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Uniqueness of the Fréchet algebra topology on
certain Fréchet algebras
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Dedicated to the loving memory of Charles Read

Abstract. In 1978, Dales posed a question about the uniqueness of the (F )-algebra
topology for (F )-algebras of power series in k indeterminates. We settle this in the affirma-
tive for Fréchet algebras of power series in k indeterminates. The proof goes via first com-
pletely characterizing these algebras; in particular, it is shown that the Beurling–Fréchet
algebras of semiweight type do not satisfy a certain equicontinuity condition due to Loy.
Some applications to the theory of automatic continuity are also given, in particular to
the case of Fréchet algebras of power series in infinitely many indeterminates.

1. Introduction. Throughout the paper, “algebra” will mean a com-
plex, commutative algebra with identity unless otherwise specified. A Fréchet
algebra is a complete, metrizable locally convex algebra A whose topology
τ may be defined by an increasing sequence (pm)m≥1 of submultiplicative
seminorms. We may refer to τ as “the Fréchet topology of A” in the follow-
ing. The principal tool for studying Fréchet algebras is the Arens–Michael
representation, in which A is given by an inverse limit of Banach algebras
Am (see [12, §5] or [13, §2]).

Let k ∈ N. We write Fk for the algebra C[[X1, . . . , Xk]] of all for-
mal power series in k commuting indeterminates X1, . . . , Xk, with com-
plex coefficients. A fuller description of this algebra is given in [4, §1.6]; we
briefly recall some notation, which will be used throughout the paper. Let
J = (j1, . . . , jk) ∈ Z+k. Set

|J | = j1 + · · ·+ jk;

ordering and addition in Z+k will always be componentwise. A generic
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element of Fk is denoted by∑
J∈Z+k

λJX
J =

∑
{λ(j1,...,jk)X

j1
1 · · ·X

jk
k : (j1, . . . , jk) ∈ Z+k}.

The algebra Fk is a Fréchet algebra when endowed with the weak topology
τc defined by the coordinate projections

πI :
∑

J∈Z+k

λJX
J 7→ λI , Fk → C,

for each I ∈ Z+k. A defining sequence of seminorms for Fk is (p′m), where

p′m

( ∑
J∈Z+k

λJX
J
)

=
∑
|J |≤m

|λJ | (m ∈ N).

A Fréchet algebra of power series in k variables (briefly: FrAPS in Fk) is
a subalgebra A of Fk such that A is a Fréchet algebra containing the inde-
terminates X1, . . . , Xk and such that the inclusion map (A, τ) ↪→ (Fk, τc) is
continuous (equivalently, the projections πI , I ∈ Z+k, are continuous linear
functionals on A). It is worth mentioning that in [5, Cor. 11.3 and 11.4],
it is shown that the time-honoured definitions of Banach and Fréchet (and,
more generally, (F )-) algebras of power series in F1 contain a redundant
clause of the continuity of coordinate projections; this is not the case in the
several-variable case by [5, Th. 12.3].

Though Fréchet algebras of power series in k indeterminates have been
considered by Loy [10], recently these algebras—and more generally, the
power series ideas in general Fréchet algebras—have acquired significance in
understanding the structure of Fréchet algebras [1, 4, 5, 13, 14, 15]. Thus it
is of interest to investigate the following:

(I) whether one can completely characterize these algebras,
(II) whether such algebras have a unique topology as Fréchet algebras.

In this paper we shall be concerned with the solution to the above prob-
lems; our argument here is kept short because it uses key ideas involved
in the solution to these problems for k = 1 in [13] (see Th. 3.1 and Cor.
4.3 below). In Section 3, we obtain several results of independent interest.
Precisely, we shall classify FrAPS in Fk which do not satisfy an equiconti-
nuity condition (E): there is a sequence (γK)K∈Nk of positive reals such that
(γ−1K πK) is equicontinuous [10] (see Th. 3.10 below).

We remark that the uniqueness of the Fréchet topology of Fk for each
k ∈ N is established in [4, Th. 4.6.1], and the general case has been open
since 1978 [3, Question 11]. We use the structure of the closed ideals and
their powers to establish the uniqueness of the Fréchet topology of FrAPS
in Fk; this is not known for the larger algebra F∞ = C[[X1, X2, . . . ]] [15]
and FrAPS in F∞, and so we cannot apply our approach to establish the
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uniqueness of the Fréchet topology of FrAPS in F∞. What is more, Read [15]
showed that in the absence of the uniqueness of the Fréchet topology, the
Singer–Wermer conjecture cannot be established in the case of Fréchet al-
gebras, and thus the situation on Fréchet algebras is markedly different from
that on Banach algebras. However, we shall give some remarks, establishing
the uniqueness of the Fréchet topology of FrAPS in F∞ admitting a contin-
uous norm. The answer to Question 11 of [3] does include the uniqueness of
the Fréchet topology of FrAPS in F1, established in [13], as a special case.
At this point, we also recall that the uniqueness of the Fréchet topology
of commutative semisimple Fréchet algebras is established in [2]. However,
our class of Fréchet algebras does contain non-semisimple Fréchet algebras,
e.g., Beurling–Fréchet algebras `1(Z+k, Ω) of semiweight type (including Fk)
which are local Fréchet algebras (see property (5) below).

A Fréchet algebra (A, (pm)) is said to be a Fréchet algebra with power
series generators x1, . . . , xk if each y ∈ A is of the form

y =
∑

J∈Z+k

λJx
J =

∑
{λ(j1,...,jk)x

j1
1 x

j2
2 · · ·x

jk
k : (j1, . . . , jk) ∈ Z+k},

for λJ complex scalars such that
∑

J∈Z+k |λJ |pm(xJ) <∞ for all m. Thus if
A is a Fréchet algebra with finitely many power series generators x1, . . . , xk,
then A is a commutative, separable, finitely generated Fréchet algebra gen-
erated by x1, . . . , xk. To answer (II) above, we will investigate the following
two questions on FrAPS A in Fk as an intermediate step:

(A) When are X1, . . . , Xk power series generators for A?
(B) When is A isomorphic to an inverse limit of Banach algebras of

power series in k variables?

The solutions to the above problems are given in Th. 3.4 and Th. 3.10, re-
spectively. In Section 4, we also pose some interesting questions in automatic
continuity theory.

2. Fréchet algebras. Let M be a closed maximal ideal of a Fréchet
algebra A. We shall suppose from now on that dim(M/M2) = k is finite (it
is easy to see that for finitely generated Fréchet algebras this condition is
automatically satisfied; see [16, Prop. 2.2] for the Banach case). Then, by
[16, remark following Th. 2.3], for each n ∈ N, the homogeneous monomials

of degree n in t1, . . . , tk ∈M are representatives of a basis for Mn/Mn+1 if
and only if

dim(Mn/Mn+1) = Cn+k−1,n :=
(n+ k − 1)!

n!(k − 1)!

for all n, and so M is not nilpotent. Thus, in a special case, we have the
following, with an eye on [13, Lem. 2.1].
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Proposition 2.1. Let (A, (pm)) be a commutative, unital Fréchet al-
gebra with the Arens–Michael isomorphism A ∼= lim←−(Am; dm). Suppose that
there exists a fixed k ∈ N such that M is a closed maximal ideal of A such
that:

(i)
⋂

n≥1M
n = {0};

(ii) dim(Mn/Mn+1) = Cn+k−1,n for all n.

Then there exist t1, . . . , tk ∈ M such that Mn = Mn+1 ⊕ span{tI : |I| = n}
for each n ≥ 1.

Assume further that each pm is a norm. Then, for each sufficiently largem,
Mm (closure in Am) is a non-nilpotent maximal ideal of Am such that:

(a)
⋂

n≥1M
n
m = {0};

(b) dim(Mn
m/M

n+1
m ) = Cn+k−1,n for all n.

Proof. The first part has already been discussed above. For the second
part, follow [14, Prop. 2.3].

Concerning Prop. 2.1, the counter-examples in [14] (for the one-variable
case) show that the assumption that each pm is a norm on A cannot be
dropped. The algebra Fk is a trivial counter-example in the several-variable
case. We also remark that if dim(M/M2) = 1, one deduces from [13,

Prop. 2.3] that dim(Mn/Mn+1) = 1 for all n, and so we do not require

dim(Mn/Mn+1) = 1 for all n as a stronger hypothesis, but then we do
require M to be non-nilpotent there. Below, we exhibit an easy counter-
example to show that the hypothesis that dim(Mn/Mn+1) = Cn+k−1,n for
all n ∈ N is not redundant in the proposition above (many thanks to Pro-
fessor H. G. Dales for calling my attention to this counter-example).

Let
B = F2 = C[[X,Y ]]

with the usual Fréchet algebra topology τc and let J be the ideal generated
by X2 − Y 3. Since B is noetherian [17, VII, Cor. p. 139 and Th. 4′], all
ideals in B are closed by [19, Th. 5], so J is closed. Hence A = B/J
is a noetherian Fréchet algebra, with all the ideals closed. Clearly, M/J
is the unique maximal ideal in A, where M = kerπ0 (0 = {0, 0}), in B.
The elements X + J and Y + J are linearly independent modulo (M/J)2,
and so dim((M/J)/(M/J)2) = 2 since M/M2 ∼= (M/J)/(M/J)2. However
(X+J)2 ∈ (M/J)3, so dim((M/J)2/(M/J)3) = 2 since XY +J and Y 2 +J
are linearly independent modulo (M/J)3.

Next, to see that this is a counter-example, we show that
⋂

n≥1(M/J)n

6= J , the zero element of A. To see this, let us start with an element g of B
such that

g ∈ pX2 + qXY + rY 2 +M3 + J
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for some p, q, r ∈ C, that is,

g ∈ CX2 + CXY + CY 2 +M3 + J,

and suppose that g ∈M4 + J . Then

g ∈ (X2 − Y 3)(a+ bX + cY ) +M4

for some a, b, c ∈ C because all other terms in J = (X2 − Y 3)B are in M4.
Thus there exist a1, b1, c1 ∈ C such that

pX2 + qXY + rY 2 = (X2 − Y 3)(a1 + b1X + c1Y ) +M3.

Now, equating the coefficients of XY and Y 2, we see that q = r = 0, and
equating the coefficients of X2, we see that p = a1; finally, we equate the
coefficients of Y 3 to see that 0 = a1. Thus p = 0. We conclude that M3+J =
M4 + J . Similarly, one can see that Mn + J = Mn+1 + J for each n ≥ 3, so
the only element of B that belongs to Mn +J is actually in Mn+1 +J . Thus
M3 + J = Mn + J for each n ≥ 3, and so

⋂
n≥1(M/J)n = (M/J)3 6= J .

3. Fréchet algebras of power series in Fk. We now turn to the
problem of describing all those commutative Fréchet algebras which may be
continuously embedded in Fk in such a way that they contain the polynomi-
als in X1, . . . , Xk. The following theorem completely characterizes separable
FrAPS in Fk. The method of proof will be used again in the proof of Th. 3.10.

Theorem 3.1. Let A be a commutative, unital Fréchet algebra. Suppose
that there exists a fixed k ∈ N such that A contains a closed maximal ideal
M such that:

(i)
⋂

n≥1M
n = {0};

(ii) dim(Mn/Mn+1) = Cn+k−1,n for all n.

Then A is a Fréchet algebra of power series in Fk. The converse holds if
the polynomials in X1, . . . , Xk are dense in A.

Proof. The proof is the same as that of [13, Th. 3.1].

We note that in all FrAPS A in Fk, the ideal M = kerπ0,...,0 is a non-
nilpotent, closed maximal ideal such that

⋂
n≥1M

n = {0}. Two counter-
examples in the one-variable case (see [13, Rem. 1(b)]) show that the as-
sumption that the polynomials are dense in A cannot be dropped in the
above theorem.

We now turn to answering (A) above. The following lemma, the proof
of which we omit, is a several-variable analogue of [13, Lem. 3.2] (for the
proof, see [1, Lem. 2.2].
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Lemma 3.2. Let A be a Fréchet algebra of power series in Fk and let

A1 :=
{
y ∈ A :

∑
J∈Z+k

|λJ |pm(XJ) <∞ for all m
}
.

Then:

(1) A1 is continuously embedded in A;
(2) A1 is a Fréchet algebra having power series generators X1, . . . , Xk;
(3) A1 is a Banach algebra provided that A is a Banach algebra.

We recall that elements x1, . . . , xk in a Fréchet algebra A generate a
multi-cyclic basis if each y ∈ A can be uniquely expressed as

y =
∑

J∈Z+k

λJx
J =

∑
{λ(j1,...,jk) x

j1
1 · · ·x

jk
k : (j1, . . . , jk) ∈ Z+k}

with λJ complex scalars. A seminorm p on a Fréchet algebra A, having
power series generators x1, . . . , xk generating a multi-cyclic basis for A, is a
power series seminorm if

p
( ∑
J∈Z+k

λJx
J
)

=
∑

J∈Z+k

|λJ |p(xJ) (y ∈ A).

Corollary 3.3. Let A be a Fréchet algebra A having power series gen-
erators x1, . . . , xk. Then x1, . . . , xk generate a multi-cyclic basis for A if and
only if the topology of A is defined by a sequence of power series seminorms.

Proof. For the proof of the “only if” part, follow [1, Lem. 2.2].

Next, we define Beurling–Fréchet algebras `1(Z+k, Ω) of semiweight type,
and list some of their useful properties.

A semiweight function on Z+k is a function ω : Z+k → R such that

ω(M +N) ≤ ω(M)ω(N), ω(0) = 1, ω(N) ≥ 0 (M,N ∈ Z+k);

a semiweight function is a weight function if ω(N) > 0 for all N ∈ Z+k.
Also, ω is a proper semiweight if ω(N0) = 0 for some N0 ∈ Nk. Let k ∈ N,
and let (A, (pm)) be the Beurling–Fréchet algebra

`1(Z+k, Ω) :=
{
f =

∑
J∈Z+k

λJX
J ∈ Fk :

∑
J∈Z+k

|λJ |ωm(J) <∞ for all m
}
,

where Ω = (ωm) is a separating and increasing sequence of semiweight
functions on Z+k defined by ωm(J) = pm(XJ). If Ω is an increasing sequence
of weight functions on Z+k, then we define

ρ = sup
m
ρm, where ρm = inf

N∈Z+k
ωm(N)1/|N |.

Thus, ρ = 0 if and only if ρm = 0 for each m, if and only if for each m,
`1(Z+k, ωm) is a local Banach algebra in the Arens–Michael representa-
tion of `1(Z+k, Ω) if and only if `1(Z+k, Ω) is a local Fréchet algebra; and
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ρ > 0 if and only if ρm > 0 for some m if and only if for each l ≥ m,
`1(Z+k, ωl) is a semisimple Banach algebra in the Arens–Michael represen-
tation of `1(Z+k, Ω) if and only if `1(Z+k, Ω) is a semisimple Fréchet algebra.

Suppose that Ω is a separating and increasing sequence of proper semi-
weights on Z+k. Then ρ = 0 if and only if `1(Z+k, Ω) is a local Fréchet
algebra if and only if the completion of `1(Z+k, ωm)/ker pm under the in-
duced norm pm is a local Banach algebra for all m. In this case, `1(Z+k, Ω)
is either Fk or a local FrAPS in Fk. We call such a Beurling–Fréchet algebra
`1(Z+k, Ω) an algebra of semiweight type. We note that the unique maximal
ideal of `1(Z+k, Ω) is{

f =
∑

J∈Z+k

λJX
J ∈ `1(Z+k, Ω) : λ0 = 0

}
.

For example, if k = 1, then, by [1, Th. 2.1], `1(Z+, Ω) = F , which is an
inverse limit of finite-dimensional algebras, and is also a local algebra. In
this case (see [5, p. 131]),

ωm : Z+ → [0,∞), ωm(n) := pm(Xn) =

{
1, n ≤ m,

0, n > m.

If k = 2, then, by Th. 3.4 below, `1(Z+2, Ω) is either F2 or AX or AY (all
the three algebras are local), where

AX :=
{
f =

∑
i,j

λi,jX
iY j ∈ F2 : pm(f) :=

∞∑
j=0

m∑
i=0

|λi,j | <∞ for all m
}
,

in which case

ωm : Z+2 → [0,∞), ωm(i, j) := pm(XiY j) =

{
1, i ≤ m, j ∈ Z+,

0, i > m, j ∈ Z+,

and where

AY :=
{
f =

∑
i,j

λi,jX
iY j ∈ F2 : pm(f) :=

∞∑
i=0

m∑
j=0

|λi,j | <∞ for all m
}
,

in which case

ωm : Z+2 → [0,∞), ωm(i, j) := pm(XiY j) =

{
1, j ≤ m, i ∈ Z+,

0, j > m, i ∈ Z+.

For `1(Z+k, Ω) = F2 with

pm(f) :=
∑

0≤i+j≤m
|λi,j |,

we define Ω = (ωm), where

ωm : Z+2 → [0,∞), ωm(i, j) := pm(XiY j) =

{
1, 0 ≤ i+ j ≤ m,

0, i+ j > m

(see [5, p. 131]). Clearly, AX
∼= AY under the interchange of X and Y .
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If k = 3, then, again by Th. 3.4 below, `1(Z+3, Ω) is either F3 or AX

or AY or AZ or AX,Y or AX,Z or AY,Z defined analogously (in fact, AX
∼=

AY
∼= AZ and AX,Y

∼= AX,Z
∼= AY,Z). We can extend the above arguments

for k ≥ 4. Thus, for k ∈ Z+, we have Beurling–Fréchet algebras `1(Z+k, Ω)
of semiweight type, with the following properties:

(1) Fk is the only Fréchet algebra of finite type among FrAPS in Fk, by
Cor. 3.8 below; other Beurling–Fréchet algebras `1(Z+k, Ω) are not Fréchet
algebras of finite type (see [8]).

(2) The Arens–Michael representations of `1(Z+k, Ω) do not contain
BAPS in Fk (for the time being, we assume that such algebras have unique
Fréchet topology, which we shall prove later); for the proof, see Th. 3.10
below or Remarks (b) after Th. 3.10.

(3) The polynomials in k variables are dense in `1(Z+k, Ω).

(4) The Fréchet topology τ of `1(Z+k, Ω) (6= Fk), defined by a se-
quence (pm), is strictly finer than τc of Fk, but surely not equivalent, as
otherwise the τ -closure of the algebra of polynomials in k variables (which
is `1(Z+k, Ω)) would be equal to Fk, a contradiction. Hence the rest of
`1(Z+k, Ω) differ from Fk (also, from the statement (1) point of view as
well).

(5) For 1 ≤ r ≤ k − 1, the algebras Fr, can be regarded as closed
subalgebras of `1(Z+k, Ω) via the obvious quotient maps. For example, if
k = 2, then C[[X]] = F1 can be regarded as a closed subalgebra of AX ; the
quotient map from AX obtained by setting Y = 0 is denoted by

π :
∑
i,j

λi,jX
iY j 7→

∞∑
i=0

λi,0X
i, AX → F1.

Hence all Beurling–Fréchet algebras `1(Z+k, Ω) of semiweight type are local
Fréchet algebras since the closed subalgebras Fr, 1 ≤ r ≤ k, are local Fréchet
algebras, and the unique maximal ideal M is{

f =
∑

J∈Z+k

λJX
J ∈ `1(Z+k, Ω) : λ0 = 0

}
.

Also, for a fixed k ∈ N, there are finitely many Beurling–Fréchet algebras
`1(Z+k, Ω) of semiweight type, and these algebras can be properly nested
(for example, if k = 3, then AX ⊂ AX,Y ⊂ F3). Further, if (A, (qm)) is
a FrAPS in Fk such that the qm are proper seminorms on A, then A is
continuously embedded in the “least” Beurling–Fréchet algebra `1(Z+k, Ω)
of semiweight type (note that there might be several such Beurling–Fréchet
algebras of semiweight type containing A). Moreover it is clear that if such
A contains a Beurling–Fréchet algebra of semiweight type such that

`1(Z+k, Ω1) ↪→ A ↪→ `1(Z+k, Ω2)
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continuously, then, depending on the qm, A is either `1(Z+k, Ω1) or
`1(Z+k, Ω2) or none of these; in the latter case both the inclusions are proper
(for example, AX ↪→ AX,Y ↪→ F3). We use these facts in the proof of Th. 3.7
below.

We call `1(Z+k, Ω) a Beurling–Fréchet algebra of weight type if Ω is an
increasing sequence of weight functions ωm on Z+k. In this case, the topol-
ogy τ is defined by an increasing sequence (pm) of norms defined in terms
of the ωm, and the corresponding Arens–Michael representation contains
Beurling-Banach algebras `1(Z+k, ωm). When it can cause no confusion, we
may call `1(Z+k, Ω) a Beurling–Fréchet algebra of (semi)weight type if Ω is
an increasing sequence of semiweight functions ωm on Z+k (which would in-
clude both types of algebras: algebras of semiweight type as well as algebras
of weight type).

Theorem 3.4. Let A be a Fréchet algebra of power series in Fk. Suppose
that X1, . . . , Xk are power series generators for A. Then A is the Beurling–
Fréchet algebra `1(Z+k, Ω) for an increasing sequence Ω of (semi)weight
functions on Z+k.

Proof. The proof is the same as that of [1, Th. 2.1].

Next, let A be a FrAPS in Fk. We call a seminorm p on A closable if for
any p-Cauchy sequence (fl) in A, fl → 0 in τc implies that p(fl) → 0. We
define p to be of type (E) if given M ∈ Z+k, there exists cM > 0 such that

|πM (f)| ≤ cMp(f)

for all f ∈ A [10]. A seminorm of type (E) is a norm. Also, closability of a
norm on a normed algebra of power series in k indeterminates is a necessary
and sufficient condition for the completion to be a BAPS in Fk (see [1,
Lem. 3.5]).

We now answer (B) of the introduction. The following proposition, whose
proof we omit, is a several-variable analogue of [1, Prop. 3.1].

Proposition 3.5. Let A be a Fréchet algebra of power series in Fk. Let
p be a continuous submultiplicative seminorm on A. Let ker p = {f ∈ A :
p(f) = 0}. Let Ap be the completion of A/ker p in the norm ‖f + ker p‖p =
p(f). Then the following are equivalent:

(i) p is a norm and Ap is a Banach algebra of power series in Fk.
(ii) p is closable and of type (E).

Corollary 3.6. Let A = lim←−Am be the Arens–Michael representation
of a Fréchet algebra of power series in Fk. Assume that each pm is a norm.
Then each Am is a Banach algebra of power series in Fk if and only if each
pm is a closable norm of type (E).
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It is readily seen that a Fréchet algebra of power series in Fk satisfies
Loy’s condition (E) of [10] if and only if A admits a continuous norm of
type (E) if and only if the topology of A is defined by a sequence of norms
of type (E).

Next, we give characterizations of Beurling–Fréchet algebras `1(Z+k, Ω)
of semiweight type. We have the following elementary, but crucial, theorem.
By identifying the series expansion in x1, . . . , xk with the series expansion in
X1, . . . , Xk, Fréchet algebras with a multi-cyclic basis are realized as Fréchet
algebras of power series in Fk, the projections πJ being continuous.

Theorem 3.7. Let A be a Fréchet algebra of power series in Fk. Then
either A is a Beurling–Fréchet algebra `1(Z+k, Ω) of semiweight type or the
Fréchet topology τ of A is defined by a sequence (pm) of norms.

Proof. If A is Banach, then certainly the topology τ of A is defined by
a norm, and so A is not equal to a Beurling–Fréchet algebra `1(Z+k, Ω) of
semiweight type. Now suppose that A is a non-Banach FrAPS in Fk. Let
(pm) be an increasing sequence of seminorms defining the Fréchet topology
τ of A, and set

G = {l ∈ N : pl is a proper seminorm on A}.

If G is finite the corresponding pl may be deleted and we have a new se-
quence of norms, defining the same Fréchet topology τ of A. Otherwise, G is
infinite and the corresponding pl can be taken to define the Fréchet topology
τ of A. Then, by Lem. 3.2, there exists a Fréchet subalgebra (A1, (qm)) of
(A, (pm)) continuously embedded in A; A1 is a Fréchet algebra with power
series generators X1, . . . , Xk. By Th. 3.4, A1 is a Beurling–Fréchet algebra
`1(Z+k, Ω) of (semi)weight type. To rule out the possibility of A1 being a
Beurling–Fréchet algebra `1(Z+k, Ω) of weight type, fix m ≥ 1. Since ker pm
is a closed ideal in A, and A is a dense subalgebra of (Fk, (p

′
m)), by [12, Lem.

B.10], the closure of ker pm (say Im) in the topology τc is a closed ideal in Fk

such that ker pm = Im ∩A. Since the inclusion map (A, (pm)) ↪→ (Fk, (p
′
m))

is continuous, for each m ∈ N there exists n(m) ∈ N and a constant cm > 0
such that p′m(f) ≤ cmpn(m)(f) for all f ∈ A, so we have ker pn(m) ⊆ ker p′m.
Thus ker pn(m) ⊆ In(m) ⊆ ker p′m since In(m) is the closure of ker pn(m) in the
topology τc and ker p′m is a closed ideal in Fk containing ker pn(m). Conse-
quently, we have a subsequence (pn(m)) of seminorms on A, generating the
same topology on A, such that ker pn(m) ⊆ In(m) ⊆ ker p′m−1 since the se-
quence (p′m) is increasing, so ker p′m ⊆ ker p′m−1. We may from now on denote
by (pm) this subsequence. Recall that ker p′m−1 is finitely generated by all
monomials of degree m (see Case 1 below). Since Im is a finitely generated
ideal in Fk (Fk being noetherian) and Im ⊆ ker p′m−1, Im is finitely gen-
erated by the monomials of degree m. Clearly, the monomials of degree m
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are in A as A is a FrAPS in Fk. Hence these monomials are in ker pm,
and since ker pm ⊆ Im, ker pm is finitely generated by the monomials of de-
gree m. Since (A1, (qm)) is a Fréchet algebra with power series generators
X1, . . . , Xk, where qm(

∑
J∈Z+k λJX

J) :=
∑

J∈Z+k |λJ |pm(XJ), we have

pm(Xm) = qm(Xm) = 0 (m ∈ N),

and so A1 is indeed a Beurling–Fréchet algebra `1(Z+k, Ω) of semiweight
type. Hence A1 is a local algebra, and therefore A is also a local algebra.
Now there are several cases; we consider these cases for k = 2 (one can
modify the following arguments for any k).

Case 1: For each m, ker pm is finitely generated by all monomials of
degree m in X and Y , in which case Im is also finitely generated by all
monomials of degree m in X and Y as discussed earlier (and so all monomials
of degree m belong to Im). Since Im ⊆ ker p′m−1 = Mm, and Im and Mm

are generated by the same generators, we have Im = Mm, that is, ker pm =
Mm(A), where

Mm(A) := {f ∈ A : o(f) ≥ m}.
But then

ker qm = Mm(A1) := {f ∈ A1 ⊂ A : o(f) ≥ m},
where A1 is as in Lem. 3.2. By Th. 3.4, A1 = F2. It follows that A = F2

topologically in view of the open mapping theorem.

Case 2: For each m, ker pm is singly generated by the monomial Xm.
In this case

A1 =
{
f ∈ F2 : qm(f) =

∞∑
j=0

m∑
i=0

|λi,j | <∞ for all m
}

= AX

by Th. 3.4, since Xm ∈ ker qm. So, AX = A1 ⊂ A ⊂ F2, by Lem. 3.2. But,
as we discussed in property (5), AX ⊂ A ⊂ AX ⊂ F2 since pm is a proper
seminorm on A for each m such that Xm ∈ ker pm. Thus we have A = AX

topologically in view of the open mapping theorem.

Case 3: For each m, ker pm is singly generated by the monomial Y m.
Follow the argument of Case 2.

As corollaries, we have the following characterizations of Beurling–Fréchet
algebras `1(Z+k, Ω) of semiweight type as Fréchet algebras.

Corollary 3.8. Let A be a Fréchet algebra of power series in Fk. Then
A is a Beurling–Fréchet algebra `1(Z+k, Ω) of semiweight type if and only if
the Fréchet topology of A is defined by a sequence (pm) of proper seminorms.
In particular, A = Fk if and only if the Fréchet topology of A is defined by
a sequence (pm) of proper seminorms with finite-codimensional kernels.
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In fact, we have the following result on Arens–Michael representation
of A.

Corollary 3.9. Let A be a Fréchet algebra of power series in Fk such
that the polynomials are dense in A. Then A is not a Beurling–Fréchet
algebra `1(Z+k, Ω) of semiweight type if and only if A = lim←−Am, where each
Am is a Banach algebra of power series in Fk.

Proof. Suppose that A is not equal to a Beurling–Fréchet algebra
`1(Z+k, Ω) of semiweight type. Evidently, by Cor. 3.8, we may suppose that
each pm is a norm on A. Now, by Th. 3.1, A contains a closed maximal ideal
M = kerπ0 such that⋂

n≥1
Mn = {0} and dim(Mn/Mn+1) = Cn+k−1,n (n ∈ N).

By Prop. 2.1, for each sufficiently large l, Ml is a non-nilpotent maximal
ideal of Al such that⋂

n≥1
Mn

l = {0} and dim(Mn
l /M

n+1
l ) = Cn+k−1,n (n ∈ N).

Again, by Th. 3.1, Al is a BAPS in Fk for each sufficiently large l. Hence, by
passing to a suitable subsequence of (pm) defining the same Fréchet topology
of A, we conclude that each Al is a BAPS in Fk.

The converse has already been discussed in property (2) above.

The immediate consequence of Cor. 3.9 is: if A is a FrAPS in Fk such that
the polynomials are dense in A and such that A is not a Beurling–Fréchet
algebra `1(Z+k, Ω) of semiweight type, then A satisfies Loy’s condition (E)
by Cor. 3.6. A somewhat more elaborate version of the same idea enables
us to drop the condition on the polynomials in order to get a more general
result, given below.

We recall that if the Fréchet topology τ of A is given by a sequence (pm),
then each pm is of type (E) if and only if A satisfies Loy’s condition (E).
Also, by a several-variable analogue of [9, Th. 2], A satisfies Loy’s condition
(E) if and only if A admits a growth sequence, i.e. there exists a sequence
(σK)K∈Nk of positive reals such that σKπK(x)→ 0 for each x ∈ A.

Theorem 3.10. Let A be a Fréchet algebra of power series in Fk. Then
A is not a Beurling–Fréchet algebra `1(Z+k, Ω) of semiweight type if and
only if A = lim←−Am, where each Am is a Banach algebra of power series
in Fk. In particular, A satisfies Loy’s condition (E) in this case.

Proof. The proof is similar to that of [13, Th. 3.6], and so we will merely
sketch it. Supposing A is not a Beurling–Fréchet algebra `1(Z+k, Ω) of semi-
weight type, we may suppose that each pm is a norm on A, by Cor. 3.8. We
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first show that the projections πJ are continuous on (A, pm) for all J and m,
i.e. the inclusion maps (A, pm) ↪→ Fk are continuous.

Since M = kerπ0,...,0 is a non-nilpotent, closed maximal ideal of A such
that

⋂
n≥1M

n = {0}, M is a non-nilpotent, maximal ideal of (A, pm) for

each m; also, Mn+1 6= Mn 6= {0} (closure in (A, τ)) in (A, pm) for all m
and n. In fact, we may suppose that for each sufficiently large m, M is also
closed in (A, pm) and hence that π0,...,0 is pm-continuous. Also, by [13, proof
of Prop. 2.3], we may suppose that Mm is a non-nilpotent, maximal ideal
of Am and that

⋂
n≥1M

n
m = {0} for each m. Assume inductively that πI is

continuous for each |I| < |J |, and take (xn) in (A, pm) with pm(xn) → 0.
Then, following the argument given in Th. 3.1, we deduce that some non-

zero linear combination of XI with |I| = |J | lies in A ∩ M |J |+1
m (which

is, in fact, M |J |+1 in (A, pm) for each m), a contradiction of the fact that

M
|J |+1
m 6= M

|J |
m .

Next, for each m ∈ N, one shows that pm is closable on A by noticing
that the inclusion map (A, pm) ↪→ Fk can be extended to a continuous
homomorphism φ : Am → Fk. So xn → x in (Fk, τc), and hence pm(xn)→ 0.

Then one shows that φ is indeed injective, and so Am is a Banach algebra
of power series in Fk for each m. In particular, A satisfies Loy’s condition
(E), by the remark following Cor. 3.6.

Remarks. (a) We again emphasize the fact that the characterizations
of FrAPS in Fk and of the algebra Fk play an essential role in the proof of
Th. 3.10.

(b) The fact that a Fréchet algebra of power series A in Fk satisfies
Loy’s condition (E) played an essential role in [10], and it is of interest to
obtain a simple characterization of this condition. Here it is easy to see that
a Fréchet algebra of power series A in Fk satisfies Loy’s condition (E) if and
only if A admits a continuous norm, i.e., there exists a norm p on A such
that for some K > 0 and integer m ≥ 1, p(x) ≤ Kpm(x) (x ∈ A). The above
theorem can be used to prove property (2) as follows: consider AY ⊂ F2.
The topology τ of AY is given by a sequence (pm) of proper power series
seminorms, hence AY does not satisfy Loy’s condition (E), and thus AY

does not admit a continuous norm. So, (AY )m cannot be a BAPS in F2.

(c) By the method of proofs, it is clear that the characterizations ob-
tained in Cor. 3.9 and Th. 3.10 are independent of the Arens–Michael rep-
resentation chosen, in the sense that if (p′′m) is any other sequence of norms
defining the Fréchet topology of A, then the proofs are valid with that se-
quence. Of course, the A′′m, obtained using the sequence (p′′m), may be a
different Banach algebra of power series in an Arens–Michael representation
of A.
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4. Automatic continuity and uniqueness of topology, and open
questions. We now establish that every FrAPS in Fk has a unique Fréchet
topology. By [10, Th. 1], it is clear that every FrAPS A in Fk satisfying
Loy’s condition (E) has a unique Fréchet topology. Since a Beurling–Fréchet
algebra `1(Z+k, Ω) of semiweight type does not satisfy the condition (E),
Th. 3.10 gives the following result from [11] by noticing that [11, Th. 10]
holds true if A is considered to be a FrAPS in Fk in the codomain.

Theorem 4.1. Let A be a Fréchet algebra of power series in Fk such that
A is not a Beurling–Fréchet algebra `1(Z+k, Ω) of semiweight type. Then a
homomorphism θ : B → A from a Fréchet algebra B is continuous provided
that the range of θ is not one-dimensional.

Now, we prove the uniqueness of the Fréchet topology for Beurling–
Fréchet algebras `1(Z+k, Ω) of semiweight type.

Theorem 4.2. Let A be a Beurling–Fréchet algebra `1(Z+k, Ω) of semi-
weight type. Then A has a unique Fréchet topology.

Proof. Let τ ′ be another topology such that (A, τ ′) is a Fréchet algebra.
Suppose that the Fréchet topology τ ′ of A is defined by a sequence (p′′m) of
submultiplicative seminorms on A. First we note that A is a local Fréchet
algebra, and hence it has a unique maximal ideal M = kerπ0,...,0 (this is
clearly an algebraic property). Since (A, τ ′) is local, A is a Q-algebra by
[18, Cor. 3]. We recall that the original Fréchet topology τ of A is defined by
a sequence (pm) of proper power series seminorms. Since (A, τ) is local, A is
a Q-algebra by [18, Cor. 3]. By [18, Th.], A is a Fréchet Q-algebra under
a Fréchet topology τ ′′ stronger than τ ′ and τ . Note that the Fréchet topol-
ogy τ ′′ of A is defined by a sequence (qm) of submultiplicative seminorms
on A, where qm(f) := max{p′′m(f), pm(f), |f |0}, |f |0 := sup{|λ| : λ ∈ σ(f)}.
Hence the identity maps (A, τ ′′) → (A, τ) and (A, τ ′′) → (A, τ ′) are con-
tinuous. By the open mapping theorem for Fréchet spaces, these maps are
homeomorphisms, and so τ = τ ′ = τ ′′ on A.

Remark. The uniqueness of the Fréchet topology of Fk is proved in [4,
Th. 4.6.1]. Since Fk is a Beurling–Fréchet algebra `1(Z+k, Ω) of semiweight
type, the above theorem gives another approach to establish the uniqueness
of the Fréchet topology of Fk.

As a corollary of the above two theorems, we have the following result
(and Questions) in the theory of automatic continuity. We recall that the
continuity of every automorphism of Fk which is a substitution map is
proved in [17, p. 136]. The following gives an answer to [3, Question 11] for
FrAPS in Fk.
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Corollary 4.3. Let A be a Fréchet algebra of power series in Fk. Then
A has a unique Fréchet topology.

We now list the following questions, which may have some interest in
the theory of automatic continuity.

Question 1. Let A be a Beurling–Fréchet algebra `1(Z+k, Ω) of semi-
weight type. Is every automorphism of A continuous?

The author conjectures that the answer to Question 1 is in the affirma-
tive; also, this question has been studied for special cases (see [6, 7]). More
generally, we have the following

Question 2. Is every homomorphism θ : B → Fk (k > 1) from a
Fréchet algebra B continuous?

The above question has recently been partially settled in [5]: (i) if θ :
B → Fk is a discontinuous homomorphism from an (F )-algebra B (i.e.,
a complete, metrizable topological algebra) into Fk such that θ(B) is dense
in (Fk, τc) and such that the separating ideal of θ has finite codimension
in Fk, then θ is an epimorphism (see [5, Th. 12.1]), and (ii) there exists a
Banach algebra (A, ‖ · ‖) such that C[X1, X2] ⊂ A ⊂ F2, but the embedding
(A, ‖ · ‖) ↪→ (F2, τc) is not continuous (see [5, Th. 12.3]); surprisingly, A is
(isometrically isomorphic to) a Banach algebra of power series in F1 (see [5,
Th. 10.1(i)]).

As shown in [15], F∞ admits two inequivalent Fréchet algebra topologies.
It is clear that the unique maximal ideal M = kerπ0 (0 = (0, 0, . . . )) is closed
under both topologies, since F∞ is a local Fréchet Q-algebra. Thus it is of in-
terest to know whether every FrAPS in F∞ (except F∞ itself) has a unique
Fréchet topology. In other words, we have the following natural question.

Question 3. Is there any other proper, unital subalgebra of F∞ with
two inequivalent Fréchet topologies? In particular, is there any other proper
subalgebra of F∞ which is closed under the topology imposed by Charles
Read on F∞ and which is also FrAPS in F∞ in its “usual” topology?

To answer the latter part of the above question, the “natural” extension
of Beurling–Fréchet algebras of semiweight type (i.e., `1((Z+)<ω, Ω)) would
be an easy target. Also, we have the following curious question.

Question 4. Does there exist a Fréchet algebra with infinitely many
inequivalent Fréchet algebra topologies?

For m ∈ N, set

Um =
{
f =

∑
{αrX

r : r ∈ (Z+)<ω} ∈ F∞ : pm(f) :=
∑
|αr|m|r| <∞

}
,

and then set
U =

⋂
{Um : m ∈ N}.
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It is clear that each (Um, pm) is a unital Banach subalgebra of F∞ and that
(U , (pm)) is a unital Fréchet subalgebra of F∞. Being semisimple Fréchet
algebras, the test algebra U for the still unsolved “Michael problem” (and Um
for each m appearing in the Arens–Michael representation of U), `1((Z+)<ω)
and the algebra `1(Sc), where Sc denotes the free semigroup on c generators,
have unique Fréchet topologies (this also follows from [5, Th. 10.1 and 10.5]
and [13, Cor. 4.2]). In this regard, we first give the following result (for the
proof, see either [9, Th. 1] or [10, Th. 2]) by noticing that a FrAPS A in F∞
satisfies Loy’s condition (E) if there is a sequence (γK : K ∈ Nk, k ∈ N) of
positive reals such that (γ−1K πK) is equicontinuous.

Theorem 4.4. Let A be a Fréchet algebra of power series in F∞ satisfy-
ing Loy’s condition (E) above, and let φ : B → A be a homomorphism from
a Fréchet algebra B into A such that X1 ∈ φ(B). Then φ is continuous.
In particular, every automorphism of A is continuous, and A has a unique
Fréchet algebra topology.

We remark that the Fréchet topology of A in the above theorem is defined
by a sequence of norms. We have the following “natural” generalization of [5,
Th. 10.1].

Theorem 4.5. Let A be a Fréchet algebra of power series in F∞ with
topology defined by a sequence (pm) of norms. Suppose that A is a graded
subalgebra of F∞. Then there is a continuous embedding θ of A into (F , τc)
such that θ(X1) = X, and so A is (isometrically isomorphic to) a Fréchet al-
gebra of power series in F1. In particular, A has a unique Fréchet topology.

We cannot drop the norm assumption on (pm) in the above theorem:
(F∞, τc) is a counterexample, since it can be continuously embedded in
(F2, τc), by [5, Th. 9.1], but, by [5, Th. 2.6 (or Th. 11.8)], there is no em-
bedding of F2 into F .

Finally, we remark that we have recently established the uniqueness of an
(F )-algebra topology for the (F )-algebra of power series in the indeterminate
X (see [5, Cor. 11.7]). Then the natural question is to extend this result to
the several-variable case, in order to settle the Dales question completely.
But our approach fails, because the clause of the continuity of coordinate
projections cannot be dropped from the definitions of Banach and Fréchet
algebras of power series in k indeterminates (see [5, Th. 12.3]). The approach
here is based on a sequence (pm) of submultiplicative seminorms, and so
these results cannot be extended to all (F )-algebras of power series in k
indeterminates.
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closed, Studia Math. 138 (2000), 293–300.

S. R. Patel
Department of Mathematics
C. U. Shah University
Wadhwan City, Gujarat, India
E-mail: srpatel.math@gmail.com

coolpatel1@yahoo.com

http://dx.doi.org/10.1017/S000497270002075X
http://dx.doi.org/10.1112/blms/10.2.129
http://dx.doi.org/10.1017/S0004972700046190
http://dx.doi.org/10.1017/S0004972700044397
http://dx.doi.org/10.1017/S1446788700017043
http://dx.doi.org/10.4064/sm187-2-2
http://dx.doi.org/10.1090/S0002-9939-02-06485-7
http://dx.doi.org/10.1090/S0002-9947-1971-0435853-0



	1 Introduction
	2 Fréchet algebras
	3 Fréchet algebras of power series in Fk
	4 Automatic continuity and uniqueness of topology, and open questions
	References

