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Global attractor of the Cauchy problem for a semilinear
degenerate damped hyperbolic equation involving

the Grushin operator

Duong Trong Luyen (Ninh Binh City)
and Nguyen Minh Tri (Hanoi)

Abstract. The aim of this paper is to prove the existence of the global attractor of
the Cauchy problem for a semilinear degenerate damped hyperbolic equation involving
the Grushin operator with a locally Lipschitz nonlinearity satisfying a subcritical growth
condition.

1. Introduction. The understanding of asymptotic behavior of dynam-
ical systems is one of the most important problems of modern mathematical
physics. One way to attack the problem for a dissipative dynamical sys-
tem is to consider its global attractor. The existence of global attractors
has been proved for various nonlinear dissipative parabolic and hyperbolic
PDEs that involve elliptic operators (see e.g. [2, 4, 5, 16, 17, 19], and the
references therein).

One of the classes of degenerate elliptic equations that has been studied
widely in recent years is the class of equations involving an operator of the
Grushin type (see [8])

Gαu = ∆xu+ |x|2α∆yu, α ≥ 0.

Note that G0 = ∆ is the Laplacian operator, and Gα, when α > 0,
is not elliptic in domains intersecting the surface x = 0. Many aspects
of the theory of degenerate elliptic differential operators are presented in
monographs [11–13, 20–24].

In this paper we are interested in the global existence and long-time
behavior of solutions to the following problem:
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utt + γut + u = Gαu+ f(X,u), t > 0,(1.1)

X = (x, y) ∈ RN1 × RN2 := RN ,
u(X, 0) = u0(X), ut(X, 0) = u1(X),(1.2)

where γ is a positive constant, u0(X) ∈ S2
1(RN ), u1(X) ∈ L2(RN ) and

∆x =

N1∑
i=1

∂2

∂x2i
, ∆y =

N2∑
j=1

∂2

∂y2j
, ut =

∂u

∂t
, utt =

∂2u

∂t2
, |x|2α =

( N1∑
i=1

x2i

)α
.

We assume that f : RN × R→ R is a continuous function satisfying

|f(X, ξ1)− f(X, ξ2)| ≤ C1|ξ1 − ξ2|(g(X) + |ξ1|ρ + |ξ2|ρ)(1.3)

with 0 ≤ ρ ≤ 2

Nα − 2
, Nα = N1 + (1 + α)N2 > 2,

f(·, 0) = h(·) ∈ L2(RN ),(1.4)

F (X, ξ) ≥ C2f(X, ξ)ξ + g1(X) for all X ∈ RN , ξ ∈ R,(1.5)
�

RN
F (X,u(X))dX ≤ 0 for all u ∈ S2

1(RN ),(1.6)

where ρ, C1, C2 are positive constants, and g ∈ LNα(RN ) ∩ LNα/2(RN ),

g1 ∈ L1(RN ), F (X, ξ) =
	ξ
0 f(X, τ) dτ.

The major techniques used to get a global attractor in the natural en-
ergy space H1(RN ) × L2(RN ) are: working with a weighted Sobolev space
as phase space and the method of “tail estimates”. Babin and Vishik [3]
have been the first to show the existence of attractors for equations of
parabolic type in weighted Sobolev spaces. Some other authors have also
employed weighted Sobolev spaces to tackle the wave equation, for ex-
ample, Karachalios and Stavrakakis [9]. However, when working in weighted
spaces we have to impose an additional condition that the initial data and
forcing term also belong to the corresponding spaces. In 1999, Wang [25]
came up with a new idea of “tail estimates” to prove the asymptotic com-
pactness of the semiflows generated by reaction-diffusion equations. The
method is based on an approximation of RN by a sufficiently large bounded
domain B(0, R) and then showing that there is null convergence of the so-
lutions on RN \B(0, R). Khanmamedov [10] applied the same idea to plate
equations.

We would like to mention the results for the case α = 0. The exis-
tence of a global attractor in H1(R3)×L2(R3) for (1.1)–(1.2) was proved by
Feireisl [7] for ξ − f(X, ξ) = g(X, ξ) satisfying for N0 := N = 3 the growth
conditions
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g ∈ C2(R4), g(·, 0) ∈ H1(R3),

∣∣∣∣∂g∂ξ (X, 0)

∣∣∣∣ ≤ C for all X ∈ R3,∣∣∣∣∂2g∂ξ2
(X, ξ)

∣∣∣∣ ≤ C(1 + |ξ|) for all X ∈ R3, ξ ∈ R,

lim inf
|ξ|→∞

g(X, ξ)

ξ
≥ 0 uniformly in X ∈ R3,(

g(X, ξ)− g(X, 0)
)
ξ ≥ Cξ2 for all ξ ∈ R, |X| > r1,

for some C > 0.
Recently, Fall [6] used the method of “tail estimates” to show the exis-

tence of a global attractor in the natural energy space H1(RN ) × L2(RN )
for (1.1)–(1.2) (when α = 0) under strictly restrained conditions

ξ − f(X, ξ) = ξ + h1(ξ)− h2(X), h2 ∈ L2(RN ),

h1 ∈ C1(R,R), h1(0) = 0, h1(ξ)ξ ≥ cF (ξ) ≥ 0, ∀ξ ∈ R,

0 ≤ lim sup
|ξ|→∞

h1(ξ)

ξ
<∞,

where c is a positive constant and F (ξ) =
	ξ
0 h1(τ) dτ .

In the present paper, by using the analytical techniques of [10] and the
method of “tail estimates”, we prove that there also exist global attractors of
(1.1)–(1.2) in the natural energy space S2

1(RN )× L2(RN ) under conditions
(1.3)–(1.6).

The structure of our note is as follows: In Section 2 we give some pre-
liminary results on the existence of global mild solutions. In Section 3 we
establish the existence of the global attractor for problem (1.1)–(1.2).

2. Existence and uniqueness of a global mild solution

2.1. Function spaces and operators. We use the space S2
1(RN ) de-

fined as the completion of C∞0 (RN ) in the norm

‖u‖S2
1(RN ) =

{ �

RN
(|u|2 + |∇αu|2) dX

}1/2
,

where

∇αu :=

(
∂u

∂x1
, . . . ,

∂u

∂xN1

, |x|α ∂u
∂y1

, . . . , |x|α ∂u

∂yN2

)
,

|∇αu| :=
( N1∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣2 + |x|2α

N2∑
j=1

∣∣∣∣ ∂u∂yj
∣∣∣∣2)1/2

.

Then S2
1(RN ) is a Hilbert space with the inner product

(u, v)S2
1(RN ) = (u, v)L2(RN ) + (∇αu,∇αv)L2(RN ).
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The following embedding inequality was proved in [1]:( �

RN
|u|p dX

)1/p
≤ C(p)‖u‖S2

1(RN ),

where 2 ≤ p ≤ 2∗α = 2Nα/(Nα − 2), C(p) > 0.
We set

U =

(
u

v

)
, A =

(
0 I

Gα − I 0

)
,

f∗(U)(X) =

(
0

−γv(X) + f(X,u(X))

)
, U0 =

(
u0

u1

)
,

where I is the identity operator on S2
1(RN ). Then problem (1.1)–(1.2) can

be formulated as an abstract evolutionary equation

dU

dt
= AU + f∗(U),(2.1)

U(0) = U0.(2.2)

We set H = S2
1(RN ) × L2(RN ). We regard H as a Hilbert space with the

inner product

(U,U)H =

((
u

v

)
,

(
u

v

))
= (u, u)S2

1(RN ) + (v, v)L2(RN ).

The domain D(A) of A is given by

D(A) =

{(
u

v

)
: u, v ∈ S2

1(RN ), Gαu− u ∈ L2(RN ))

}
.

Lemma 2.1. The adjoint A∗ of A is given by

A∗ = −
(

0 I

Gα − I 0

)
with

D(A∗) =

{(
χ

ψ

)
: χ, ψ ∈ S2

1(RN ), Gαχ− χ ∈ L2(RN )

}
.

Proof. The proof is similar to the one of [14, Lemma 1]. We therefore
omit the details.

2.2. Global solutions

Lemma 2.2. Suppose that f(X, ξ) satisfies conditions (1.3)–(1.4). Then:

(a) The Nemytskĭı map

f̂ : S2
1(RN )→ L2(RN ), u 7→ f̂(u)(X) := f(X,u(X)),

is Lipschitzian on every bounded subset of S2
1(RN ).



Global attractor for a hyperbolic equation 145

(b) The map

f∗ : H → H, U 7→ f∗(U) :=

(
0

−γv + f(X,u)

)
,

is Lipschitzian on every bounded set of H.

Proof. (a) From (1.3) and (1.4) it follows that

|f(X, ξ)|2 ≤ C
(
g2(X)|ξ|2 + |ξ|2(ρ+1) + |h(X)|2

)
.

Hence
�

RN
|f(X,u)|2 dX ≤ C

{ �
Ω

(
g2(X)|u|2 + |u|2(1+ρ)

)
dX +

�

RN
|h(X)|2 dX

}
≤ C

(
‖g‖2LNα (RN )‖u‖

2
L2∗α (RN )

+ ‖u‖2(1+ρ)
L2(1+ρ)(RN )

+ ‖h‖2L2(RN )

)
<∞.

Since S2
1(RN ) is continuously embedded into L2∗α(RN ), we conclude that f

is a map from S2
1(RN ) to L2(RN ).

Now, let u, v ∈ S2
1(RN ), R > 0 and ‖u‖S2

1(RN ), ‖v‖S2
1(RN ) ≤ R. We have

�

RN
|f(X,u)− f(X, v)|2 dX ≤ C

�

RN
|u− v|2

(
g2(X) + |u|2ρ + |v|2ρ

)
dX

≤ C
�

RN
g2(X)|u− v|2 dX + C

�

RN
|u− v|2|u|2ρ dX + C

�

RN
|u− v|2|v|2ρ dX.

Applying Hölder’s inequality, we obtain�

RN
g2(X)|u− v|2 dX ≤ ‖g‖2LNα (RN )‖u− v‖

2
L2∗α (RN )

,

�

RN
|u− v|2|u|2ρ dX ≤ ‖u‖2ρ

L2(ρ+1)(RN )
‖u− v‖2

L2(ρ+1)(RN )
,

�

RN
|u− v|2|v|2ρ dX ≤ ‖v‖2ρ

L2(ρ+1)(RN )
‖u− v‖2

L2(ρ+1)(RN )
.

Since S2
1(RN ) is continuously embedded into L2∗α(RN ) and 1 < 2(ρ+1) ≤ 2∗α,

we have

‖f(X,u)− f(X, v)‖2L2(RN ) ≤ C1‖u− v‖2S2
1(RN )(1 + ‖u‖2ρ

S2
1(RN )

+ ‖v‖2ρ
S2
1(RN )

),

or

‖f(X,u)− f(X, v)‖L2(RN ) ≤ C(R)‖u− v‖S2
1(RN ).

(b) Let R > 0, U,U ∈ H and ‖U‖H , ‖U‖H ≤ R. We have

f∗(U)− f∗(U) =

(
0

γv − γv + f(X,u)− f(X,u)

)
.
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Hence

‖f∗(U)− f∗(U)‖2H = ‖γv − γv + f(X,u)− f(X,u)‖2L2(RN )

≤ 2‖γv − γv‖2L2(RN ) + 2‖f(X,u)− f(X,u)‖2L2(RN )

≤ 2γ2‖v − v‖2L2(RN ) + 2C‖u− u‖2S2
1(RN )(1 + ‖u‖2ρ

S2
1(RN )

+ ‖u‖2ρ
S2
1(RN )

)

≤ C1(R)‖U − U‖2H .

Lemma 2.1 and [15, Theorem 10.8 (p. 41)] imply that A generates a
C0-semigroup eAt on H.

Definition 2.3 (see [18]). Let T > 0. A (strongly) continuous mapping
U : [0, T )→ H is said to be a mild solution of problem (2.1)–(2.2) if it solves
the integral equation

U(X, t) = eAtU0 +

t�

0

eA(t−s)f∗(U(s)) ds, t ∈ [0, T ).

If U is (strongly) differentiable almost everywhere in [0, T ) with Ut and AU
in L1

loc([0, T ), H), and satisfies the differential equation

dU

dt

a.e.
= AU + f∗(U) on (0, T ), and U(0) = U0.

then U is called a strong solution of problem (2.1)–(2.2).

Using Lemma 2.2 and [18, Theorems 46.1 (p. 235) and 46.2 (p. 236)] it
is not difficult to establish

Proposition 2.4. Assume that f(X,u) satisfies conditions (1.3)–(1.6).
Then for any R > 0 and U0 ∈ H such that ‖U0‖H ≤ R, there exists T =
T (R) > 0 small enough such that problem (2.1)–(2.2) has a unique mild
solution U ∈ C([0, T );H). Moreover, if U0 ∈ D(A) then U is a strong
solution for (2.1)–(2.2).

From (1.3) and (1.4) it follows that

|F (X, ξ)| ≤ C
(
g(X)|ξ|2 + |ξ|2+ρ + |f(X, 0)| |ξ|

)
.

Hence
�

RN
|F (X,u)| dX ≤ C

�

RN

(
g(X)|u|2 + |u|2+ρ + |h(X)| |u|

)
dX

≤ C
(
‖g‖LNα/2(RN )‖u‖

2
L2∗α (RN )

+ ‖u‖2+ρ
L2+ρ(RN )

+ ‖h‖L2(RN )‖u‖L2(RN )

)
<∞

for all u ∈ S2
1(RN ).



Global attractor for a hyperbolic equation 147

Lemma 2.5. Assume that f(X,u) satisfies conditions (1.3)–(1.6). Then
any solution u(t) of problem (1.1)–(1.2) satisfies

‖u‖2S2
1(RN ) + ‖ut‖2L2(RN ) ≤M, t ≥ T1,(2.3)

where M is a constant depending only on γ, g1(X) and T1 depending on the
data γ, g1(X), R when ‖u0‖2S2

1(RN ) + ‖u1‖2L2(RN ) ≤ R.

Proof. Let U(t) be the solution of (2.1)–(2.2) with the initial condi-
tion U0. Then u = ut + δu satisfies the equation

ut + (γ − δ)u+ (δ2 − γδ + 1)u = Gαu+ f(X,u).(2.4)

Set

A(u, u) = ‖u‖2L2(RN ) + (δ2 − δγ + 1)‖u‖2L2(RN ) + ‖∇αu‖2L2(RN ).

We choose δ ∈ (0, 1) sufficiently small that

γ − 2δ > 0, δ2 − δγ + 1 > 0,

and C1, C2 > 0 such that

(2.5) C1

(
‖u‖2L2(RN ) + ‖ut‖2L2(RN ) + ‖∇αu‖2L2(RN )

)
≤ A(u, u) ≤ C2

(
‖u‖2L2(RN ) + ‖ut‖2L2(RN ) + ‖∇αu‖2L2(RN )

)
.

Multiplying (2.4) by u and integrating over RN , we obtain

1

2

d

dt
(A(u, u)) = −(γ − δ)‖u‖2L2(RN ) − δ(δ

2 − δγ + 1)‖u‖2L2(RN )

− δ‖∇αu‖2L2(RN ) +
�

RN
f(X,u)u dX

= (2δ − γ)‖u‖2L2(RN ) +
�

RN
f(X,u)ut dX

+ δ
�

RN
f(X,u)u dX − δA(u, u).

From (1.5), we have

1

2

d

dt

(
A(u, u)− 2

�

RN
F (X,u) dX

)
≤ −δA(u, u) + δ

�

RN
f(X,u)u dX

≤ −δA(u, u) +
δ

C2

�

RN

(
F (X,u)− g1(X)

)
dX.
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From (1.6), we deduce that

1

2

d

dt

(
A(u, u)− 2

�

RN
F (X,u) dX

)
≤ −µ

(
A(u, u)− 2

�

RN
F (X,u) dX

)
+ C3,

where

µ = min

{
δ,

δ

2C2

}
> 0, C3 = − δ

C2

�

RN
g1(X) dX.

Applying the Gronwall inequality we get

A(u, u)− 2
�

RN
F (X,u) dX

≤ e−2µt
(
A(u0, u0)− 2

�

RN
F (X,u0) dX − C3/µ

)
+ C3/µ, ∀t ≥ 0.

Thus

(2.6) ‖u‖2S2
1(RN ) + ‖ut‖2L2(RN ) ≤ Ce

−2µtT(u0, u1) + C5/µ,

where T(u0, u1) = ‖u0‖2S2
1(RN )

+ ‖u1‖2L2(RN )
+ C4, which yields

‖u‖2S2
1(RN ) + ‖ut‖2L2(RN ) ≤ 2|C5|/µ for all t ≥ T1,

where

T1 :=


1

2µ
ln
CµT(u0, u1)

|C5|
if
CµT(u0, u1)

|C5|
> 1,

0 if
CµT(u0, u1)

|C5|
≤ 1,

and (2.3) follows with M = 2|C5|/µ.

Theorem 2.6. Assume that f(X,u) satisfies conditions (1.3)–(1.6)
and U0 ∈ H. Then problem (1.1)–(1.2) has a unique global solution U ∈
C([0,∞);H). Moreover, for each fixed t the map U0 7→ S(t)U0 := U(t) is
continuous on H.

Proof. The uniqueness of the local solution was obtained in Proposi-
tion 2.4. We will show that the local solution can be extended globally in
time. Suppose that U(t) is defined on the maximal interval [0, Tmax). By
(2.6), we have

‖U‖H ≤ C for all 0 ≤ t < Tmax.

As in [14, proof of Theorem 2] we show that Tmax = ∞. It is easy to
prove that the map U0 7→ S(t)U0 := U(t) is continuous on H. We omit
the details.
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3. Existence of a global attractor in S2
1(RN )×L2(RN ). In view of

Theorem 2.6, we can define a continuous semigroup S(t) : H → H by

S(t)U0 := U(t),

where U(t) is the unique global mild solution of (1.1)–(1.2) with initial
datum U0.

Denote

B = {U ∈ H : ‖U‖2H < M},
where M is the constant in (2.3). It follows from (2.3) that B is an absorbing
set for S(t) in H and for every bounded set B in H there exists a constant
T (B) depending only on (γ, g1(X)) and B such that

S(t)B ⊆ B, t ≥ T (B).(3.1)

In particular there exists a constant T0 depending only on (γ, g1(X)) and B

such that

S(t)B ⊆ B, t ≥ T0.(3.2)

Lemma 3.1. Assume that f(X,u) satisfies conditions (1.3)–(1.6) and
U0 ∈ B. Then for every ε > 0, there exist positive constants T (ε) and K(ε)
such that the solution U(t) of problem (2.1)–(2.2) satisfies�

|X|α≥k

(|u|2 + |ut|2 + |∇αu|2) dX ≤ ε, t ≥ T (ε), k ≥ K(ε),(3.3)

where

|X|α = [|x|2(1+α) + (1 + α)2|y|2]1/(2(1+α)).
Proof. Choose a smooth function ϑ such that 0 ≤ ϑ(s) ≤ 1 for s ∈ R+

and

ϑ(s) = 0 for 0 ≤ s ≤ 1, ϑ(s) = 1 for s ≥ 2.

Define ϑk : RN → R by

ϑk(X) = ϑ

(
|X|2(1+α)α

k2(1+α)

)
for any k ∈ R+

∗ .

Then

∇αϑ
(
|X|2(1+α)α

k2(1+α)

)
=

1

k2(1+α)
ϑ′
(
|X|2(1+α)α

k2(1+α)

)
∇α|X|2(1+α)α ,

where

∇α|X|2(1+α)α

= 2(1 + α)
(
x1|x|2α, . . . , xN1 |x|2α, (1 + α)|x|αy1, . . . , (1 + α)|x|αyN2

)
,

hence

|∇α|X|2(1+α)α | = 2(1 + α)|x|α|X|1+αα .
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Notice that there exists a constant Cϑ > 0 such that |ϑ′(s)| ≤ Cϑ for
s ∈ R+.

Multiplying (2.4) by ϑ
( |X|2(1+α)α

k2(1+α)

)
u and integrating over RN , we get

(3.4)
�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
utu dX + (γ − δ)

�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
|u|2 dX

+ (δ2 − γδ + 1)
�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
uu dX

=
�

RN
Gαuϑ

(
|X|2(1+α)α

k2(1+α)

)
u dX +

�

RN
f(X,u)ϑ

(
|X|2(1+α)α

k2(1+α)

)
u dX.

But

−
�

RN
Gαuϑ

(
|X|2(1+α)α

k2(1+α)

)
u dX =

�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
∇αu · ∇αu dX

+
1

k2(1+α)

�

RN
ϑ′
(
|X|2(1+α)α

k2(1+α)

)
u∇α|X|2(1+α)α · ∇αu dX

=
�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
∇αu · [δ∇αu+∇αut] dX

+
1

k2(1+α)

�

RN
ϑ′
(
|X|2(1+α)α

k2(1+α)

)
u∇α|X|2(1+α)α · ∇αu dX

=
1

2

d

dt

�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
|∇αu|2 dX + δ

�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
|∇αu|2 dX

+
1

k2(1+α)

�

RN
ϑ′
(
|X|2(1+α)α

k2(1+α)

)
u∇α|X|2(1+α)α · ∇αu dX,

�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
utu dX =

1

2

d

dt

�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
|u|2 dX,

and

(δ2 − γδ + 1)
�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
uu dX

= (δ2 − γδ + 1)
�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
u(ut + δu) dX
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= (δ2 − γδ + 1)
1

2

d

dt

�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
|u|2 dX

+ δ(δ2 − γδ + 1)
�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
|u|2 dX.

Set

C(u, u) = (δ2 − γδ + 1)|u|2 + |∇αu|2 + |u|2.

Then (3.4) becomes

1

2

d

dt

�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
C(u, u) dX

= −δ
�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
C(u, u) dX

− (γ − 2δ)
�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
|u|2 dX +

�

RN
f(X,u)ϑ

(
|X|2(1+α)α

k2(1+α)

)
u dX

− 1

k2(1+α)

�

RN
ϑ′
(
|X|2(1+α)α

k2(1+α)

)
u∇α|X|2(1+α)α · ∇αu dX,

and from (1.6) we have

�

RN
f(X,u)ϑ

(
|X|2(1+α)α

k2(1+α)

)
u dX

=
�

RN
f(X,u)ϑ

(
|X|2(1+α)α

k2(1+α)

)
(ut + δu) dX

=
�

RN
f(X,u)ϑ

(
|X|2(1+α)α

k2(1+α)

)
ut dX + δ

�

RN
f(X,u)ϑ

(
|X|2(1+α)α

k2(1+α)

)
u dX

=
d

dt

�

RN
F (X,u)ϑ

(
|X|2(1+α)α

k2(1+α)

)
dX + δ

�

RN
f(X,u)ϑ

(
|X|2(1+α)α

k2(1+α)

)
u dX

≤ d

dt

�

RN
F (X,u)ϑ

(
|X|2(1+α)α

k2(1+α)

)
dX

+
δ

C2

�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)(
F (X,u)− g1(X)

)
dX.
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We deduce that

1

2

d

dt

�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)(
C(u, u)− 2F (X,u)

)
dX

≤ −µ
�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)(
C(u, u)− 2F (X,u)

)
dX

−
(
γ − 2δ

) �

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
|u|2 dX − δ

C2

�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
g1(X) dX

− 1

k2(1+α)

�

RN
ϑ′
(
|X|2(1+α)α

k2(1+α)

)
u∇α|X|2(1+α)α · ∇αu dX

≤ −
�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)[
µ
(
C(u, u)− 2F (X,u)

)
+

δ

C2
g1(X)

]
dX

− 1

k2(1+α)

�

RN
ϑ′
(
|X|2(1+α)α

k2(1+α)

)
u∇α|X|2(1+α)α · ∇αu dX,

where µ = min{δ, δ/(2C2)} > 0.
On the other hand, since g1 ∈ L1(RN ), there exists K1 > 0 such that for

all k ≥ K1, we have

− δ

C2

�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
g1(X) dX = − δ

C2

�

|X|α≥k

ϑ

(
|X|2(1+α)α

k2(1+α)

)
g1(X) dX

≤ C
�

|X|α≥k

|g1(X)| dX ≤ ε

4
.

Applying Hölder’s inequality, we obtain

− 1

k2(1+α)

�

RN
ϑ′
(
|X|2(1+α)α

k2(1+α)

)
u∇α|X|2(1+α)α · ∇αu dX

= − 1

k2(1+α)

�

|X|α≤2k

ϑ′
(
|X|2(1+α)α

k2(1+α)

)
u∇α|X|2(1+α)α · ∇αu dX

≤ C

k2(1+α)

( �

|X|α≤2k

|u|2 dX
)1/2( �

|X|α≤2k

|∇α|X|2(1+α)α |2|∇αu|2 dX
)1/2

≤ C

k

( �

|X|α≤2k

|u|2 dX
)1/2( �

|X|α≤2k

|∇αu|2 dX
)1/2

≤ ε

4
,

for all k ≥ K2.
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Applying Gronwall’s inequality, we obtain

�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)(
C(u, u)− 2F (X,u)

)
dX

≤ e−2µt
�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)(
C(u0, u0)− 2F (X,u0)

)
dX

+ ε(1− e−2µt), ∀k ≥ K(ε).

Now since U0 ∈ B, there exists a constant M > 0 such that

�

RN
ϑ

(
|X|2(1+α)α

k2(1+α)

)
(C(u0, u0)− 2F (X,u0)) dX ≤M.

By (2.5) and the definition of ϑ, we get the conclusion of the lemma.

From Lemma 3.1, for any solution U = (u(t), ut(t)) with the initial data
U0 = (u0, u1) ∈ B, we have

lim
T,k→∞

1

T

T�

0

�

|X|α≥k

(|u|2 + |ut|2 + |∇αu|2) dX dt = 0.(3.5)

Lemma 3.2. Assume that f(X,u) satisfies the conditions (1.3)–(1.6) and
Un ⇀ U in H. Then for every t ≥ 0,

S(t)Un ⇀ S(t)U in H.(3.6)

Proof. The proof is similar to the one of [10, Lemma 1]. We omit the
details.

Lemma 3.3. Assume that f(X,u) satisfies the condition (1.3), Ω is a
bounded domain in RN , un ⇀ u in S2

1(Ω), and vn → v in L2(Ω). Then
�

Ω

f(X,un)vn dX →
�

Ω

f(X,u)v dX,

�

Ω

F (X,un) dX →
�

Ω

F (X,u) dX.

Proof. The proof is a simple modification of [14, proof of Theorem 3].

Lemma 3.4. Assume that f(X,u) satisfies conditions (1.3)–(1.6), B is
a bounded subset of H, and ε > 0. Then there exists a T0 = T0(ε, B) such
that for any sequence {Un} in B, weakly converging to U in H, we have

lim sup
n→∞

‖S(T )Un‖H ≤ ‖S(T )U0‖H + ε for all T ≥ T0.(3.7)
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Proof. Define

E(u(t), ut(t)) := 1
2

(
‖∇αu(t)‖2L2(RN ) + ‖u(t)‖2L2(RN ) + ‖u(t)‖2L2(RN )

)
,

[B(0, R)] := {X ∈ RN : |X|α ≤ R} for R > 0,

and let S(t)Un = (un(t), unt(t)) be the solution of problem (2.1)–(2.2) with
the initial data Un = (un(0), unt(0)), and S(t)U0 = (u(t), ut(t)) be the solu-
tion with the initial data U0 = (u(0), ut(0)). Lemma 2.5 implies

sup
t,n≥0

‖S(t)Un‖H ≤ C.(3.8)

Multiplying (1.1) by ut + γ
2u and integrating over RN , similarly to Lemma

2.5, we get∥∥∥∥ut+γ

2
u

∥∥∥∥2
L2(RN )

+

(
1−γ

2

4

)
‖u‖2L2(RN )+‖∇αu‖

2
L2(RN )−2

�

RN
F (X,u) dX ≤ C1.

From (2.6),∥∥∥∥ut+γ

2
u

∥∥∥∥2
L2(RN )

+

(
1+

γ2

4

)
‖u‖2L2(RN )+‖∇αu‖

2
L2(RN )−2

�

RN
F (X,u) dX ≤ C2.

Multiplying (1.1) by ut + γ
2u and integrating over [0, T ]× RN , we obtain

γ

2

T�

0

�

RN

(
|ut|2+|u|2+|∇αu|2−f(X,u)u

)
dX dt

=
1

2

{∥∥∥∥ut(0)+
γ

2
u(0)

∥∥∥∥2
L2(RN )

+

(
1+

γ2

4

)
‖u(0)‖2L2(RN )+‖∇αu(0)‖2L2(RN )

}
−

�

RN
F (X,u(0)) dX+

�

RN
F (X,u(T )) dX

−1

2

{∥∥∥∥ut(T )+
γ

2
u(T )

∥∥∥∥2
L2(RN )

+

(
1+

γ2

4

)
‖u(T )‖2L2(RN )+‖∇αu(T )‖2L2(RN )

}
.

Hence ∣∣∣T�
0

[
E(u(t), ut(t))−

�

RN
f(X,u)u dX

]
dt
∣∣∣ ≤ C.(3.9)

Similarly to the case of (3.9), since B is bounded in H and Un ∈ B, for
every T ≥ 0 we have∣∣∣T�

0

[
E(un(t), unt(t))−

�

RN
f(X,un)un dX

]
dt
∣∣∣ ≤ C.(3.10)
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Multiplying (1.1) by ut and integrating over [t, T ]× RN we obtain

(3.11) E(u(T ), ut(T ))−
�

RN
F (X,u(X,T )) dX + γ

T�

t

‖uτ‖2L2(RN ) dτ

= E(u(t), ut(t))−
�

RN
F (X,u(X, t)) dX.

From (3.9) and (3.11), we have

(3.12) E(u(T ), ut(T ))−
�

RN
F (X,u(X,T )) dX +

γ

T

T�

0

T�

t

‖uτ‖2L2(RN ) dτ dt

=
1

T

T�

0

[
E(u(t), ut(t))−

�

RN
F (X,u(X, t)) dX

]
dt

≥ 1

T

T�

0

�

RN

(
−F (X,u(X, t)) + f(X,u)u

)
dX dt− C

T
.

From (3.10) and (3.11), we get

(3.13) E(un(T ), unt(T ))−
�

RN
F (X,un(X,T )) dX

+
γ

T

T�

0

T�

t

‖unτ‖2L2(RN ) dτ dt

≤ 1

T

T�

0

�

RN

(
−F (X,un(X, t)) + f(X,un)un

)
dX dt+

C

T
.

From (3.12) and (3.13), it follows that

E(un(T ), unt(T ))−
�

RN
F (X,un(X,T )) dX +

γ

T

T�

0

T�

t

‖unτ‖2L2(RN ) dτ dt

≤ 1

T

T�

0

�

RN

(
F (X,u(X, t))− F (X,un(X, t))

)
dX dt

+
1

T

T�

0

�

RN

(
f(X,un)un − f(X,u)u

)
dX dt+ E(u(T ), ut(T ))

−
�

RN
F (X,u(X,T )) dX +

γ

T

T�

0

T�

t

‖uτ‖2L2(RN ) dτ dt+
2C

T
,

hence
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(3.14) E(un(T ), unt(T ))

≤ 1

T

T�

0

�

RN

(
F (X,u(X, t))− F (X,un(X, t))

)
dX dt

+
1

T

T�

0

�

RN

(
f(X,un)un − f(X,u)u

)
dX dt+ E(u(T ), ut(T ))

+
( �

RN
F (X,un(X,T )) dX −

�

RN
F (X,u(X,T )) dX

)
+

2C

T

+
γ

T

(T�
0

T�

t

‖uτ‖2L2(RN ) dτ dt−
T�

0

T�

t

‖unτ‖2L2(RN ) dτ dt
)
.

From Un ⇀ U it follows that unt ⇀ ut, and by the weak lower semicontinuity
of norms, we have

lim inf
n→∞

‖unt‖2L2(RN ) ≥ ‖ut‖
2
L2(RN ).

Thus for any ε > 0 there exists N0 > 0 such that for all N > N0,

T�

0

T�

t

‖uτ‖2L2(RN ) dτ dt−
T�

0

T�

t

‖unτ‖2L2(RN ) dτ dt ≤ ε.(3.15)

From Lemma 3.3 we have

lim
n→∞

1

T

T�

0

�

[B(0,R)]

(
F (X,u(X, t))− F (X,un(X, t))

)
dX dt = 0,(3.16)

lim
n→∞

1

T

T�

0

�

[B(0,R)]

(
f(X,un)un − f(X,u)u

)
dX dt = 0,(3.17)

lim
n→∞

�

[B(0,R)]

(
F (X,un(X,T ))− F (X,u(X,T ))

)
dX = 0.(3.18)

On the other hand, as in [14] we have∣∣∣∣ 1

T

T�

0

�

RN\[B(0,R)]

(
F (X,u(X, t))− F (X,un(X, t))

)
dX dt

∣∣∣∣
≤ C

T

T�

0

{
‖un − u‖L2(RN\[B(0,R)])

×
[(
‖u‖ρ+1

L2(ρ+1)(RN\[B(0,R)])
+ ‖un‖ρ+1

L2(ρ+1)(RN\[B(0,R)])

)
+ ‖f(X, 0)‖L2(RN\[B(0,R)])

+ ‖g‖LNα (RN\[B(0,R)])

(
‖u‖

L
2Nα
Nα−2 (RN\[B(0,R)])

+ ‖un‖
L

2Nα
Nα−2 (RN\[B(0,R)])

)]}
dt,
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and∣∣∣∣ 1

T

T�

0

�

RN\[B(0,R)]

(
f(X,un)un − f(X,u)u

)
dX dt

∣∣∣∣
≤ C

T

T�

0

{
‖un − u‖L2(RN\[B(0,R)])

(
‖g‖LNα (RN\[B(0,R)])‖un‖

L
2Nα
Nα−2 (RN\[B(0,R)])

+ ‖un‖ρLr1ρ(RN\[B(0,R)])
‖un‖Lr2 (RN\[B(0,R)]) + ‖f(X,u)‖2L2(RN\[B(0,R)])

+ ‖u‖ρ
Lr1ρ(RN\[B(0,R)])

‖un‖Lr2 (RN\[B(0,R)])

)}
dt

where r1 = 2Nα/((Nα − 2)ρ) if ρ 6= 0, r1 = Nα if ρ = 0, and 1/r1 + 1/r2
= 1/2.

So it follows from Lemma 3.1 and (3.5) that for each ε > 0, there exist
T0 and R0 such that when T ≥ T0 and R ≥ R0, we have

(3.19)
1

T

T�

0

�

RN\[B(0,R)]

(
F (X,u(X, t))− F (X,un(X, t))

)
dX dt

+
1

T

T�

0

�

RN\[B(0,R)]

(
f(X,un)un − f(X,u)u

)
dX dt

+
�

RN\[B(0,R)]

(
F (X,un(X,T ))− F (X,u(X,T ))

)
dX +

C

T
≤ ε.

Taking into account (3.15)–(3.19) in (3.14) and passing to the limit we get

lim sup
n→∞

E(un(T ), unt(T )) ≤ E(u(T ), ut(T )) + ε,

which yields (3.7).

We now formulate the main result of the section.

Theorem 3.5. Assume that f(X,u) satisfies conditions (1.3)–(1.6).
Then the semigroup {S(t)}t≥0 associated with problem (2.1)–(2.2) is asymp-
totically compact in the phase space H, i.e., if {Un}∞n=1 is a bounded sequence
in H and {tn}∞n=1 is a time sequence such that tn → ∞ as n → ∞, then
{S(tn)Un}∞n=1 is precompact in H.

Proof. From (3.1), we know that there exists a bounded subset B in H
such that S(tn)Un ⊂ B for all n ∈ N. It follows that there exist U ∈ H and
a subsequence {nk}∞k=1 such that

S(tnk)Unk ⇀ U in H,
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which implies that

lim inf
k→∞

‖S(tnk)Unk‖H ≥ ‖U‖H .(3.20)

Now, to prove that there exists a subsequence of S(tnk)Unk converging
strongly to U in H, we will construct a subsequence S(tnkj )Unkj such that

lim sup
j→∞

‖S(tnkj )Unkj ‖H ≤ ‖U‖H .

Indeed, from Lemma 3.4 for any l > 0 there exists a T0 = T0(l,B) such that
for any {ϕi} ⊂ B with ϕi ⇀ ϕ in H we have

lim sup
i→∞

‖S(T0)ϕi‖H ≤ ‖S(T0)ϕ‖H + 1/l.(3.21)

For tnk ≥ T0, we then also have

S(tnk − T0)Unk ⊂ B.

Therefore, there is a UT0 and a subsequence {nkj(l)}
∞
j(l)=1 of {nk}∞k=1 such

that

S(tnkj(l)
− T0)Unkj(l) ⇀ UT0 in H,(3.22)

which, by using Lemma 3.2, implies that

S(tnkj(l)
)Unkj(l)

= S(T0)S(tnkj(l)
− T0)Unkj(l) ⇀ S(T0)UT0 in H.

The uniqueness of the weak limit yields U = S(T0)UT0 .
Taking ϕkj(l) = S(tnkj(l)

− T0)Unkj(l) in (3.21) we obtain

lim sup
j(l)→∞

‖S(T0)S(tnkj(l)
− T0)Unkj(l)‖H ≤ ‖S(T0)UT0‖H + 1/l.

Hence,

lim sup
j(l)→∞

‖S(tnkj(l)
)Unkj(l)

‖H ≤ ‖U‖H + 1/l.(3.23)

For l = 1 from (3.23) there exists a j1(1) such that

‖S(tnkj1(1)
)Unkj1(1)

‖H ≤ ‖U‖H + 2.

Denote j1(1) by j1.
For l = 2 from (3.23) there exists a j2(2) such that nkj1 < nkj2(2) and

‖S(tnkj2(2)
)Unkj2(2)

‖H ≤ ‖U‖H + 1.

Denote j2(2) by j2.
Similarly, for l = m from (3.23) there exists a number jm(m) such that

nkjm−1
< nkjm(m)

and

‖S(tnkjm(m)
)Unkjm(m)

‖H ≤ ‖U‖H + 2/m.

Denote jm(m) by jm.
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Obviously, the sequence {nkj}∞j=1 is as desired since

lim sup
j→∞

‖S(tnkj )Unkj ‖H ≤ ‖U‖H .

From Theorem 3.5, we obtain

Theorem 3.6. Assume that f(X,u) satisfies conditions (1.3)–(1.6).
Then problem (2.1)–(2.2) has a global attractor in H which is a compact
invariant subset that attracts every bounded set of H with respect to the
norm topology.

Example 3.7. Consider the problem
∂2u

∂t2
+ γ

∂u

∂t
+ u = G1/2u+ f(X,u) for X = (x, y) ∈ R2, t > 0,

u(x, y, 0) = u0(x, y),
∂u

∂t
(x, y, 0) = u1(x, y) for (x, y) ∈ R2,

where u0 ∈ S2
1(R2), u1 ∈ L2(R2), γ is a positive constant and

G1/2u =
∂2u

∂x2
+ |x|∂

2u

∂y2
,

and

f(X,u) =


−u(1− u2)
|X|4 + 1

for |u| ≤ 1, |X|2 = x2 + y2,

u(1− u2)
|X|4 + 1

for |u| ≥ 1.

We obtain

F (X,u) =


−1

|X|4 + 1

(
u2

2
− u4

4

)
for |u| ≤ 1,

1

|X|4 + 1

(
u2

2
− u4

4
− 1

2

)
for |u| ≥ 1.

Obviously F (X,u(X)) ≤ 0 for all X ∈ R2 and u ∈ S2
1(RN ).

It is easily checked that the function f(X,u) satisfies conditions (1.3)–
(1.6) in which we can take C1 = 2, ρ = 4, N1/2 = 5/2, h(x, y) = 0,

g(x, y) =
1

|X|4 + 1
+

1

(|X|4 + 1)2
, g1(x, y) = − 1

4(|X|4 + 1)
,

and C2 = 1/4. Applying Theorem 3.6 we conclude that there exists a global
compact attractor in S2

1(R2)× L2(R2) for the associated semigroup S(t).

Note that we cannot take g1(x, y) satisfying g1(x0, y0) ≥ 0 at a particular
point (x0, y0) for any constant C2. Indeed, if g1(x0, y0) ≥ 0, from (1.5) we
have − 1

4((x20+y
2
0)

2+1)
≥ 0 for u = 1, a contradiction.



160 D. T. Luyen and N. M. Tri

Acknowledgements. This research is funded by Vietnam National
Foundation for Science and Technology Development (NAFOSTED) under
grant number 101.02-2014.50.

The authors would like to thank the referees for their critical remarks
that improved the paper significantly.

References

[1] C. T. Anh, Global attractor for a semilinear strongly degenerate parabolic equation
on RN , Nonlinear Differential Equations Appl. 21 (2014), 663–678.

[2] A. V. Babin and M. I. Vishik, Regular attractors of semigroups and evolution equa-
tions, J. Math. Pures Appl. 62 (1983), 441–491.

[3] A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations
in an unbounded domain, Proc. Roy. Soc. Edinburgh 116 (1990), 221–243.

[4] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Nauka, Moscow,
1989 (in Russian); English transl., North-Holland, 1992.

[5] V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Phy-
sics, Amer. Math. Soc. Colloq. Publ. 49, Amer. Math. Soc., Providence, RI, 2002.

[6] D. Fall, Longtime dynamics of hyperbolic evolutionary equations in ubounded do-
mains and lattice systems, Graduate thesis, Univ. of South Florida, 2005;
http://scholarcommons.usf.edu/etd/2875.

[7] E. Feireisl, Attractors for semilinear damped wave equations on R3, Nonlinear Anal.
23 (1994), 187–195.

[8] V. V. Grushin, A certain class of hypoelliptic operators, Math. USSR-Sb. 83 (1970),
456–473.

[9] N. I. Karachalios and N. M. Stavrakakis, Existence of a global attractor for semilin-
ear dissipative wave equations on RN , J. Differential Equations 57 (1999), 183–205.

[10] A. Kh. Khanmamedov, Existence of a global attractor for the plate equation with the
critical exponent in an unbounded domain, Appl. Math. Lett. 18 (2005), 827–832.

[11] A. E. Kogoj and E. Lanconelli, On semilinear ∆λ-Laplace equation, Nonlinear Anal.
75 (2012), 4637–4649.

[12] A. E. Kogoj and S. Sonner, Attractors met X-elliptic operators, J. Math. Anal. Appl.
420 (2014), 407–434.

[13] D. T. Luyen and N. M. Tri, Existence of solutions to boundary value problems for
semilinear ∆γ differential equations, Math. Notes 97 (2015), 73–84.

[14] D. T. Luyen and N. M. Tri, Large-time behavior of solutions for degenerate damped
hyperbolic equations, Siberian Math. J. 57 (2016), no. 4.

[15] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential
Equations, Appl. Math. Sci. 44, Springer, New York, 1983.

[16] G. Raugel, Global attractors in partial differential equations, in: Handbook of Dy-
namical Systems, Vol. 2, North-Holland, Amsterdam, 2002, 885–892.

[17] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press,
Cambridge, 2001.

[18] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Springer, New York,
2002.

[19] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,
Springer, New York, 1988.

http://dx.doi.org/10.1007/s00030-013-0261-y
http://dx.doi.org/10.1017/S0308210500031498
http://scholarcommons.usf.edu/etd/2875
http://dx.doi.org/10.1016/0362-546X(94)90041-8
http://dx.doi.org/10.1016/j.aml.2004.08.013
http://dx.doi.org/10.1016/j.na.2011.10.007
http://dx.doi.org/10.1016/j.jmaa.2014.05.070
http://dx.doi.org/10.1134/S0001434615010101


Global attractor for a hyperbolic equation 161

[20] P. T. Thuy and N. M. Tri, Nontrivial solutions to boundary value problems for
semilinear strongly degenerate elliptic differential equations, Nonlinear Differential
Equations Appl. 19 (2012), 279–298.

[21] P. T. Thuy and N. M. Tri, Long time behavior of solutions to semilinear parabolic
equations involving strongly degenerate elliptic differential operators, Nonlinear Dif-
ferential Equations Appl. 20 (2013), 1213–1224.

[22] N. M. Tri, Critical Sobolev exponent for hypoelliptic operators, Acta Math. Vietnam.
23 (1998), 83-94.

[23] N. M. Tri, Semilinear Degenerate Elliptic Differential Equations. Local and Global
Theories, Lambert Acad. Publ., 2010.

[24] N. M. Tri, Recent Progress in the Theory of Semilinear Equations Involving De-
generate Elliptic Differential Operators, Publ. House for Science and Technology,
Vietnam Acad. Science and Technology, 2014.

[25] B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D
128 (1999), 41–52.

Duong Trong Luyen
Department of Mathematics
Hoa Lu University
Ninh Nhat
Ninh Binh City, Vietnam
E-mail: dtluyen.dnb@moet.edu.vn

Nguyen Minh Tri
Institute of Mathematics

Vietnam Academy of Science and Technology
18 Hoang Quoc Viet

10307 Cau Giay, Hanoi, Vietnam
E-mail: triminh@math.ac.vn

http://dx.doi.org/10.1007/s00030-011-0128-z
http://dx.doi.org/10.1007/s00030-012-0205-y
http://dx.doi.org/10.1016/S0167-2789(98)00304-2



	1 Introduction
	2 Existence and uniqueness of a global mild solution
	2.1 Function spaces and operators
	2.2 Global solutions

	3  Existence of a global attractor in S21(RN) L2(RN)
	References

