VOL. 145 2016 NO. 2

NEW CONGRUENCES MODULO 5 FOR OVERPARTITIONS

BY

TAO YAN ZHAO (Zhenjiang) and LILY J. JIN (Taizhou)

Abstract. Let $\bar{p}(n)$ denote the number of overpartitions of n. Recently, several congruences for $\bar{p}(n)$ modulo 5 have been proved by Chen and Xia, by Chen, Sun, Wang and Zhang, and by Wang. In this paper, we prove new congruences for $\bar{p}(n)$ modulo 5 by using some theta function identities and the generating function for $\bar{p}(4n)$.

1. Introduction. An overpartition of n is a partition of n where the first occurrence of each distinct part may be overlined. Let $\bar{p}(n)$ denote the number of overpartitions of n. For example, $\bar{p}(4) = 14$ as there are 14 overpartitions for 4:

$$4, \ \bar{4}, \ 3+1, \ \bar{3}+1, \ 3+\bar{1}, \ \bar{3}+\bar{1}, \ 2+2, \ \bar{2}+2, \ 2+1+1, \\ \bar{2}+1+1, \ 2+\bar{1}+1, \ \bar{2}+\bar{1}+1, \ 1+1+1+1, \ \bar{1}+1+1+1.$$

As usual, set $\bar{p}(0) = 1$ and $\bar{p}(n) = 0$ if n < 0. Corteel and Lovejoy [CL] showed that the generating function of $\bar{p}(n)$ is given by

$$\sum_{n=0}^{\infty} \bar{p}(n)q^n = \frac{(q^2; q^2)_{\infty}}{(q; q)_{\infty}^2},$$

where

$$(a;q)_{\infty} = \prod_{n=0}^{\infty} (1 - aq^n).$$

We will also write

$$(a_1,\ldots,a_k;q)_{\infty}=(a_1;q)_{\infty}\ldots(a_k;q)_{\infty}.$$

A number of congruences for overpartitions have been discovered during the past ten years. Congruences modulo powers of 2 and 3 were proved by Chen, Hou, Sun and Zhang [CHSZ], Fortin, Jacob and Mathieu [FJM], Hirschhorn and Sellers [HS], Kim [K], Lovejoy and Osburn [LO], Mahlburg [M], Wang [W], Xia [X] and Yao and Xia [YX]. Treneer [T] proved that $\bar{p}(5m^3n) \equiv 0 \pmod{5}$ for any n that is coprime to m, where m is a prime

Key words and phrases: overpartitions, congruences, theta functions.

Received 28 August 2015.

Published online 8 July 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 05A17; Secondary 11P83.

satisfying $m \equiv -1 \pmod{5}$. Hirschhorn and Sellers [HS] also conjectured that for $n \geq 0$,

(1.1)
$$\bar{p}(40n + 35) \equiv 0 \pmod{5}$$
.

This conjecture was confirmed by Chen and Xia [CX] by using (p, k)-parametrization of theta functions. Recently, using half-integral weight modular forms, Chen, Sun, Wang and Zhang [CSWZ] discovered three infinite families of congruences for $\bar{p}(n)$ modulo 5. Wang [W] provided a new elementary proof for (1.1), and found some new congruences for the overpartition function modulo 5 and 9.

In this paper, we establish the following five new congruences for overpartitions modulo 5 by using the generating function for $\bar{p}(4n)$ and some theta function identities due to Ramanujan.

Theorem 1.1. For $n \geq 0$,

(1.2)
$$\bar{p}(80n+8) \equiv 0 \pmod{5},$$

(1.3)
$$\bar{p}(80n + 52) \equiv 0 \pmod{5},$$

$$\bar{p}(80n + 68) \equiv 0 \pmod{5},$$

$$\bar{p}(80n + 72) \equiv 0 \pmod{5},$$

and

$$(1.6) \sum_{i+j=n} \bar{p}(80i+32)\bar{p}(80j+28) \equiv \sum_{i+j=n} \bar{p}(80i+12)\bar{p}(80j+48) \pmod{5}.$$

2. Proof of the main results. The following generating function for $\bar{p}(4n)$ was established by Fortin, Jacob and Mathieu [FJM], and Hirschhorn and Sellers [HS]:

(2.1)
$$\sum_{n=0}^{\infty} \bar{p}(4n)q^n = \frac{(q^2; q^2)_{\infty}^{19}}{(q; q)_{\infty}^{14}(q^4; q^4)_{\infty}^6}.$$

Thanks to the binomial theorem,

(2.2)
$$(q;q)_{\infty}^5 \equiv (q^5;q^5)_{\infty} \pmod{5}.$$

By (2.2), we can write (2.1) as

(2.3)
$$\sum_{n=0}^{\infty} \bar{p}(4n)q^n \equiv \frac{(q;q)_{\infty}(q^2;q^2)_{\infty}^4(q^{10};q^{10})_{\infty}^3}{(q^4;q^4)_{\infty}(q^5;q^5)_{\infty}^3(q^{20};q^{20})_{\infty}} \pmod{5}.$$

Replacing q by -q in (2.3), applying the fact that

$$(-q; -q)_{\infty} = \frac{(q^2; q^2)_{\infty}^3}{(q; q)_{\infty}(q^4; q^4)_{\infty}}$$

and then using (2.2), we get

$$(2.4) \qquad \sum_{n=0}^{\infty} (-1)^n \bar{p}(4n) q^n \equiv \frac{(q^2; q^2)_{\infty}^7 (q^5; q^5)_{\infty}^3 (q^{20}; q^{20})_{\infty}^2}{(q; q)_{\infty} (q^4; q^4)_{\infty}^2 (q^{10}; q^{10})_{\infty}^6}$$

$$\equiv \frac{(q^2; q^2)_{\infty}^2}{(q; q)_{\infty}} (q^4; q^4)_{\infty}^3 \frac{(q^5; q^5)_{\infty}^3 (q^{20}; q^{20})_{\infty}}{(q^{10}; q^{10})_{\infty}^5} \pmod{5}.$$

It follows from [B, Corollary (ii), p. 49] that

$$(2.5) \qquad \frac{(q^2; q^2)_{\infty}^2}{(q; q)_{\infty}} = (-q^{10}, -q^{15}, q^{25}; q^{25})_{\infty} + q(-q^5, -q^{20}, q^{25}; q^{25})_{\infty} + q^3 \frac{(q^{50}; q^{50})_{\infty}^2}{(q^{25}; q^{25})_{\infty}}.$$

We have the well-known result of Jacobi [A, p. 176] which states that

$$(q;q)_{\infty}^3 = \sum_{n=0}^{\infty} (-1)^n (2n+1)q^{n(n+1)/2}.$$

This can be written as

(2.6)
$$(q;q)_{\infty}^3 \equiv (q^{10}, q^{15}, q^{25}; q^{25})_{\infty} - 3q(q^5, q^{20}, q^{25}; q^{25})_{\infty} \pmod{5}.$$
 Substituting (2.5) and (2.6) into (2.4) and using (2.2), we get

$$(2.7) \sum_{n=0}^{\infty} (-1)^n \bar{p}(4n) q^n$$

$$\equiv \left((-q^{10}, -q^{15}, q^{25}; q^{25})_{\infty} + q(-q^5, -q^{20}, q^{25}; q^{25})_{\infty} + q^3 \frac{(q^{50}; q^{50})_{\infty}^2}{(q^{25}; q^{25})_{\infty}} \right)$$

$$\times \left((q^{40}, q^{60}, q^{100}; q^{100})_{\infty} - 3q^4 (q^{20}, q^{80}, q^{100}; q^{100})_{\infty} \right) \frac{(q^5; q^5)_{\infty}^3 (q^{20}; q^{20})_{\infty}}{(q^{10}; q^{10})_{\infty}^5}$$

$$\equiv A_0(q) + qA_1(q) + q^3A_3(q) + q^4A_4(q) + q^5A_5(q) + q^7A_7(q) \pmod{5},$$
where
$$A_0(q) = \frac{(q^5; q^5)_{\infty}^3 (q^{20}; q^{20})_{\infty} (-q^{10}, -q^{15}, q^{25}; q^{25})_{\infty} (q^{40}, q^{60}, q^{100}; q^{100})_{\infty}}{(q^{10}; q^{10})_{\infty}^5},$$

$$A_1(q) = \frac{(q^5; q^5)_{\infty}^3 (q^{20}; q^{20})_{\infty} (-q^5, -q^{20}, q^{25}; q^{25})_{\infty} (q^{40}, q^{60}, q^{100}; q^{100})_{\infty}}{(q^{10}; q^{10})_{\infty}^5},$$

$$A_3(q) = \frac{(q^{20}; q^{20})_{\infty} (q^{50}; q^{50})_{\infty} (q^{40}, q^{60}, q^{100}; q^{100})_{\infty}}{(q^5; q^5)_{\infty}^2},$$

$$A_4(q) = 2 \frac{(q^5; q^5)_{\infty}^3 (q^{20}; q^{20})_{\infty} (-q^{10}, -q^{15}, q^{25}; q^{25})_{\infty} (q^{20}, q^{80}, q^{100}; q^{100})_{\infty}}{(q^{10}; q^{10})_{\infty}^5},$$

$$A_5(q) = 2 \frac{(q^5; q^5)_{\infty}^3 (q^{20}; q^{20})_{\infty} (-q^5, -q^{20}, q^{25}; q^{25})_{\infty} (q^{20}, q^{80}, q^{100}; q^{100})_{\infty}}{(q^{10}; q^{10})_{\infty}^5},$$

$$A_7(q) = 2 \frac{(q^{20}; q^{20})_{\infty}(q^{50}; q^{50})_{\infty}(q^{20}, q^{80}, q^{100}; q^{100})_{\infty}}{(q^5; q^5)_{\infty}^2}.$$

If we extract the terms of the form q^{5n+2} (resp. q^{5n+3}) in (2.7), divide by q^2 (resp. q^3) and replace q^5 by q, we see that

(2.8)
$$\sum_{n=0}^{\infty} (-1)^n \bar{p}(4(5n+2)) q^n$$

$$\equiv 2q \frac{(q^4; q^4)_{\infty}(q^{10}; q^{10})_{\infty}(q^4, q^{16}, q^{20}; q^{20})_{\infty}}{(q; q)_{\infty}^2} \pmod{5}$$

and

(2.9)
$$\sum_{n=0}^{\infty} (-1)^{n+1} \bar{p}(4(5n+3)) q^{n}$$

$$\equiv \frac{(q^{4}; q^{4})_{\infty}(q^{10}; q^{10})_{\infty}(q^{8}, q^{12}, q^{20}; q^{20})_{\infty}}{(q; q)_{\infty}^{2}} \pmod{5}.$$

It follows from [B, Entry 25, p. 40] that

$$(2.10) \qquad \frac{1}{(q;q)_{\infty}^{2}} = \frac{(q^{8};q^{8})_{\infty}^{5}}{(q^{2};q^{2})_{\infty}^{5}(q^{16};q^{16})_{\infty}^{2}} + 2q \frac{(q^{4};q^{4})_{\infty}^{2}(q^{16};q^{16})_{\infty}^{2}}{(q^{2};q^{2})_{\infty}^{5}(q^{8};q^{8})_{\infty}}.$$

Substituting (2.10) into (2.8) and (2.9), and then applying (2.2), we get

$$(2.11) \sum_{n=0}^{\infty} (-1)^n \bar{p}(20n+8) q^n \equiv 2q(q^4; q^4)_{\infty} (q^{10}; q^{10})_{\infty} (q^4, q^{16}, q^{20}; q^{20})_{\infty}$$

$$\times \left(\frac{(q^8; q^8)_{\infty}^5}{(q^2; q^2)_{\infty}^5 (q^{16}; q^{16})_{\infty}^2} + 2q \frac{(q^4; q^4)_{\infty}^2 (q^{16}; q^{16})_{\infty}^2}{(q^2; q^2)_{\infty}^5 (q^8; q^8)_{\infty}} \right)$$

$$\equiv 2q \frac{(q^4; q^4)_{\infty} (q^8; q^8)_{\infty}^5 (q^4, q^{16}, q^{20}; q^{20})_{\infty}}{(q^{16}; q^{16})_{\infty}^2}$$

$$+ 4q^2 \frac{(q^4; q^4)_{\infty}^3 (q^{16}; q^{16})_{\infty}^2 (q^4, q^{16}, q^{20}; q^{20})_{\infty}}{(q^8; q^8)_{\infty}} \pmod{5}$$

and

$$(2.12) \sum_{n=0}^{\infty} (-1)^{n+1} \bar{p}(20n+12) q^n \equiv (q^4; q^4)_{\infty} (q^{10}; q^{10})_{\infty} (q^8, q^{12}, q^{20}; q^{20})_{\infty}$$

$$\times \left(\frac{(q^8; q^8)_{\infty}^5}{(q^2; q^2)_{\infty}^5 (q^{16}; q^{16})_{\infty}^2} + 2q \frac{(q^4; q^4)_{\infty}^2 (q^{16}; q^{16})_{\infty}^2}{(q^2; q^2)_{\infty}^5 (q^8; q^8)_{\infty}} \right)$$

$$\equiv \frac{(q^4; q^4)_{\infty} (q^8; q^8)_{\infty}^5 (q^8, q^{12}, q^{20}; q^{20})_{\infty}}{(q^{16}; q^{16})_{\infty}^2}$$

$$+ 2q \frac{(q^4; q^4)_{\infty}^3 (q^{16}; q^{16})_{\infty}^2 (q^8, q^{12}, q^{20}; q^{20})_{\infty}}{(q^8; q^8)_{\infty}} \pmod{5}.$$

Congruences (1.2) and (1.4) follow from (2.11), and congruences (1.3) and (1.5) follow from (2.12). Moreover, congruences (2.11) and (2.12) imply that

(2.13)
$$\sum_{n=0}^{\infty} \bar{p}(80n+12)q^n \equiv 4 \frac{(q;q)_{\infty}(q^2;q^2)_{\infty}^5(q^2,q^3,q^5;q^5)_{\infty}}{(q^4;q^4)_{\infty}^2} \pmod{5},$$

(2.14)
$$\sum_{n=0}^{\infty} \bar{p}(80n+28)q^n \equiv 3 \frac{(q;q)_{\infty}(q^2;q^2)_{\infty}^5(q,q^4,q^5;q^5)_{\infty}}{(q^4;q^4)_{\infty}^2} \pmod{5},$$

$$(2.15) \qquad \sum_{n=0}^{\infty} \bar{p}(40n+32)q^n \equiv 2 \frac{(q;q)_{\infty}^3 (q^4;q^4)_{\infty}^2 (q^2,q^3,q^5;q^5)_{\infty}}{(q^2;q^2)_{\infty}} \pmod{5},$$

(2.16)
$$\sum_{n=0}^{\infty} \bar{p}(80n+48)q^n \equiv 4 \frac{(q;q)_{\infty}^3 (q^4;q^4)_{\infty}^2 (q,q^4,q^5;q^5)_{\infty}}{(q^2;q^2)_{\infty}} \pmod{5}.$$

In view of (2.13)-(2.16), we have

$$\sum_{n=0}^{\infty} \sum_{i+j=n} \bar{p}(80i+12)\bar{p}(80j+48)q^n$$

$$\equiv \sum_{n=0}^{\infty} \sum_{i+j=n} \bar{p}(80i+28)\bar{p}(80j+32)q^n \pmod{5},$$

which yields (1.6). This completes the proof.

REFERENCES

- [A] G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, MA, 1976; reprinted, Cambridge Univ. Press, Cambridge, 1984, 1998.
- [B] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer, New York, 1991.
- [CHSZ] W. Y. C. Chen, Q. H. Hou, L. H. Sun and L. Zhang, Ramanujan-type congruences for overpartitions modulo 16, Ramanujan J. 40 (2016), 311–322.
- [CSWZ] W. Y. C. Chen, L. H. Sun, R. H. Wang and L. Zhang, Ramanujan-type congruences for overpartitions modulo 5, J. Number Theory 148 (2015), 62–72.
- [CX] W. Y. C. Chen and E. X. W. Xia, Proof of a conjecture of Hirschhorn and Sellers on overpartitions, Acta Arith. 163 (2014), 59–69.
- [CL] S. Corteel and J. Lovejoy, Overpartitions, Trans. Amer. Math. Soc. 356 (2004), 1623–1635.
- [FJM] J.-F. Fortin, P. Jacob and P. Mathieu, Jagged partitions, Ramanujan J. 10 (2005), 215–235.
- [HS] M. D. Hirschhorn and J. A. Sellers, Arithmetic relations for overpartitions, J. Combin. Math. Combin. Comput. 53 (2005), 65–73.
- [K] B. Kim, A short note on the overpartition function, Discrete Math. 309 (2009), 2528–2532.
- [LO] J. Lovejoy and R. Osburn, Quadratic forms and four partition functions modulo 3, Integers 11 (2011), #A4.

- [M] K. Mahlburg, The overpartition function modulo small powers of 2, Discrete Math. 286 (2004), 263–267.
- [T] S. Treneer, Congruences for the coefficients of weakly holomorphic modular forms, Proc. London Math. Soc. 93 (2006), 304–324.
- [W] L. Q. Wang, Another proof of a conjecture by Hirschhorn and Sellers on overpartitions, J. Integer Sequences 17 (2014), #14.9.8.
- [X] E. X. W. Xia, Congruences modulo 9 and 27 for overpartitions, Ramanujan J., to appear (DOI:10.1007/s11139-015-9739-z).
- [YX] O. X. M. Yao and E. X. W. Xia, New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions, J. Number Theory 133 (2013), 1932–1949.

Tao Yan Zhao Department of Mathematics Jiangsu University Zhenjiang, Jiangsu 212013, P.R. China E-mail: zhaotaoyan@ujs.edu.cn Lily J. Jin School of Mathematics College of Taizhou Nanjing Normal University Taizhou, Jiangsu 225300, P.R. China E-mail: lilyjin1988@163.com