorem 3.1(i)]
is valid for any α ≥ 1, by the same proof.
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Theorem 4.3. Let α ≥ 1 and T ∈ B(X) be a (C,α)-bounded operator
such that σ(T ) ∩ T ⊆ {1}. Then

‖Mα−1
T (n)‖ = o(n) and ‖Tn‖ = o(nα), as n→∞.

Proof. By Theorem 4.1 and Remark 4.2 we have ‖Mα−1
T (n)‖ = o(n).

Now, we suppose that α > 1 for convenience (for α = 1 the result is already
proved). We can write Tn = (k−(α−1) ∗ ∆−(α−1)T )(n); we have mentioned
in the previous section that the sign of k−(α−1)(n) is (−1)[α] for all n ≥ [α].
For n ≥ [α], note that

‖Tn‖ ≤
n∑
j=0

|k−(α−1)(n− j)|‖∆−(α−1)T )(j‖

= (−1)[α]
n∑
j=0

k−(α−1)(n− j)‖∆−(α−1)T (j)‖

+
n∑

j=n−[α]+1

(|k−(α−1)(n− j)| − (−1)[α]k−(α−1)(n− j))‖∆−(α−1)T (j)‖

= I + II.

From ‖Mα−1
T (n)‖ = o(n) we have

‖∆−(α−1)T (n)‖ ≤ Ckα+1(n),

so
|I|
nα
≤ Ck2(n)

nα
→ 0, n→∞.

Secondly,

|II|
nα
≤ Cα
nα

n∑
j=n−[α]+1

‖∆−(α−1)T (j)‖

=
Cα
nα

[α]−1∑
u=0

kα(u+ n− [α] + 1)‖Mα−1
T (u+ n− [α] + 1)‖ → 0, n→∞.
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