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Abstract. In the spirit of Grothendieck’s famous inequality from the theory of Ba-
nach spaces, we study a sequence of inequalities for the noncommutative Schwartz space,
a Fréchet algebra of smooth operators. These hold in nonoptimal form by a simple nu-
clearity argument. We obtain optimal versions and reformulate the inequalities in several
different ways.

1. Introduction. The noncommutative Schwartz space S is a weakly
amenable m-convex Fréchet algebra whose properties have been investigated
in several recent papers (see e.g. [2, 3, 13, 14]). It is not difficult to see
that as a Fréchet space, S is nuclear. From this, we can easily deduce the
following analogue of Grothendieck’s inequality, which we call Grothendieck’s
inequality in S: there exists a constant K > 0 such that for any continuous
bilinear form u : S ×S → C and any n ∈ N, there exists k ∈ N such that for
every m ∈ N and any x1, . . . , xm, y1, . . . , ym ∈ S, we have

(1)
∣∣∣ m∑
j=1

u(xj , yj)
∣∣∣ ≤ K‖u‖∗n‖(xj)‖RC

k ‖(yj)‖RC
k

The norms on the right hand side arise naturally from the definition of S,
as explained in Section 2 below. Our goal in this note is to show that in fact
k = 2n+ 1 always suffices, and that this is best possible.

This appears to be the first result concerning Grothendieck’s inequality in
the category of Fréchet algebras; to the best of our knowledge, all previous re-
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sults along these lines concern Banach spaces (including C∗-algebras, general
Banach algebras and operator spaces). For Fréchet algebras, Grothendieck’s
inequality seems to have a specific flavour. Many natural examples of Fréchet
algebras, e.g. spaces of holomorphic or smooth functions with pointwise
multiplication, the space of all sequences or the power series spaces with
coordinatewise multiplication (see [9, Ch. 29]) are nuclear in the sense of
Grothendieck, meaning that all tensor product topologies are equal. Since
Grothendieck’s inequality can be understood as the equivalence of two tensor
products, it seems that we can take inequality (1) for granted if the Fréchet
algebra in question is nuclear (in the above sense). The interesting question
that remains is then optimality.

In the remainder of this section, we recall a C∗-algebraic version of
Grothendieck’s inequality due to Haagerup, and then review the definition
and the basic properties of S which we require. In Section 2 we explain how
nuclearity gives Grothendieck’s inequality in S, and we estimate the con-
stants K and k. Section 3 then settles the optimality question for k via a
matricial construction. We conclude with a short section containing several
reformulations of the inequality.

1.1. Grothendieck’s inequality. Pisier’s survey article [12] is a com-
prehensive reference for Grothendieck’s inequality. This presents many equiv-
alent formulations and applications of this famous result, and recounts its
evolution from ‘commutative’ [5] to ‘noncommutative’. Of these reformula-
tions and extensions, Haagerup’s noncommutative version most closely re-
sembles (1), and we state it here for the convenience of the reader.

Theorem 1 ([6], [12, Theorem 7.1]). Let A and B be C∗-algebras. For
any bounded bilinear form u : A×B → C and any finite sequence (xj , yj) in
A×B, we have ∣∣∣∑u(xj , yj)

∣∣∣ ≤ 2‖u‖ ‖(xj)‖RC‖(yj)‖RC

where ‖(xj)‖RC := max{‖
∑
x∗jxj‖1/2, ‖

∑
xjx
∗
j‖1/2}.

1.2. The noncommutative Schwartz space. Let

s =
{
ξ = (ξj)j∈N ∈ CN : |ξ|n :=

( ∞∑
j=1

|ξj |2j2n
)1/2

<∞ for all n ∈ N
}

denote the space of rapidly decreasing sequences. This space becomes Fréchet
when endowed with the above-defined sequence (|·|n)n∈N of norms. The basis
(Un)n∈N of zero neighbourhoods of s is defined by Un := {ξ ∈ s : |ξ|n ≤ 1}.
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The topological dual of s is the space of slowly increasing sequences

s′ =
{
η = (ηj)j∈N ∈ CN : |η|′n :=

( ∞∑
j=1

|ηj |2j−2n
)1/2

<∞ for some n ∈ N
}

where the duality pairing is given by 〈ξ, η〉 :=
∑

j∈N ξjηj for ξ ∈ s, η ∈ s′.
The noncommutative Schwartz space S is the Fréchet space L(s′, s) of

all continuous linear operators from s′ into s, endowed with the topology of
uniform convergence on bounded sets. The formal identity map ι : s ↪→ s′

is a continuous embedding and defines a product on S by xy := x ◦ ι ◦ y
for x, y ∈ S. It is straightforward to see [3] that a natural involution on S
is given by 〈x∗ξ, η〉 := 〈ξ, xη〉 for x ∈ S, ξ, η ∈ s′. With these operations,
S becomes an m-convex Fréchet ∗-algebra. The inclusion map S ↪→ K(`2)
is continuous, and in fact it is a spectrum-preserving ∗-homomorphism [3].
Moreover, by [13, Proposition 3], an element x ∈ S is positive (i.e., x = y∗y
for some y ∈ S) if and only if the spectrum of x is contained in [0,∞), or
equivalently 〈xξ, ξ〉 ≥ 0 for all ξ ∈ s′.

On the other hand, by [3, Cor. 2.4] and [4, Theorems 8.2, 8.3], the topol-
ogy of S cannot be given by a sequence of C∗-norms. This causes some
technical inconvenience (e.g. there is no bounded approximate identity in S)
meaning we cannot apply C∗-algebraic techniques directly.

2. The inequality. Let (‖·‖n)n∈N be a nondecreasing sequence of norms
which gives the topology of S. For u : S ×S → C a continuous bilinear form,
we write

‖u‖∗n := sup{|u(x, y)| : x, y ∈ Un}

where Un = {x ∈ S : ‖x‖n ≤ 1}; similarly, for a functional φ ∈ S ′, we write

‖φ‖∗n := sup{|φ(x)| : x ∈ Un}.

Following Pisier [11, p. 316], for k ∈ N and x1, . . . , xm ∈ S, we write

‖(xj)‖RC
k = max

{∥∥∥ m∑
j=1

x∗jxj

∥∥∥1/2
k
,
∥∥∥ m∑
j=1

xjx
∗
j

∥∥∥1/2
k

}
.

Relative to our choice of norms ‖ · ‖n, we have thus defined each term in our
hoped-for inequality (1). We will now reformulate it using tensor products.

For C∗-algebras, such a reformulation is standard. Indeed, by [6, Theo-
rem 1.1] (formulated along the lines of [8, Theorem 2.1]), Haagerup’s non-
commutative Grothendieck inequality entails the existence of a K > 0 such
that for any C∗-algebras A,B and z in the algebraic tensor product A⊗B,
we have ‖z‖π ≤ K‖z‖ah where ‖ ·‖π is the projective tensor norm and ‖ ·‖ah
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is the absolute Haagerup tensor norm [8, p. 164] on A⊗B, given by

‖z‖ah = inf
∥∥∥ m∑
j=1

|xj |2
∥∥∥1/2∥∥∥ m∑

j=1

|yj |2
∥∥∥1/2.

Here |x| =
(
1
2(x
∗x + xx∗)

)1/2 for x an element of a C∗-algebra, and the
infimum is taken over all representations z =

∑m
j=1 xj ⊗ yj where (xj , yj) ∈

A×B.
We proceed similarly for S. For x ∈ S, let |x|2 = 1

2(x
∗x+ xx∗) ∈ S and

consider the sequence of absolute Haagerup tensor norms (‖ · ‖ah,n)n∈N on
the algebraic tensor product S ⊗ S given by

‖z‖ah,n := inf
∥∥∥ m∑
j=1

|xj |2
∥∥∥1/2
n

∥∥∥ m∑
j=1

|yj |2
∥∥∥1/2
n

where the infimum runs over all ways to represent z =
∑m

j=1 xj⊗yj in S⊗S.
As usual, we write (‖ · ‖π,n)n∈N for the sequence of projective tensor norms
on S ⊗ S.

Just as in the C∗-algebra case, inequality (1) will follow once we show
that the sequences of projective and absolute Haagerup tensor norms are
equivalent on S ⊗ S. In fact, the equivalence of these norms follows imme-
diately from the nuclearity of S (see [9, Theorem 28.15] and [7, Ch. 21, §2,
Theorem 1] for details). On the other hand, the optimal values of k and K
(depending on n and our choice of norms (‖ · ‖n)n∈N) for which (1) holds are
not given by such general considerations. These optimal parameters will be
denoted by κ(n) := kbest and Kn := Kbest.

Henceforth, we focus only on the sequence of norms (‖ · ‖n)n∈N where

‖x‖n := sup{|xξ|n : ξ ∈ U◦n}, n ∈ N, x ∈ S,
and U◦n = {ξ ∈ s′ : |ξ|′n ≤ 1}. In other words, ‖x‖n is the norm of x ∈ S, con-
sidered as a Hilbert space operator fromH ′n := `2((j

−n)j) toHn := `2((j
n)j).

This sequence does indeed induce the topology of S. In this context, we will
estimate Kn and compute the exact values of κ(n).

We start with the following result, which can be compared with [13,
Lemma 8]. To fix some useful notation, for n ∈ N we define an infinite diag-
onal matrix dn := diag(1n, 2n, 3n, 4n, . . . ), which we consider as an isometry
dn : `2 → H ′n and simultaneously as an isometry dn : Hn → `2.

Proposition 2. Let n ∈ N. Then
(i) ‖x‖n = sup{〈xξ, ξ〉 : ξ ∈ U◦n} for every positive x ∈ S;
(ii) ‖x‖2n ≤ ‖x2‖2n for every self-adjoint x ∈ S; and
(iii) ‖x‖2n ≤ ‖x∗x‖

1/2
2n ‖xx∗‖

1/2
2n for every x ∈ S.

Moreover, inequalities (ii) and (iii) are sharp.
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Proof. (i) Observe that ‖x‖n = ‖dnxdn‖B(`2). Furthermore, since x is
positive, dnxdn is positive and we have

‖x‖n=‖dnxdn‖B(`2)=sup{〈xdnξ, dnξ〉 : |ξ|`2 ≤ 1}=sup{〈xξ, ξ〉 : |ξ|′n ≤ 1}.

(ii) For x self-adjoint, we have ‖x2‖2n = ‖d2nx2d2n‖B(`2) = ‖d2nx‖2B(`2),
and by [1, Proposition II.1.4.2],

‖x‖n = ‖dnxdn‖B(`2) = ν(dnxdn) = ν(d2nx) ≤ ‖d2nx‖B(`2),

where ν(·) denotes the spectral radius. This gives the desired inequality.
(iii) Since S ↪→ B(`2), any x ∈ S is also a Hilbert space operator, and the

block-matrix operator
[ (xx∗)1/2 x

x∗ (x∗x)1/2

]
is positive in B(`2⊕ `2) (see e.g. [10,

p. 117]). Equivalently,

(2) |〈xξ, η〉|2 ≤ 〈(xx∗)1/2η, η〉〈(x∗x)1/2ξ, ξ〉 ∀ ξ, η ∈ `2.

For m ∈ N, let us write pm :=
[
Im 0
0 0

]
∈ S where Im ∈ Mm is the identity

matrix. Now fix n ∈ N and choose ξ, η ∈ H ′n. Then pmξ, pmη ∈ `2 for all
m ∈ N and (2) gives

|〈pmxpmξ, η〉|2 ≤ 〈pm(xx∗)1/2pmη, η〉〈pm(x∗x)1/2pmξ, ξ〉.

Since (pm)m∈N is an approximate identity in S (see [13, Proposition 2]), we
obtain

|〈xξ, η〉|2 ≤ 〈(xx∗)1/2η, η〉〈(x∗x)1/2ξ, ξ〉.

Taking the supremum over all ξ, η in the unit ball of H ′n we get

‖x‖2n ≤ ‖(xx∗)1/2‖n‖(x∗x)1/2‖n.

Applying (ii) to the positive operators (xx∗)1/2 and (x∗x)1/2 we conclude
that ‖x‖2n ≤ ‖x∗x‖

1/2
2n ‖xx∗‖

1/2
2n .

For sharpness, observe that if x is a diagonal rank one matrix unit then
we have equality in both (ii) and (iii).

Proposition 3. For any n,m ∈ N and x1, . . . , xm, y1, . . . , ym ∈ S,
m∑
j=1

‖xj‖n‖yj‖n

≤ π2

6

∥∥∥ m∑
j=1

x∗jxj

∥∥∥1/4
2n+1

∥∥∥ m∑
j=1

xjx
∗
j

∥∥∥1/4
2n+1

∥∥∥ m∑
j=1

y∗j yj

∥∥∥1/4
2n+1

∥∥∥ m∑
j=1

yjy
∗
j

∥∥∥1/4
2n+1

.

Proof. Let C := π2/6 and let p ∈ N. We claim that
m∑
k=1

‖x∗kxk‖p ≤ C
∥∥∥ m∑
k=1

x∗kxk

∥∥∥
p+1

.
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By the Cauchy–Schwarz inequality and Proposition 2(iii) this will then imply
the desired inequality. To establish the claim, let ξ1, . . . , ξm ∈ U◦p and let us
write (ej)j∈N for the standard basis vectors in `2. We have

m∑
k=1

〈x∗kxkξk, ξk〉 =
m∑
k=1

∞∑
i,j=1

〈x∗kxkej , ei〉(ij)pξki i
−pξkj j

−p.

Applying the Cauchy–Schwarz inequality to summation over i, j ∈ N gives
m∑
k=1

〈x∗kxkξk, ξk〉 ≤
m∑
k=1

( ∞∑
i,j=1

|〈x∗kxkej , ei〉|2(ij)2p
)1/2

.

Since x∗x is positive for any x ∈ S, and for positive operators y ∈ S we have
|yij |2 ≤ yiiyjj (where yij := 〈yej , ei〉), this implies that

m∑
k=1

〈x∗kxkξk, ξk〉 ≤
∞∑
j=1

〈( m∑
k=1

x∗kxk

)
jpej , j

pej

〉
≤
∞∑
j=1

j−2 sup
i∈N

〈( m∑
k=1

x∗kxk

)
ip+1ei, i

p+1ei

〉
≤ C

∥∥∥ m∑
k=1

x∗kxk

∥∥∥
p+1

.

By Proposition 2(i), for any ε > 0 there are ξ1, . . . , ξm ∈ U◦p with
m∑
k=1

‖x∗kxk‖p <
m∑
k=1

〈x∗kxkξk, ξk〉+ ε < C
∥∥∥ m∑
k=1

x∗kxk

∥∥∥
p+1

+ ε.

Taking the infimum over ε > 0 yields the claim.

As a straightforward consequence of Proposition 3, we obtain:

Theorem 4 (Grothendieck’s inequality in S). There is a constant K ≤
π2/6 such that ‖z‖π,n ≤ 2K‖z‖ah,2n+1 for any n ∈ N and z ∈ S ⊗ S. More-
over, every continuous bilinear form u : S × S → C satisfies inequality (1)
with k = 2n + 1, for any n,m ∈ N and any x1, . . . , xm, y1, . . . , ym ∈ S. In
particular, taking u(x, y) := φ(x)φ(y) where φ ∈ S ′, we obtain

(3)
m∑
j=1

|φ(xj)|2 ≤ K(‖φ‖∗n‖(xj)‖RC
2n+1)

2

Remark. This shows that κ(n) ≤ 2n + 1. On the other hand, it is
easy to show that κ(n) > 2n − 1. Indeed, if not, then (3) would hold
with 2n + 1 replaced by some ` ≤ 2n − 1. Take m ∈ N, define ξm :=∑m

j=1 j
nej and φm ∈ S ′ by φm(x) := 〈xξm, ξm〉. Then for xj := ejj , j =

1, . . . ,m, we get ‖(xj)‖RC
` = m` and ‖φm‖∗n = m. On the other hand,
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j=1 |φm(xj)|2 is equivalent (up to a constant) to m4n+1. Therefore (3)

takes the form m4n+1 ≤ Cm2`+2 for some constant C (independent of m).
Letting m → ∞, we obtain ` ≥ 2n − 1/2, a contradiction. Hence κ(n) ∈
{2n, 2n+ 1}.

3. Optimality. We will now show that κ(n) = 2n+1. For this, we will
use the tensor product formulation, noting that

κ(n) = min

{
k ∈ N : sup

{
‖z‖π,n
‖z‖ah,k

: z ∈ S ⊗ S, z 6= 0

}
<∞

}
.

Recall the diagonal operator dn defined before Proposition 2. For every x ∈ S
the operator `2

dn
↪−→ H ′n

x−→ Hn
dn
↪−→ `2 is bounded. This leads to the following

observation.

Proposition 5. If z =
∑k

j=1 xj ⊗ yj ∈ S ⊗ S, then

‖z‖π,n =
∥∥∥ k∑
j=1

dnxjdn ⊗ dnyjdn
∥∥∥
π
.

Proof. Write

∆nz =

k∑
j=1

dnxjdn ⊗ dnyjdn ∈ B(`2)⊗ B(`2).

If ∆nz =
∑m

l=1 al ⊗ bl ∈ B(`2)⊗B(`2) and
∑m

l=1 ‖al‖ ‖bl‖ < ‖∆nz‖π + ε for
some ε > 0, then z =

∑m
l=1 d

−1
n ald

−1
n ⊗ d−1n bld

−1
n and

‖z‖π,n ≤
m∑
l=1

‖d−1n ald
−1
n ‖n‖d−1n bld

−1
n ‖n =

m∑
l=1

‖al‖ ‖bl‖ < ‖∆nz‖π + ε.

This gives ‖z‖π,n ≤ ‖∆nz‖π. The reverse inequality is proved similarly.

We also need the following well-known fact.

Proposition 6. If H is a Hilbert space and x1, . . . , xm ∈ B(H), then∥∥∥ m∑
j=1

xj ⊗ x∗j
∥∥∥
h
=
∥∥∥ m∑
j=1

xjx
∗
j

∥∥∥.
Proof. By [15, Theorem 4.3], the Haagerup norm on the left hand side

is equal to the completely bounded norm of the map on B(H) given by a 7→∑m
j=1 xjax

∗
j , which is completely positive, so attains its completely bounded

norm at the identity operator.

Theorem 7. For every n ∈ N, we have κ(n) = 2n+ 1.

Proof. By Theorem 4, it only remains to show that κ(n) > 2n. Choose
kn ∈ N sufficiently large that k + 1 ≤ 2k(k1/(4n) − 1) for all k ≥ kn. This
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inequality ensures that for every k ≥ kn, if we define

i1 = 2k, ik+1 = bk1/(4n)2kc, ij = ik+1 + j − (k + 1), 2 ≤ j ≤ k,
then i1 < i2 < · · · < ik+1. Observe that these indices depend on k. Denote
by (eij)i,j∈N the standard matrix units, and for j = 2, . . . , k+1, consider the
self-adjoint operators

xj := ei1,ij + eij ,i1 ∈Mik+1
⊂ S.

Let zk :=
∑k+1

j=2 xj ⊗ xj . Since dnxjdn = in1 i
n
j (ei1,ij + eij ,i1) and (dnxjdn)

2 =

i2n1 i
2n
j (ei1,i1 + eij ,ij ), by Propositions 5 and 6 we obtain

‖zk‖π,n =
∥∥∥ k+1∑
j=2

dnxjdn ⊗ dnxjdn
∥∥∥
π

≥
∥∥∥ k+1∑
j=2

dnxjdn ⊗ dnxjdn
∥∥∥
h
=
∥∥∥ k+1∑
j=2

(dnxjdn)
2
∥∥∥ = i2n1

k+1∑
j=2

i2nj .

On the other hand,

|xj |2 = x2j = ei1,i1 + eij ,ij and
k+1∑
j=2

d2nx
2
jd2n = i4n1 kei1,i1 +

k+1∑
j=2

i4nj eij ,ij .

Therefore

‖zk‖ah,2n ≤
∥∥∥ k+1∑
j=2

|xj |2
∥∥∥
2n

=
∥∥∥ k+1∑
j=2

d2nx
2
jd2n

∥∥∥ = max{i4n1 k, i4nk+1}

< i4n1 k + i4nk+1.

Hence

‖zk‖π,n
‖zk‖ah,2n

>
i2n1
∑k+1

j=2 i
2n
j

i4n1 k + i4nk+1

>
i−2n1 i2n2

1 + k−1i−4n1 i4nk+1

→∞ as k →∞,

by our choice of i1, . . . , ik+1. So κ(n) > 2n as required.

4. Reformulations of the inequality. Here we give several differ-
ent ways of stating our inequality; in each case, an analogous result for
C∗-algebras may be found in [12]. The methods here are fairly standard,
so full proofs are often omitted. Throughout, we write K = supn∈NKn ≤
π2/6.

4.1. Grothendieck’s inequality with states. For ξ ∈ U◦n, let φξ ∈ S ′
be given by φξ(x) = 〈xξ, ξ〉, x ∈ S. We call an element of the closed convex
hull of {φξ : ξ ∈ U◦n} an n-state on S. Note that by Proposition 2(i), for any
positive element x ∈ S we have ‖x‖n = sup{φ(x) : φ ∈ Vn}, where Vn ⊆ S ′
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is the set of all n-states on S. The next result may be deduced from The-
orem 4 by closely following the Hahn–Banach Separation argument of [12,
§23].

Theorem 8. For any continuous bilinear form u : S×S → C and n ∈ N,
there are (2n+ 1)-states φ1, φ2, ψ1, ψ2 on S with

|u(x, y)| ≤ K‖u‖∗n
(
φ1(x

∗x) + φ2(xx
∗)
)1/2(

ψ1(y
∗y) + ψ2(yy

∗)
)1/2

for all x, y ∈ S.

4.2. ‘Little’ Grothendieck inequality. As a consequence we obtain
the following ‘little’ Grothendieck inequality in S. Recall that if T : X → Y is
a linear map between Fréchet spaces, then ‖T‖n,k := sup{‖Tx‖k : ‖x‖n ≤ 1}.

Theorem 9. For any Fréchet–Hilbert space H, if u1, u2 : S → H are
continuous linear maps, k,m, n ∈ N and x1, . . . , xm, y1, . . . , ym ∈ S, then∣∣∣ m∑

j=1

〈u1(xj), u2(yj)〉k
∣∣∣ ≤ K‖u1‖n,k‖u2‖n,k‖(xj)‖RC

2n+1‖(yj)‖RC
2n+1.

Equivalently, for any k, n ∈ N there are (2n + 1)-states φ1, φ2, ψ1, ψ2 such
that for all x, y ∈ S we have

|〈u1(x), u2(y)〉k| ≤ K‖u1‖n,k‖u2‖n,k
×
(
φ1(x

∗x) + φ2(xx
∗)
)1/2(

ψ1(y
∗y) + ψ2(yy

∗)
)1/2

.

Proof. Apply Theorems 4 and 8 to uk(x, y) := 〈u1(x), u2(y)〉k for k ∈ N.

Using the same argument as in the proof of Theorem 8 we can obtain an
equivalent version of the ‘little’ Grothendieck inequality.

Theorem 10. For any Fréchet–Hilbert space H, if u : S → H is a con-
tinuous linear map and k, n ∈ N, then there exist (2n + 1)-states φ1, φ2 on
S such that ‖ux‖k ≤

√
K ‖u‖n,k(φ1(x∗x) + φ2(xx

∗))1/2 for all x ∈ S.
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