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On a problem of Sidon for polynomials over finite fields
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Wentang Kuo and Shuntaro Yamagishi (Waterloo, ON)

1. Introduction. In the course of investigations on Fourier series by
S. Sidon, several questions arose concerning the existence and nature of
certain positive integer sequences ω for which

rn(ω) = |{(a, b) ∈ N× N : a, b ∈ ω, a+ b = n, 0 < a < b}|
is bounded or, in some sense, exceptionally small, where |S| denotes the
cardinality of the set S. In particular, he asked the following question in
1932, known as the Sidon Problem [1]:

Does there exist a sequence ω such that rn(ω) > 0 for all n sufficiently
large and, for all ε > 0,

lim
n→∞

rn(ω)

nε
= 0 ?

In 1954, P. Erdős [1] answered this question positively by proving

Theorem (Erdős). There exists a sequence ω such that

log n� rn(ω)� log n for n sufficiently large.

In other words, there exists a “thin” set ω such that every sufficiently
large positive integer can be represented as a sum of two elements in ω. In
the other direction, Erdős and Rényi [2] proved that there exists a “thick”
set ω such that rn(ω) is bounded for all n.

Theorem (Erdős–Rényi). For any ε > 0, there exists a positive number
G = G(ε) and a sequence ω such that rn(ω) < G for all n and

|{m ∈ ω : m ≤ n}| > n1/2−ε for sufficiently large n.

We note that the result is best possible up to the ε term. One way to
see this is by applying the pigeonhole principle. Suppose we have ω0 ⊆ N,
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where rn(ω0) < G for all n ∈ N. Given any m1,m2 ∈ {m ∈ ω0 : m ≤ n}, we
have 1 < m1 +m2 ≤ 2n. Therefore, by the pigeonhole principle,

G > max
1<m≤2n

rm(ω0) ≥
|{m ∈ ω0 : m ≤ n}|2 − |{m ∈ ω0 : m ≤ n}|

2(2n− 1)
.

Consequently,
|{m ∈ ω0 : m ≤ n}| � n1/2.

Sidon’s questions and the above results have been extended in various
directions (see the survey paper [5]).

In this paper, we prove an analogue of these results in the setting of
Fq[T ]. Let ω be a sequence of polynomials in Fq[T ]. For each h ∈ Fq[T ], we
define

rh(ω) = |{(f, g) ∈ Fq[T ]× Fq[T ] : f, g ∈ ω, h = f + g,

deg g ≤ deg h, f 6= g}|.
Here deg f is the degree of f ∈ Fq[T ] with the convention that deg 0 = −∞.
We prove the following results.

Theorem 1. There exists a sequence ω of polynomials in Fq[T ] such
that

deg h� rh(ω)� deg h for deg h sufficiently large

In the other direction, we prove that there exists a “thick” set ω with
bounded value rh(ω). We denote ω = {fi}i∈N, where deg fi ≤ deg fj (i < j).

Theorem 2. For each ε > 0, there exists a sequence ω = {fi} of polyno-
mials in Fq[T ] and a positive integer K such that rh(ω) < K for all h ∈ Fq[T ]
and qdeg fi � i2+ε.

For each h ∈ Fq[T ], we define

th(ω) = |{(f, g) ∈ Fq[T ]× Fq[T ] : f, g ∈ ω, h = f − g,
deg f,deg g ≤ deg h}|.

We also prove the following variation of the existence of thick sets.

Theorem 3. For each ε > 0, there exists a sequence ω = {fi} of poly-
nomials in Fq[T ] and a positive integer K ′ such that th(ω) < K ′ for all
h ∈ Fq[T ] and qdeg fi � i2+ε.

We prove our theorems by using the probabilistic method of Erdős and
Rényi in the form presented in [3, Chapter III]. Roughly speaking, we set up
a probability space to study the probability of the events {ω : rh(ω) = d}
for all non-negative integers d. Using the Borel–Cantelli lemma, we show
that the sequences satisfy the desired properties with probability 1. We also
remark that Theorems 2 and 3 have been generalized to m-fold sums and
differences by K. E. Hare and the second author in [4, Corollary 3.6]. How-
ever, the above formulations of Theorems 2 and 3 use a different language
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than in [4]. Moreover, with the same machinery needed to prove Theorem 1,
we can prove Theorems 2 and 3 with a slight modification of the proof of
Theorem 1, and therefore we supply these proofs.

The organization of this paper is as follows. In Section 2, we first review
the basic probability theory and state the Borel–Cantelli lemma. Next, in
Section 3, we state the equivalent statements of our theorems and set up
the probability space used in our proof. In Section 4, we establish several
technical lemmas. Finally, the remaining sections are devoted to the proof
of our main results.

2. Preliminaries. We start with probability theory. Let {Xj} be a
sequence of spaces and write

X =
∞∏
j=0

Xj .

LetMj be a σ-algebra of subsets of Xj . A measurable rectangle with respect
to the sequence {Mj} is defined to be a subsetW ofX which is representable
in the form

W =
∞∏
j=0

Wj ,

where Wj ∈Mj and Wj = Xj except for finitely many j. The following two
theorems are standard in probability theory.

Theorem 4 ([3, p. 123, Theorem 5]). Let {(Xj ,Mj , Pj)}j≥0 be a se-
quence of probability spaces, and write X =

∏∞
j=0Xj . LetM be the minimal

σ-algebra of subsets of X containing every measurable rectangle with respect
to {Mj}. Then there exists a unique measure P on M such that for every
non-empty measurable rectangle W ,

(5) P (W ) =

∞∏
j=0

Pj(Wj),

where the Wj are defined by W =
∏∞
j=0Wj, Wj ∈ Mj (j ≥ 0). Here the

product is, in essence, finite by the definition of measurable rectangle with
respect to {Mj}.

We remark that in the above theorem, since

P (X) =

∞∏
j=0

Pj(Xj) = 1,

the σ-algebra M together with the measure P constitutes a probability
space (X,M, P ).
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Theorem 6 ([3, p. 135, Borel–Cantelli Lemma]). Let (X ′,M′, P ′) be a
probability space. Let {W`} be a sequence of measurable events. If

∞∑
`=1

P ′(W`) <∞,

then, with probability 1, at most finitely many of the events W` can occur,
or equivalently,

P ′
( ∞⋂
i=1

∞⋃
`=i

W`

)
= 0.

3. Probability space (Ω,M, P ). We let q = ps for a prime p, and
denote by Fq the finite field of q elements. Let Fq[T ] be the polynomial ring
over Fq. Let ι be any bijective map from Z∩ [0, q−1] to Fq. We label each of
the polynomials in Fq[T ] as follows. Let Z≥0 be the set of all non-negative
integers. For every N ∈ Z≥0, we define

pN := ι(c0) + ι(c1)T + · · ·+ ι(cn)Tn,

where N = c0 + c1q + · · ·+ cnq
n and 0 ≤ ci < q (1 ≤ i ≤ n). It is clear that

this gives a one-to-one correspondence between Z≥0 and Fq[T ].
We use ω to denote a subsequence of the sequence of all polynomials

in Fq[T ], i.e. p0, p1, p2, p3, . . . , and Ω to denote the space of all such se-
quences ω. By writing f ∈ ω, we mean f ∈ Fq[T ] appears in the sequence ω.
Given N ∈ Z≥0 and ω ∈ Ω, we define

rN (ω) = |{(a, b) ∈ Z≥0 × Z≥0 : pa, pb ∈ ω,
pN = pa + pb, deg pa, deg pb ≤ deg pN , a < b}|,

and

tN (ω) = |{(a, b) ∈ Z≥0 × Z≥0 : pa, pb ∈ ω,
pN = pa − pb, deg pa, deg pb ≤ deg pN}|.

Our main theorems, Theorems 1, 2 and 3, are consequences of the following
results.

Theorem 7. There exists a sequence ω of polynomials in Fq[T ] such
that

logN � rN (ω)� logN for N sufficiently large.

Theorem 8. For each ε > 0, there exists a sequence ω = {pbj} of
polynomials in Fq[T ] and a positive integer K0 such that rN (ω) < K0 for all
N ∈ Z≥0 and bj � j2+ε.

Theorem 9. For each ε > 0, there exists a sequence ω = {pbj} of
polynomials in Fq[T ] and a positive integer K ′0 such that tN (ω) < K ′0 for all
N ∈ Z≥0 and bj � j2+ε.
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Since deg pN ≤ logqN < deg pN + 1, we can easily derive Theorems 1–3
from Theorems 7–9, respectively.

The following theorem is essentially [3, p. 141, Theorem 13].

Theorem 10. Let α0, α1, α2, . . . , be real numbers satisfying 0≤ αi ≤ 1
(i ≥ 0). Then there exists a probability space (Ω,M, P ) with the following
properties:

(i) For every non-negative integer m, the event Bm = {ω ∈ Ω : pm ∈ ω}
is measurable and P (Bm) = αm.

(ii) The events B0,B1,B2, . . . are independent.

Proof. Let Y be the space of two elements, y0 and y1 say. With each
sequence ω we associate the sequence {xj} of elements of Y defined by

xj =

{
y0 if pj 6∈ ω,
y1 if pj ∈ ω,

for j ≥ 0. The space X consisting of all the sequences x = {xj} is given by

X =
∞∏
j=0

Xj ,

where Xj = Y for j ≥ 0. Let Mj = {φ, {y0}, {y1}, Xj}, the non-trivial
σ-algebra of Xj , and let Pj be the probability measure on Mj such that
Pj({y1}) = αj .

We apply Theorem 4 to the sequence {Xj ,Mj , Pj} of probability spaces.
In view of the one-to-one correspondence between the elements of X and Ω,
we may denote the resulting probability space as (Ω,M, P ).

Now, we prove (Ω,M, P ) has properties (i) and (ii). Clearly,

Bm = {ω ∈ Ω : pm ∈ ω} =
∞∏
j=0

Wj ,

where Wj = Xj for all j except j = m and Wm = {y1}. Thus, (i) follows,
because Bm ∈M by the definition of M, and by (5) we have

P (Bm) =

∞∏
j=0

Pj(Wj) = Pm({y1}) = αm.

For (ii), we consider any finite subset of {Bj}, say Bj1 , . . . ,Bj` . Then⋂̀
i=1

Bji = {ω ∈ Ω : pji ∈ ω (1 ≤ i ≤ `)} =

∞∏
j=0

Wj ,

where Wj = Xj for all j except j = j1, . . . , j` and Wji = {y1} for 1 ≤ i ≤ `.
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Thus, by (5) and (i) we obtain

P
(⋂̀
i=1

Bji

)
=

∞∏
j=0

Pj(Wj) =
∏̀
i=1

Pji({y1}) =
∏̀
i=1

αji =
∏̀
i=1

P (Bji),

from which (ii) follows.

4. Technical lemmas. For each N ∈ Z≥0, let pN ∈ Fq[T ] be as pre-
scribed in the previous section. Define

n := n(N) = deg pN = blogqNc.

Suppose p 6= 2. Since Fq = 2Fq, we know there exists pN0 such that
pN = pN0 + pN0 . It is clear that deg pN0 = n; therefore, qn ≤ N0 < qn+1.
Since Fq[T ] is closed under addition, we can uniquely pair up the rest of
polynomials of degree less than or equal to n by

pN = pa + pã,

where a, ã ∈ Z≥0, a < ã. We collect all such pairs (a, ã) and form

AN = {a ∈ Z≥0 : pN = pa + pã, a < ã, and deg pa,deg pã ≤ n},
ÃN = {ã ∈ Z≥0 : pN = pa + pã, a < ã, and deg pa, deg pã ≤ n}.

We have |AN | = |ÃN | = (qn+1 − 1)/2, and

{0, . . . , qn+1 − 1} = AN ∪ ÃN ∪ {N0},

where the union is disjoint. Further, {0, 1, . . . , qn − 1} ⊆ AN , because if
0 ≤ a < qn, then pa has degree at most n − 1. Thus, the corresponding pã
must have degree n; therefore, qn ≤ ã < qn+1. Hence,

(11) ÃN ⊆ {qn, qn + 1, . . . , qn+1 − 1}.

Let M := M(N) = (qn+1 − 1)/2. For convenience we label the M ele-
ments of AN by ai, where 1 ≤ i ≤ M , and the corresponding elements of
ÃN by ãi.

We also define

λN =
∑

1≤i≤M
αaiαãi , λ′N =

∑
1≤i≤M

αaiαãi
1− αaiαãi

.

Note that when p = 2, for N > 0, we do not have to consider the polynomial
pN0 as above. Thus we let M := M(N) = qn+1/2 and we can argue in a
similar manner.

Define

s∗N (ω) =
N∑
m=0

1Bm(ω),
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where 1Bm is the characteristic function of Bm. Let E(f) denote the expec-
tation of a random variable f , defined by E(f) =

	
X f dP . We define

m∗N = E(s∗N ) =

N∑
m=0

αm.

We will also assume that our sequence {αj} satisfies:

Hypothesis A. The sequence {αj} of probabilities (introduced in The-
orem 10) satisfies the following conditions: 0 < αj < 1 (j ≥ 0), {αj} is
monotonic and decreasing from some point onward (i.e. for j ≥ j1), and
αj → 0 as j →∞.

We have the following result for s∗N (ω) and its expected value m∗N .

Lemma 12. If, in addition to Hypothesis A,

(13) m∗N →∞
as N →∞, and

(14)
∞∑
N=0

αN
(m∗N )2

<∞,

then with probability 1, we have s∗N (ω) ∼ m∗N as N →∞.

Proof. We denote by D2(f) the variance of a random variable f , defined
by

D2(f) = E
((
f − E(f)

)2)
.

The proof is basically an application of the following variant of the strong
law of large numbers [3, p. 140, Theorem 11]. Let {fj} be a sequence of
independent random variables, and let

si(ω) =

i∑
j=0

fj(ω) (i ≥ 0).

Suppose that

E(fj) > 0 (j ≥ 0), lim
i→∞

E(si) =∞,
∞∑
i=0

D2(fi)(
E(si)

)2 <∞.
Then, with probability 1,

si(ω) =
(
1 + o(1)

)
E(si)

as i → ∞. We know that the sets Bj are independent, which is equivalent
to 1Bj (ω) being independent. Thus we apply this theorem with fj(ω) =
1Bj (ω), and obtain our result.

As mentioned in Section 1, for every N, d ∈ Z≥0, we need to study the
probability of the event
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e(N, d) = {ω ∈ Ω : rN (ω) = d}.
We start with the following lemma.

Lemma 15. For all non-negative integers N and d, we have

(16) P
(
e(N, d)

)
=
( ∏
1≤k≤M

(1− αakαãk)
)
σ̃d(N),

where σ̃0(N) = 1 and, if d ≥ 1,

(17) σ̃d(N) =
∑

1≤k1<···<kd≤M

∏
1≤i≤d

αakiαãki
1− αakiαãki

.

Proof. We begin with the case d = 0. It is easy to see that

e(N, 0) =
⋂

1≤k≤M
(Bak ∩Bãk)c,

where c denotes complement. Since the sets Bj (j ≥ 0) are independent, so
are Bak ∩Bãk (1 ≤ k ≤ M), as {ak : 1 ≤ k ≤ M} ∩ {ãk : 1 ≤ k ≤ M} = ∅.
Thus, (Bak ∩Bãk)c (1 ≤ k ≤M) are also independent. Hence,

P
(
e(N, 0)

)
=

∏
1≤k≤M

P
(
(Bak ∩Bãk)c

)
=

∏
1≤k≤M

(1− αakαãk).

Suppose 1 ≤ d ≤ M and ω′ ∈ e(N, d). Then there exist k1, . . . , kd such
that 1 ≤ ki ≤ M , aki , ãki ∈ ω′ (1 ≤ i ≤ d), and further, if k 6= ki and
1 ≤ k ≤ M , then either ak 6∈ ω′ or ãk 6∈ ω′. From this observation, we can
deduce that

P
(
e(N, d)

)
=

∑
1≤k1<···<kd≤M

P
(
E(k1, . . . , kd)

)
,

where

E(k1, . . . , kd) =
⋂

1≤i≤d
(Baki

∩Bãki
) ∩

⋂
1≤k≤M

k 6=ki (1≤i≤d)

(Bak ∩Bãk)c.

Again, by independence,

P
(
E(k1, . . . , kd)

)
=
∏

1≤i≤d
P (Baki

∩Bãki
) ·

∏
1≤k≤M

k 6=ki (1≤i≤d)

P
(
(Bak ∩Bãk)c

)
=
∏

1≤i≤d
αakiαãki ·

∏
1≤k≤M

k 6=ki (1≤i≤d)

(1− αakαãk)

=
∏

1≤k≤M
(1− αakαãk) ·

∏
1≤i≤d

αakiαãki
1− αakiαãki

,

from which the desired result follows.
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Finally, if d > M , then the sum σ̃d(N) is empty, and both sides of (16)
are 0.

To estimate σ̃d(N), we use the following result on elementary symmetric
functions.

Lemma 18 ([3, p. 147, Lemma 13]). Let y1, . . . , yM ′ be M ′ non-negative
real numbers. For each positive integer d ≤M ′, let

σd =
∑

1≤k1<···<kd≤M ′
yk1 · · · ykd

be the dth elementary symmetric function of the yk’s. Then, for each d,

(19)
1

d!
σd1

(
1−

(
d

2

)
1

σ21

M ′∑
k=1

y2k

)
≤ σd ≤

1

d!
σd1

(where
(
d
2

)
is 0 for d = 1).

The next lemma gives bounds on the probability of e(N, d) in terms of
λN and λ′N .

Lemma 20. Let N and d be non-negative integers. Then

(21) P
(
e(N, d)

)
≤

(λ′N )d

d!
e−λN .

Furthermore, if d ≤M , then

(22) P
(
e(N, d)

)
≥

(λ′N )d

d!
e−λ

′
N

(
1−

(
d

2

)
(λ′N )−2Q∗

)
,

where

Q∗ =
∑

1≤k≤M

(
αakαãk

1− αakαãk

)2

(and
(
d
2

)
is 0 for d = 0, 1).

Proof. If d>M , then e(N, d)=∅ and (21) is trivial. Suppose 1≤d≤M .
We apply (19) with M ′ = M and yk = αakαãk/(1 − αakαãk) to estimate
σ̃d(N) in (16); noting that σ̃1(N) = λ′N , we obtain

P
(
e(N, d)

)
≤
( ∏

1≤k≤M
(1− αakαãk)

)
(λ′N )d

d!
,

and

P
(
e(N, d)

)
≥
( ∏
1≤k≤M

(1− αakαãk)
)(λ′N )d

d!

(
1−

(
d

2

)
(λ′N )−2Q∗

)
.
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Applying the inequality e−t/(1−t) < 1−t < e−t (which holds for 0<t<1)
with t = αakαãk (1 ≤ k ≤M), we obtain

(23) e−λ
′
N <

∏
1≤k≤M

(1− αakαãk) < e−λN ,

and our result follows. When d = 0, we have

P
(
e(N, d)

)
=

∏
1≤k≤M

(1− αakαãk),

and the result is immediate from (23).

To estimate λN and λ′N , we first prove the following lemma.

Lemma 24. If Hypothesis A is satisfied, then

(25) λ′N ∼ λN as N →∞.

Proof. Recall from (11) that if 1 ≤ k ≤ M , then qn ≤ ãk < qn+1.
Consequently,

αakαãk < αãk ≤ αqn = o(1)

as N →∞. Therefore,

λ′N − λN =
∑

1≤k≤M
αakαãk

(
1

1− αakαãk
− 1

)

=
∑

1≤k≤M
αakαãk

(
αakαãk

1− αakαãk

)
≤ αqnλ′N ,

from which the result follows.

Hence, it is enough to estimate λN . The following lemma gives an esti-
mate sufficient for our purposes.

Lemma 26. Suppose that the sequence {αj} in Theorem 10 is such that

αj = α
(log j)c

′

jc

for j ≥ j0, where j0, α, c, c
′ are constants such that α > 0, 0 < αj < 1

(j ≥ 0), 0 < c < 1, and c′ ≥ 0. Then, for sufficiently large H, there exist
positive constants D1 and D2, which depend at most on c, c′, and q, such
that

(27) α2D1(logN)2c
′
qn(1−2c) < λN < α2D2(logN)2c

′
qn(1−2c)

for all N > H. Furthermore,

(28) m∗N ∼
α

1− c
(logN)c

′
N1−c.
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Finally, if c′ = 0, then with probability 1, the numbers bj in ω = {pbj} satisfy

(29) bj ∼
(

1− c
α

j

)1/(1−c)
as j →∞.

Proof. We begin by finding a lower bound for λN . We assume p 6= 2;
the case p = 2 can be treated in a similar manner. Suppose N > q(j0 + 1),
which implies qn > j0. Let C0 and C ′0 be the positive constants defined by

C0 =
∑

1≤j<j0

αj , C ′0 =
∑

1≤j<j0

(log j)c
′

jc
.

Since qn ≤ ãi < qn+1, 0 ≤ ai < qn+1, and (log x)c
′
/xc is a decreasing

function, we obtain

λN =
∑

1≤i≤M
αaiαãi >

α(log qn+1)c
′

q(n+1)c

∑
1≤i≤M

αai

>
α2(log qn+1)c

′

q(n+1)c

( qn+1−1∑
j=(qn+1−1)/2

(log j)c
′

jc
− C ′0

)

>
α2(log qn)2c

′

q(n+1)c

( qn+1−1∑
j=(qn+1−1)/2

1

jc
− C ′0

)
.

We know that for all s, t ∈ N with 0 < s < t,

(30)
1

1− c
(t+ 1)1−c − 1

1− c
s1−c

≤
∑
s≤j≤t

1

jc
≤ 1

1− c
t1−c − 1

1− c
(s− 1)1−c.

Thus

λN >
α2(log qn)2c

′

q(n+1)c

(
1

1− c
(qn+1)1−c − 1

1− c

(
qn+1 − 1

2

)1−c
− C ′0

)
(31)

=
α2(log qn)2c

′

(1− c)qc
qn(1−2c)

(
q1−c −

(
q

2
− 1

2qn

)1−c
− 1− c
qn(1−c)

· C ′0
)
.

Since qn ≤ N < qn+1, we have logN(1 − log q/ logN) < log qn. It follows
from (31) that taking H sufficiently large, we obtain

(32) λN > α2 q1−2c

2(1− c)

(
1− 1

21−c

)
(logN)2c

′
qn(1−2c)

for all N > H.
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Next, we would like to find an upper bound for λN . Again, since qn ≤
ãi < qn+1 and 0 ≤ ai < qn+1, by similar calculations we find

λN <
α(log qn+1)c

′

qnc

∑
1≤i≤M

αai <
α(log qn+1)c

′

qnc

(
C0 + α

M∑
j=1

(log qn+1)c
′

jc

)
.

Thus, by (30),

λN <
α2(log qn+1)2c

′

qnc

(
C0

α(log qn+1)c′
+

1

1− c

(
qn+1 − 1

2

)1−c)
=
α2(log qn+1)2c

′

1− c
qn(1−2c)

(
C0(1− c)

α(log qn+1)c′qn(1−c)
+

(
q

2
− 1

2qn

)1−c)
.

Hence, for H sufficiently large, we obtain

λN < α2 22c
′+1

(1− c)

(
q

2

)1−c
(log qn)2c

′
qn(1−2c)

for all N > H. Since qn ≤ N < qn+1, the first part of the lemma is proved.
Clearly,

m∗N =

N∑
j=1

α
(log j)c

′

jc
+ O(1) =

(
1 + o(1)

) α

1− c
(logN)c

′
N (1−c),

and this proves (28). We note (28) shows that (13) and (14) are satisfied.
The final assertion of the lemma follows from (28), in view of Lemma 12

and the fact that s∗bj (ω) = j for ω = {pbj}j∈N; for if c′ = 0, with probability 1

we have
j = s∗bj (ω) ∼ m∗bj ∼

α

1− c
b1−cj ,

or equivalently bj ∼
(
1−c
α j
)1/(1−c)

.

We will also make use of the following lemma.

Lemma 33 ([3, p. 149, Lemma 17]). If 0 < ξ ≤ U , then∑
d≥U

ξd

d!
≤
(
eξ

U

)U
,

and if 0 < V ≤ ξ, then ∑
0≤d≤V

ξd

d!
≤
(
eξ

V

)V
.

5. Proof of Theorem 7. Let c = c′ = 1/2. We choose a number α > 0
to satisfy

α2 q1−2c

2(1− c)

(
1− 1

21−c

)
> 1.
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We then define a sequence {αj} by

(34) αj = α

(
log j

j

)1/2

for all j ≥ j0, where j0 is a positive integer so large that the expression in
(34) is less than 1/2 for all j ≥ j0. For 1 ≤ j < j0, we let αj = 1/2. The
precise value of αj for small j is unimportant, but the above choices ensure
0 < αj < 1, so that Hypothesis A is satisfied. By (32), for all N sufficiently
large we have

(35) λN ≥ α2D1 logN > logN.

Hence, there exists δ > 0 such that

(36) e−λN � N−1−δ.

We establish the theorem by showing that, with probability 1, logN �
rN (ω)� logN for large N , or equivalently (in view of Lemmas 24 and 26)

(37) λ′N � rN (ω)� λ′N

for N > N0(ω). We apply the Borel–Cantelli lemma twice to prove that each
of the two assertions of (37) holds with probability 1. For this purpose, we
must show that if C1, C2 are suitably chosen positive constants, then

∞∑
N=0

P ({ω ∈ Ω : rN (ω) > C1λ
′
N}) <∞,(38)

∞∑
N=0

P ({ω ∈ Ω : rN (ω) < C2λ
′
N}) <∞.(39)

By Lemmas 20 and 33, we have

P ({ω ∈ Ω : rN (ω) > C1λ
′
N}) ≤ e−λN

∑
d≥C1λ′N

(λ′N )d

d!
≤ e−λN

(
e

C1

)C1λ′N
,

provided C1 ≥ 1. Thus, by choosing C1 = e, we obtain a bound e−λN for
the summand of (38), and the inequality (38) follows from (36).

On the other hand, again by Lemmas 20 and 33,

P ({ω ∈ Ω : rN (ω) < C2λ
′
N}) ≤ e−λN

∑
0≤d≤C2λ′N

(λ′N )d

d!
≤ e−λN

(
e

C2

)C2λ′N
,

provided C2 ≤ 1. Thus, it suffices to show that C2 can be chosen to satisfy,
in addition to 0 < C2 ≤ 1, (

e

C2

)C2λ′N
� N δ/2;
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for (39) will then follow from (36). By Lemmas 24 and 26, there exists D > 0
such that λ′N ≤ D logN for N sufficiently large. Therefore, we only need to
choose a small positive constant C2 satisfying(

e

C2

)C2

≤ eδ/(2D),

which is certainly possible since (e/t)t → 1 as t→ 0+.

We have now shown that ω has each of the desired properties with prob-
ability 1, and this proves the theorem.

6. Proof of Theorem 8. Let ε > 0 be given. We define a sequence
{αj} by α0 = 1/2 and

αj =
1

2j1−1/(2+ε)

for j ≥ 1. It then follows by Lemma 26 (with α = 1/2, c = 1 − 1/(2 + ε),
and c′ = 0) that, with probability 1, ω = {pbj} satisfies bj ∼ c∗j2+ε, where
c∗ is some positive constant.

Since the sequence {αj} satisfies Hypothesis A, we have λ′N ∼ λN by
Lemma 24. Thus, by Lemma 26 there exist positive constants D1 and D2

such that

(40) D1q
−εn/(2+ε) < λN , λ

′
N < D2q

−εn/(2+ε)

for N sufficiently large.

Again the Borel–Cantelli lemma implies that if a positive number K
satisfies

(41)
∞∑
N=0

P ({ω ∈ Ω : rN (ω) ≥ K}) <∞,

then, with probability 1,

rN (ω) < K for N > N0(ω).

We note that, by (40), λN → 0 and λ′N → 0 as N → ∞. Thus, by
Lemmas 20 and 33,

P ({ω ∈ Ω : rN (ω) ≥ K}) ≤ e−λN
∑
d≥K

(λ′N )d

d!
≤ e−λN

(
eλ′N
K

)K
� (λ′N )K

for N sufficiently large. Since qn ≤ N < qn+1, we have

(λ′N )K ≤ DK
2 q
−εnK/(2+ε) � N−εK/(2+ε).

Therefore, provided εK/(2 + ε) > 1, or equivalently

K > 1 + 2ε−1,
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it is clear that (41) is achieved. Accordingly, with probability 1,

rN (ω) < 2(1 + ε−1)

for N > N1(ε, ω).

7. Proof of Theorem 9. Recall we defined

tN (ω) = |{(a, b) ∈ Z≥0 × Z≥0 : pa, pb ∈ ω, pN = pa − pb,
deg pa, deg pb ≤ deg pN}|.

As before, given pN ∈ Fq[T ], we let n := n(N) = deg pN = blogqNc. It is

clear that for pN 6= 0, there exist qn+1 pairs of polynomials (pa, pb) such
that pN = pa − pb and deg pa,deg pb ≤ n. Also, every polynomial of degree
≤ n will appear as pa and pb exactly once. Let Sû,n denote the set of all
polynomials in Fq[T ] of degree ≤ n, and whose coefficient of Tn is û ∈ Fq.
Clearly, |Sû,n| = qn. If we consider each polynomial in Sû,n as pb, then the
corresponding set of pa’s is Su,n for some u 6= û as deg pN = n.

For each u ∈ Fq, we consider

tN,u(ω) = |{(a, b) ∈ Z≥0 × Z≥0 : pN = pa − pb, pa, pb ∈ ω and pa ∈ Su,n}|.
If pN = pa − pb, we relabel pb as pâ to make its correspondence with pa

more explicit. We form the following two disjoint sets:

AN = {a ∈ Z≥0 : pa ∈ Su,n} = {ι−1(u)qn, . . . , (ι−1(u) + 1)qn − 1},
ÂN = {â ∈ Z≥0 : pâ ∈ Sû,n} = {ι−1(û)qn, . . . , (ι−1(û) + 1)qn − 1}.

Let M0 := M0(N) = |AN | = |ÂN | = qn. For convenience, we label the M0

elements of AN by ai (1 ≤ i ≤M0), and the corresponding elements of ÂN
by âi, in other words we have pN = pai − pâi (1 ≤ i ≤M0).

We also define

λN,u =
∑

1≤i≤M0

αaiαâi , λ′N,u =
∑

1≤i≤M0

αaiαâi
1− αaiαâi

.

With this set-up we can recover analogues of all the previous lemmas in
terms of M0, λN,u, λ′N,u, and tN,u(ω), in place of M , λN , λ′N , and rN (ω),
respectively. Therefore, by a similar argument we obtain Theorem 8 with
tN,u(ω) in place of rN (ω). Since this result holds with probability 1, and

tN (ω) =
∑
u∈Fq

tN,u(ω),

we have our result.
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[1] P. Erdős, On a problem of Sidon in additive number thoery, Acta Sci. Math. (Szeged)
15 (1954), 255–259.
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