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Analytically principal part of polynomials at infinity

NGUYEN THAO NGUYEN BUI (Dalat) and
T1EN-SON PHAM (Danang and Dalat)

Abstract. Let f: K® — K be a polynomial function, where K := R or C. We give,
in terms of the Newton boundary at infinity of f, a sufficient condition for a deformation
of f to be analytically (smoothly in the case K := C) trivial at infinity.

1. Introduction. The problem of CC-sufficiency of jets is one of the
most interesting problems in singularity theory. Roughly speaking, it is the
problem of determining a topologically principal part of the Taylor expansion
of a given function at the origin in K"; here and in the following, K := R
or C.

N. H. Kuiper [17], T. C. Kuo [18], and J. Bochnak and S. Lojasiewicz [2]
proved the following theorem:

Let f: R" = R be a C* function defined in a neighborhood of
the origin 0 € R™ with f(0) = 0. Then the following conditions
are equivalent:

(i) There are positive constants C and r such that
lgrad f(@)|| > Cllz|*™*  for ||lz]| <.
(ii) The k-jet of f is CO-sufficient in the class C*.

Analogous results in the case of complex analytic functions were proved
by S. H. Chang and Y. C. Lu [7], B. Teissier [28], and J. Bochnak and
W. Kucharz [1]. Similar considerations were also carried out for polynomial
mappings in a neighborhood of infinity by P. Cassou-Nogués and H. V. Ha [6],
L. Fourrier [10], G. Skalski [27], and T. Rodak and S. Spodzieja [26].
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On the other hand, except for certain degenerate cases the topologi-
cal type of an analytic function is expected to depend only on its New-
ton polyhedron. This has been confirmed together with a precise defini-
tion of non-degeneracy at the origin of K™ (see, for example, [8, O, 11l 16,
22, 131]).

The purpose of this paper is to show that polynomial functions which
are convenient and non-degenerate at infinity, are determined up to an-
alytical type by their Newton polyhedra at infinity. More precisely, with
the definitions in the next section, the main result of this paper is as fol-
lows.

THEOREM 1.1. Let f: K" — K be a polynomial function. Suppose that
f is convenient and non-degenerate at infinity. Then, for any polynomial
function g: K™ — K satisfying the condition I'(g) C Int(I'(f)), the family
[+ tg is analytically (resp., smoothly) trivial at infinity along the interval
[0,1] in the case K =R (resp., K= C).

REMARK. (i) The proof of Theorem uses only the Curve Selection
Lemma at infinity.

(ii) Related results concerning the behavior of complex polynomials under
deformations have been established in [3], 4} [5, 12} [13], 24], 25] 29].

The paper is structured as follows. Section [2] presents some definitions
and notation. Theorem [I.1]is proved in Section [3]

2. Definitions. Throughout this paper, the scalar product (resp., norm)
in R" is defined by (z,y) for any z,y € R™ (resp., ||z|| := /(z,z) for any
x € R™). We denote by Z, the set of non-negative integers.

2.1. Non-degeneracy at infinity. If o := (ay,...,05) € Z7} and x :=
(x1,...,2,) € R", we write ¢ for the monomial 27" --- 2. Let f: K" — K
be a polynomial function. Suppose that f is written as f = aoxz®. Then
the support of f, denoted by supp(f), is defined as the set of those o € Z}
such that a, # 0. Let I'(f) be the convex hull of supp(f)U{0}. The Newton
boundary at infinity of f, denoted by I'no(f), is defined as the union of the
closed faces of I'(f) which do not contain the origin in R™. Here and below,
by face we shall understand a face of any dimension. A vertex is a face of
dimension 0. We also set Int(I'(f)) := I'(f) \ I'xo(f)-

The polynomial f is said to be convenient if the polyhedron I'(f) in-
tersects each coordinate axis at a point different from the origin. For each
closed face A of I'o(f) we denote by fa the polynomial }° ., aqz®.

The following notion plays an important role in this paper (see [15,16,23]).
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DEFINITION 2.1. We say that f is (Kouchnirenko) non-degenerate at

infinity if
n afA _ o 8fA

for all closed faces A of I'o(f).

(x)—O}C{wEK"|w1~-mn—0}

2.2. Triviality at infinity. Every open set of the form K" \ K, where
K C K™ is a compact set, is called a neitghborhood of infinity.

DEFINITION 2.2. Let f,g: K® — K be polynomial functions. We say
that the family f+tg is analytically (resp., smoothly) trivial at infinity along
the interval [0, 1] if there exist a neighborhood of infinity £2p C K" and a
continuous mapping @: [0,1] x 29 — K", (¢,2) — P(t, ), such that:

(a) Po(x) = x for x € y;

(b) for any t € [0, 1], the mapping ®;: 29 — P¢({2y) is a real analytic dif-
feomorphism (resp., a C*°-diffeomorphism) and limg_, @¢(z) = o0;

(c) f(Pi(z)) +tg(P(z)) = f(x) for z € 2 and t € [0, 1],

where @;: 2y — K" is defined by ®4(x) := @(t,x) for x € £y and t € [0,1].

3. Proof of the main result. We will prove Theorem for K = R;
the proof in the complex case is quite similar. So, let f,g: R™ — R be poly-
nomial functions satisfying the conditions of Theorem [I.I] Let us consider
the polynomial function

F:RxR" =R, (t,z)— f(z)+tg(z).

For any fixed t € R, let fi(z) := F(t,x). By the assumption I'(g) C
Int(I'(f)), we have I'(f) = I'(fi) and I'x(f) = I'oo(f;). Furthermore, f;
is convenient and non-degenerate at infinity.

For simplicity, we let

0xy,
LEMMA 3.1. There exist positive constants C and R such that
|Grad, F'(t,z)|| = Clg(z)|, Vvt € (-2,2),V|z]| > R

F F
Grad, F(t,z) := (xla(t, x), ..., xna—(t, x))
81’1

Proof. By contradiction and using the Curve Selection Lemma at infinity
[19] 21], we can find an analytic function ¢(s) and an analytic curve p(s) =

(p1(s),...,pn(s)) for s € (0, €) satisfying:

(a) —2 < t(s) <2
(b) |le(s)]] = oo as s — 07; and
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n OF 2
(© IGrads Fle(s) (I = 3 (i) - 1(5) )
i=1 v
< |g(e(s)).
Let I :={i|p;i Z0} C {1,...,n}. By (b), I # 0. For i € I, we can expand
the coordinate ¢; in terms of the parameter: say

©i(s) = 20s% + higher order terms in s,

where 2 # 0 and a; € Q. From (b), we obtain min;er a; < 0.

Let R := {a = (a1,...,a,) € R" | oy = Ofori ¢ I}. Since f is
convenient, I'(f) NR! # (. We set a := (a1,...,a,) € R", where a; := 0 for
i ¢ I. Let d be the minimal value of the linear function (a, o) = > . a;oy
on I'(f)NR!, and let A be the (unique) maximal face @ of I'(f) where the
linear function ) . ; a;a; takes its minimal value d, i.e.,

A={aeI(f)| {aa) = d}.
We have d < 0 and A is a closed face of I'xo(f) because f is convenient and
min;—y . na; < 0. Since I'(g) C Int(I'(f)) and t(s) is bounded, we can see
that

F

goi(s)g(t(s), w(s)) = 0 = (:UO)S + higher order terms in s for i € I,
T

where 20 := (29,...,2%) a d 29 :=1 for i ¢ I. Consequently,

|Grad, F(t(s), ¢(s)) > = Z( w(S))>2
Z( >,so<s>>)2

el

g2 Z( 8L ) + higher order terms in s

el

2
$2d Z( 0 fA 0 ) + higher order terms in s.

(The last equality follows from the fact that fa does not depend on z; for
i ¢ I.) Since the polynomial f is non-degenerate at infinity,

n 2
> (52w) #o.
i=1 !

Therefore
(3.1) |Grad, F(t(s), o(s))|| ~ s? ass— 0%,

(*) Maximal with respect to inclusion.
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On the other hand, it follows easily from I'(g) C Int(I'(f)) that
gle(s)) =o(s?) ass— 0T
This, together with (3.1)), contradicts (c). m
LEMMA 3.2. There exist positive constants C and R such that
|Grad, F(t,x)|| > C, Vte (-2,2),V|z| > R.

Proof. By contradiction and using the Curve Selection Lemma at infinity
[19, 21], we can find an analytic function #(s) and an analytic curve ¢(s) =
(p1(8), ..., pn(s)) for s € (0,¢€) satistying:

(a) —2 < t(s) <2
(b) |l¢(s)]| — oo as s — 0T; and
2
(c) IGrady F(t(s), p(s)II” = 2y (wils) g (t(s), 9(s)))” — 0 as
s—0F.
Let I:={i| ;i Z0} C {1,...,n}. By (b), I # 0. For i € I, we can expand
the coordinate ; in terms of the parameter: say

@i(s) = 2%5% + higher order terms in s,

where x,? # 0 and a; € Q. From (b), we obtain min;eya; < 0.

Let R! := {a = (a1,...,a,) € R" | a; = 0 for i & I'}. Since the polyno-
mial f is convenient, we have I'(f) NR! # (). We set a := (a1, ...,a,) € R",
where a; = 0 for ¢ € I. Let d be the minimal value of the linear function
e aici on I'(f) NRY, and let A be the (unique) maximal face of I'(f)
where the linear function Eie 7 @i takes its minimal value d. Then it is easy
to see that d < 0 and A is a closed face of I'no(f). Since I'(g) C Int(I'(f))

and t(s) is bounded, we can see that

oF 20 afa

4,01-(8)8 (t(s),p(s)) = o, ——( 0)s? + higher order terms in s for i € I,
T
where 2% := (29,...,29) and 20 := 1 for i ¢ I. Then (c) implies that
dfa :
?8 (=0 foriel.

Note that fa does not depend on z; for ¢ ¢ I. Therefore,

0

?éfA( N=0 fori=1,...,n.
This contradicts our assumption that f is non-degenerate at infinity. =
LEMMA 3.3. Foreachi=1,...,n, let
—9(z) 2 OF

Wi(t,z) :== { ||Grad, F(t,z)|? Vi 0 (t,x) if Grad, F(t,x) #0,

0 otherwise.
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Then there exist positive constants C' and R such that the mapping
W:(=2,2)x{z e R" | ||z|] > R} = R", (t,z) —» (Wi(t,x),..., Wy(t, x)),
1s analytic and satisfies

IWit,2)| < Cllall,  duF(t,2)W(t,2) = —g(a),
where d, F' stands for the derivative of F with respect to x.

Proof. Let C and R be positive constants for which Lemmas [3.1] and [3.2]
hold true. Then W is well-defined and analytic. Furthermore, for all ¢ € (-2, 2)
and ||z|| > R we have

Wit,z)| < x;
Wt z)| < ||Ga H22| |

:z:, , )
Z

< Zx Z viok (t,) 2
HGrad Ft z)||? i Ow; "’

@)
||Grad, F(t,x)||

By Lemma we conclude that
W (t, )l < [l /C.
Finally, for t € (—2,2) and ||z|| > R we have

d F(t,x)W(t,z) = Z gf(t, x)Wi(t, x)
i=1 "

-y —9(z) $8th2=—x..
i=1 ZZ:l(xkax (t, x))2< 18:132( )> g9(z)

LEMMA 3.4 (see [27, Lemmas 1 and 2|). Let D :={z € R" | ||z| > R},
R >0, and let W: (=2,2) x D — R™ be a continuous mapping such that for
some C' > 0 we have
IW(t,2)| < Cllall  for all (t,7) € (~2,2) x D.

Assume that h: (o, B) — D is a mazimal solution of the system of differential
equations

[l]]-

y'(t) =W(t,y(t)).
If 0 € (a,B), h(0) =z, and ||z|| > Re®, then > 1 and
ezl < A < el
If 1€ (o, ), h(1) =z, and ||z|| > Re®, then a < 0 and
ezl < [AO)] < el
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Proof of Theorem|[I.1. We first consider the real case. There exist positive
constants C' and R such that the mapping

W:(~2,2) x {z € R" | |lz]| > R} — R"

defined in Lemma is analytic. Consider the system of differential equa-
tions

(3.2) y'(t) = W(t,y(t))

Let D :={z € R" | ||z|| > R}. Since W is analytic in (—2,2) x D, it follows
from [20, Theorem 1.8.12] (see also [I4]) that for any (s,z) € (-2,2) x D,
there exists a unique solution ¢ ;) of defined on an open interval
I(s,z) of R and satisfying the initial condition ¢, ,)(s) = . Moreover, the
mapping

{(s,2,t) ERXxR" xR |s € (-2,2), ||z]| >R, t € I(s,x)} = R",
(37357t) = ¢(s,a:) (t)a
is analytic.
Set 2 := {x € R"| ||z|| > Re®} and define &,¥: [0,1] x 2 — D by
¢(tv$) = ¢(0 a:)(t) and Lp(tvy) = ¢(t y)(o)

By Lemmas [3.3] and [3.4] the mappings @, ¥ are well defined, analytic, and
satisfy

(33) e Ozl < |@(t, )| < ellz||  fort € [0,1], x € 2,
eyl <@ty < eyl fort €[0,1], y € 2.

Let 29 := {x € R" | ||z|| > Re*‘} and £ := {y € R" | ¥(t,y) € 2} for
€ (0,1]. Then for each t € [0,1], 2 is an open subset of {2 and

{y €eR" | |yl > Re*’} C 12,

and therefore (2, is a neighborhood of infinity.

On the other hand, from the global uniqueness of solutions of (3.2)), it is
easy to see that for any ¢ € [0, 1] we have

(a) ®(0,2) = x for x € Qp;
(b) ¥(t,&(t,z)) = x for x € {2; and

(c) @(t,¥(t,y)) =y for y € 2.

Summing up, for each ¢t € [0, 1] the mappings @;: 29 — 2, x — D(t,x), and
Uy (2 — 2,y — ¥(t,y), are analytic diffecomorphisms of neighborhoods of
infinity and ¥ = &;'. Moreover, by , we have ||@(x)|| — oo if, and
only if, ||z|| — oo.
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Finally, thanks to Lemma [3.3] we obtain

10000 (1) = 9(610.0)(1)) + e (1, 60,0 (1) .0 (1)
= 9(¢(0,2) () + daF (£, P (0,0) ()W (£, D0, (1))
= 9(¢(0,5) (1)) — (0 ( )) 0.
Hence, F(t, ¢(,2)(t)) = f(z) for all t € [0, 1] and so
f(@y(x)) +tg(P(x)) = f(x) for x € (.
This proves the theorem in the real case.

We next consider the complex case, i.e., K = C. For each z € C, Z stands
for the complex conjugate of z; the norm of z := (z1,...,x,) € C" is defined

by [|z]l := v/l 4 -+ [zl
Let F(t,z) := f(x) + tg(z) as before and consider the system
y'(t) = W(t y(t)),
where W (t,x) :== (Wi(t,x),..., Wy(t,x)) with W;, i =1,...,n, defined by
Wi(t,z) :== { ||Grad, F(t,2)|[2""" 8z,
0 otherwise.

Then the rest of the argument goes as in the real case. We leave the verifi-
cation of the details to the reader as an exercise. m

(t,z) if Grad, F(t,x) # 0,

REMARK. The method used here to prove Theorem modifies the
method used in [17), 18] (see also [11, 26] 27, B30, 31]).
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