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Analytically principal part of polynomials at infinity
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Abstract. Let f : Kn → K be a polynomial function, where K := R or C. We give,
in terms of the Newton boundary at infinity of f, a sufficient condition for a deformation
of f to be analytically (smoothly in the case K := C) trivial at infinity.

1. Introduction. The problem of C0-sufficiency of jets is one of the
most interesting problems in singularity theory. Roughly speaking, it is the
problem of determining a topologically principal part of the Taylor expansion
of a given function at the origin in Kn; here and in the following, K := R
or C.

N. H. Kuiper [17], T. C. Kuo [18], and J. Bochnak and S. Łojasiewicz [2]
proved the following theorem:

Let f : Rn → R be a Ck function defined in a neighborhood of
the origin 0 ∈ Rn with f(0) = 0. Then the following conditions
are equivalent:

(i) There are positive constants C and r such that

‖grad f(x)‖ ≥ C‖x‖k−1 for ‖x‖ ≤ r.

(ii) The k-jet of f is C0-sufficient in the class Ck.

Analogous results in the case of complex analytic functions were proved
by S. H. Chang and Y. C. Lu [7], B. Teissier [28], and J. Bochnak and
W. Kucharz [1]. Similar considerations were also carried out for polynomial
mappings in a neighborhood of infinity by P. Cassou-Noguès and H. V. Hà [6],
L. Fourrier [10], G. Skalski [27], and T. Rodak and S. Spodzieja [26].
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On the other hand, except for certain degenerate cases the topologi-
cal type of an analytic function is expected to depend only on its New-
ton polyhedron. This has been confirmed together with a precise defini-
tion of non-degeneracy at the origin of Kn (see, for example, [8, 9, 11, 16,
22, 31]).

The purpose of this paper is to show that polynomial functions which
are convenient and non-degenerate at infinity, are determined up to an-
alytical type by their Newton polyhedra at infinity. More precisely, with
the definitions in the next section, the main result of this paper is as fol-
lows.

Theorem 1.1. Let f : Kn → K be a polynomial function. Suppose that
f is convenient and non-degenerate at infinity. Then, for any polynomial
function g : Kn → K satisfying the condition Γ (g) ⊂ Int(Γ (f)), the family
f + tg is analytically (resp., smoothly) trivial at infinity along the interval
[0, 1] in the case K = R (resp., K = C).

Remark. (i) The proof of Theorem 1.1 uses only the Curve Selection
Lemma at infinity.

(ii) Related results concerning the behavior of complex polynomials under
deformations have been established in [3, 4, 5, 12, 13, 24, 25, 29].

The paper is structured as follows. Section 2 presents some definitions
and notation. Theorem 1.1 is proved in Section 3.

2. Definitions. Throughout this paper, the scalar product (resp., norm)
in Rn is defined by 〈x, y〉 for any x, y ∈ Rn (resp., ‖x‖ :=

√
〈x, x〉 for any

x ∈ Rn). We denote by Z+ the set of non-negative integers.

2.1. Non-degeneracy at infinity. If α := (α1, . . . , αn) ∈ Zn+ and x :=
(x1, . . . , xn) ∈ Rn, we write xα for the monomial xα1

1 · · ·xαn
n . Let f : Kn → K

be a polynomial function. Suppose that f is written as f =
∑

α aαx
α. Then

the support of f, denoted by supp(f), is defined as the set of those α ∈ Zn+
such that aα 6= 0. Let Γ (f) be the convex hull of supp(f)∪{0}. The Newton
boundary at infinity of f, denoted by Γ∞(f), is defined as the union of the
closed faces of Γ (f) which do not contain the origin in Rn. Here and below,
by face we shall understand a face of any dimension. A vertex is a face of
dimension 0. We also set Int(Γ (f)) := Γ (f) \ Γ∞(f).

The polynomial f is said to be convenient if the polyhedron Γ (f) in-
tersects each coordinate axis at a point different from the origin. For each
closed face ∆ of Γ∞(f) we denote by f∆ the polynomial

∑
α∈∆ aαx

α.

The following notion plays an important role in this paper (see [15, 16, 23]).
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Definition 2.1. We say that f is (Kouchnirenko) non-degenerate at
infinity if{

x ∈ Kn

∣∣∣∣ ∂f∆∂x1
(x) = · · · = ∂f∆

∂xn
(x) = 0

}
⊂ {x ∈ Kn | x1 · · ·xn = 0}

for all closed faces ∆ of Γ∞(f).

2.2. Triviality at infinity. Every open set of the form Kn \K, where
K ⊂ Kn is a compact set, is called a neighborhood of infinity.

Definition 2.2. Let f, g : Kn → K be polynomial functions. We say
that the family f+ tg is analytically (resp., smoothly) trivial at infinity along
the interval [0, 1] if there exist a neighborhood of infinity Ω0 ⊂ Kn and a
continuous mapping Φ : [0, 1]×Ω0 → Kn, (t, x) 7→ Φ(t, x), such that:

(a) Φ0(x) = x for x ∈ Ω0;
(b) for any t ∈ [0, 1], the mapping Φt : Ω0 → Φt(Ω0) is a real analytic dif-

feomorphism (resp., a C∞-diffeomorphism) and limx→∞ Φt(x) =∞;
(c) f(Φt(x)) + tg(Φt(x)) = f(x) for x ∈ Ω0 and t ∈ [0, 1],

where Φt : Ω0 → Kn is defined by Φt(x) := Φ(t, x) for x ∈ Ω0 and t ∈ [0, 1].

3. Proof of the main result. We will prove Theorem 1.1 for K = R;
the proof in the complex case is quite similar. So, let f, g : Rn → R be poly-
nomial functions satisfying the conditions of Theorem 1.1. Let us consider
the polynomial function

F : R× Rn → R, (t, x) 7→ f(x) + tg(x).

For any fixed t ∈ R, let ft(x) := F (t, x). By the assumption Γ (g) ⊂
Int(Γ (f)), we have Γ (f) ≡ Γ (ft) and Γ∞(f) ≡ Γ∞(ft). Furthermore, ft
is convenient and non-degenerate at infinity.

For simplicity, we let

Gradx F (t, x) :=

(
x1
∂F

∂x1
(t, x), . . . , xn

∂F

∂xn
(t, x)

)
.

Lemma 3.1. There exist positive constants C and R such that

‖Gradx F (t, x)‖ ≥ C|g(x)|, ∀t ∈ (−2, 2), ∀‖x‖ > R.

Proof. By contradiction and using the Curve Selection Lemma at infinity
[19, 21], we can find an analytic function t(s) and an analytic curve ϕ(s) =
(ϕ1(s), . . . , ϕn(s)) for s ∈ (0, ε) satisfying:

(a) −2 < t(s) < 2;
(b) ‖ϕ(s)‖ → ∞ as s→ 0+; and
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(c) ‖Gradx F (t(s), ϕ(s))‖2 =

n∑
i=1

(
ϕi(s)

∂F

∂xi
(t(s), ϕ(s))

)2

� |g(ϕ(s))|2.
Let I := {i | ϕi 6≡ 0} ⊂ {1, . . . , n}. By (b), I 6= ∅. For i ∈ I, we can expand
the coordinate ϕi in terms of the parameter: say

ϕi(s) = x0i s
ai + higher order terms in s,

where x0i 6= 0 and ai ∈ Q. From (b), we obtain mini∈I ai < 0.
Let RI := {α = (α1, . . . , αn) ∈ Rn | αi = 0 for i 6∈ I}. Since f is

convenient, Γ (f) ∩ RI 6= ∅. We set a := (a1, . . . , an) ∈ Rn, where ai := 0 for
i 6∈ I. Let d be the minimal value of the linear function 〈a, α〉 =

∑
i∈I aiαi

on Γ (f)∩RI , and let ∆ be the (unique) maximal face (1) of Γ (f) where the
linear function

∑
i∈I aiαi takes its minimal value d, i.e.,

∆ := {α ∈ Γ (f) | 〈a, α〉 = d}.
We have d < 0 and ∆ is a closed face of Γ∞(f) because f is convenient and
mini=1,...,n ai < 0. Since Γ (g) ⊂ Int(Γ (f)) and t(s) is bounded, we can see
that

ϕi(s)
∂F

∂xi
(t(s), ϕ(s)) = x0i

∂f∆
∂xi

(x0)sd + higher order terms in s for i ∈ I,

where x0 := (x01, . . . , x
0
n) and x0i := 1 for i 6∈ I. Consequently,

‖Gradx F (t(s), ϕ(s))‖2 =
n∑
i=1

(
ϕi(s)

∂F

∂xi
(t(s), ϕ(s))

)2

=
∑
i∈I

(
ϕi(s)

∂F

∂xi
(t(s), ϕ(s))

)2

= s2d
∑
i∈I

(
x0i
∂f∆
∂xi

(x0)

)2

+ higher order terms in s

= s2d
n∑
i=1

(
x0i
∂f∆
∂xi

(x0)

)2

+ higher order terms in s.

(The last equality follows from the fact that f∆ does not depend on xi for
i /∈ I.) Since the polynomial f is non-degenerate at infinity,

n∑
i=1

(
x0i
∂f∆
∂xi

(x0)

)2

6= 0.

Therefore

‖Gradx F (t(s), ϕ(s))‖ ' sd as s→ 0+.(3.1)

(1) Maximal with respect to inclusion.
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On the other hand, it follows easily from Γ (g) ⊂ Int(Γ (f)) that

g(ϕ(s)) = o(sd) as s→ 0+.

This, together with (3.1), contradicts (c).

Lemma 3.2. There exist positive constants C and R such that

‖Gradx F (t, x)‖ ≥ C, ∀t ∈ (−2, 2), ∀‖x‖ > R.

Proof. By contradiction and using the Curve Selection Lemma at infinity
[19, 21], we can find an analytic function t(s) and an analytic curve ϕ(s) =
(ϕ1(s), . . . , ϕn(s)) for s ∈ (0, ε) satisfying:

(a) −2 < t(s) < 2;
(b) ‖ϕ(s)‖ → ∞ as s→ 0+; and
(c) ‖Gradx F (t(s), ϕ(s))‖2 =

∑n
i=1

(
ϕi(s)

∂F
∂xi

(t(s), ϕ(s))
)2 → 0 as

s→ 0+.

Let I := {i | ϕi 6≡ 0} ⊂ {1, . . . , n}. By (b), I 6= ∅. For i ∈ I, we can expand
the coordinate ϕi in terms of the parameter: say

ϕi(s) = x0i s
ai + higher order terms in s,

where x0i 6= 0 and ai ∈ Q. From (b), we obtain mini∈I ai < 0.
Let RI := {α = (α1, . . . , αn) ∈ Rn | αi = 0 for i 6∈ I}. Since the polyno-

mial f is convenient, we have Γ (f)∩RI 6= ∅. We set a := (a1, . . . , an) ∈ Rn,
where ai = 0 for i 6∈ I. Let d be the minimal value of the linear function∑

i∈I aiαi on Γ (f) ∩ RI , and let ∆ be the (unique) maximal face of Γ (f)
where the linear function

∑
i∈I aiαi takes its minimal value d. Then it is easy

to see that d < 0 and ∆ is a closed face of Γ∞(f). Since Γ (g) ⊂ Int(Γ (f))
and t(s) is bounded, we can see that

ϕi(s)
∂F

∂xi
(t(s), ϕ(s)) = x0i

∂f∆
∂xi

(x0)sd + higher order terms in s for i ∈ I,

where x0 := (x01, . . . , x
0
n) and x0i := 1 for i 6∈ I. Then (c) implies that

x0i
∂f∆
∂xi

(x0i ) = 0 for i ∈ I.

Note that f∆ does not depend on xi for i 6∈ I. Therefore,

x0i
∂f∆
∂xi

(x0i ) = 0 for i = 1, . . . , n.

This contradicts our assumption that f is non-degenerate at infinity.

Lemma 3.3. For each i = 1, . . . , n, let

Wi(t, x) :=


−g(x)

‖Gradx F (t, x)‖2
x2i
∂F

∂xi
(t, x) if Gradx F (t, x) 6= 0,

0 otherwise.
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Then there exist positive constants C and R such that the mapping

W : (−2, 2)×{x ∈ Rn | ‖x‖ > R} → Rn, (t, x) 7→ (W1(t, x), . . . ,Wn(t, x)),

is analytic and satisfies

‖W (t, x)‖ ≤ C‖x‖, dxF (t, x)W (t, x) = −g(x),

where dxF stands for the derivative of F with respect to x.

Proof. Let C and R be positive constants for which Lemmas 3.1 and 3.2
hold true. ThenW is well-defined and analytic. Furthermore, for all t∈ (−2, 2)
and ‖x‖ > R we have

‖W (t, x)‖ ≤ |g(x)|
‖Gradx F (t, x)‖2

n∑
i=1

|xi|
∣∣∣∣xi ∂F∂xi (t, x)

∣∣∣∣
≤ |g(x)|
‖Gradx F (t, x)‖2

√√√√ n∑
i=1

x2i

√√√√ n∑
i=1

(
xi
∂F

∂xi
(t, x)

)2

=
|g(x)|

‖Gradx F (t, x)‖
‖x‖.

By Lemma 3.1, we conclude that

‖W (t, x)‖ ≤ ‖x‖/C.
Finally, for t ∈ (−2, 2) and ‖x‖ > R we have

dxF (t, x)W (t, x) =

n∑
i=1

∂F

∂xi
(t, x)Wi(t, x)

=

n∑
i=1

−g(x)∑n
k=1

(
xk

∂F
∂xk

(t, x)
)2(xi ∂F∂xi (t, x)

)2

= −g(x).

Lemma 3.4 (see [27, Lemmas 1 and 2]). Let D := {x ∈ Rn | ‖x‖ > R},
R > 0, and let W : (−2, 2)×D → Rn be a continuous mapping such that for
some C > 0 we have

‖W (t, x)‖ ≤ C‖x‖ for all (t, x) ∈ (−2, 2)×D.
Assume that h : (α, β)→ D is a maximal solution of the system of differential
equations

y′(t) = W (t, y(t)).

If 0 ∈ (α, β), h(0) = x, and ‖x‖ > ReC , then β > 1 and

e−C‖x‖ ≤ ‖h(1)‖ ≤ eC‖x‖.
If 1 ∈ (α, β), h(1) = x, and ‖x‖ > ReC , then α < 0 and

e−C‖x‖ ≤ ‖h(0)‖ ≤ eC‖x‖.
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Proof of Theorem 1.1. We first consider the real case. There exist positive
constants C and R such that the mapping

W : (−2, 2)× {x ∈ Rn | ‖x‖ > R} → Rn

defined in Lemma 3.3 is analytic. Consider the system of differential equa-
tions

(3.2) y′(t) = W (t, y(t)).

Let D := {x ∈ Rn | ‖x‖ > R}. Since W is analytic in (−2, 2)×D, it follows
from [20, Theorem 1.8.12] (see also [14]) that for any (s, x) ∈ (−2, 2) × D,
there exists a unique solution φ(s,x) of (3.2) defined on an open interval
I(s, x) of R and satisfying the initial condition φ(s,x)(s) = x. Moreover, the
mapping

{(s, x, t) ∈ R× Rn × R | s ∈ (−2, 2), ‖x‖ > R, t ∈ I(s, x)} → Rn,
(s, x, t) 7→ φ(s,x)(t),

is analytic.
Set Ω := {x ∈ Rn | ‖x‖ > ReC} and define Φ, Ψ : [0, 1]×Ω → D by

Φ(t, x) = φ(0,x)(t) and Ψ(t, y) = φ(t,y)(0).

By Lemmas 3.3 and 3.4, the mappings Φ, Ψ are well defined, analytic, and
satisfy

e−C‖x‖ ≤ ‖Φ(t, x)‖ ≤ eC‖x‖ for t ∈ [0, 1], x ∈ Ω,(3.3)

e−C‖y‖ ≤ ‖Ψ(t, y)‖ ≤ eC‖y‖ for t ∈ [0, 1], y ∈ Ω.

Let Ω0 := {x ∈ Rn | ‖x‖ > Re2C} and Ωt := {y ∈ Rn | Ψ(t, y) ∈ Ω0} for
t ∈ (0, 1]. Then for each t ∈ [0, 1], Ωt is an open subset of Ω and

{y ∈ Rn | ‖y‖ > Re3C} ⊂ Ωt,

and therefore Ωt is a neighborhood of infinity.
On the other hand, from the global uniqueness of solutions of (3.2), it is

easy to see that for any t ∈ [0, 1] we have

(a) Φ(0, x) = x for x ∈ Ω0;
(b) Ψ(t, Φ(t, x)) = x for x ∈ Ω0; and
(c) Φ(t, Ψ(t, y)) = y for y ∈ Ωt.

Summing up, for each t ∈ [0, 1] the mappings Φt : Ω0 → Ωt, x 7→ Φ(t, x), and
Ψt : Ωt → Ω0, y 7→ Ψ(t, y), are analytic diffeomorphisms of neighborhoods of
infinity and Ψt = Φ−1t . Moreover, by (3.3), we have ‖Φt(x)‖ → ∞ if, and
only if, ‖x‖ → ∞.
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Finally, thanks to Lemma 3.3, we obtain
dF

dt
(t, φ(0,x)(t)) = g(φ(0,x)(t)) + dxF (t, φ(0,x)(t))φ

′
(0,x)(t)

= g(φ(0,x)(t)) + dxF (t, φ(0,x)(t))W (t, φ(0,x)(t))

= g(φ(0,x)(t))− g(φ(0,x)(t)) = 0.

Hence, F (t, φ(0,x)(t)) = f(x) for all t ∈ [0, 1], and so
f(Φt(x)) + tg(Φt(x)) = f(x) for x ∈ Ω0.

This proves the theorem in the real case.
We next consider the complex case, i.e., K = C. For each z ∈ C, z̄ stands

for the complex conjugate of z; the norm of x := (x1, . . . , xn) ∈ Cn is defined
by ‖x‖ :=

√
|x1|2 + · · ·+ |xn|2.

Let F (t, x) := f(x) + tg(x) as before and consider the system
y′(t) = W (t, y(t)),

where W (t, x) := (W1(t, x), . . . ,Wn(t, x)) with Wi, i = 1, . . . , n, defined by

Wi(t, x) :=

 −g(x)

‖Gradx F (t, x)‖2
|xi|2

∂F

∂xi
(t, x) if Gradx F (t, x) 6= 0,

0 otherwise.
Then the rest of the argument goes as in the real case. We leave the verifi-
cation of the details to the reader as an exercise.

Remark. The method used here to prove Theorem 1.1 modifies the
method used in [17, 18] (see also [11, 26, 27, 30, 31]).
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