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VARIABLE SELECTION USING STEPDOWN PROCEDURES

IN HIGH-DIMENSIONAL LINEAR MODELS

Abstract. We study the variable selection problem in high-dimensional
linear models with Gaussian and non-Gaussian errors. Based on Ridge esti-
mation, as in Bühlmann (2013) we are considering the problem of variable
selection as the problem of multiple hypotheses testing. Under some tech-
nical assumptions we prove that stepdown procedures are consistent for
variable selection in a high-dimensional linear model.

1. Introduction. In many data problems in biology, medical and eco-
nomical studies the number of explanatory variables p may greatly exceed
the sample size n. Recently, a rich literature is devoted to variable selection
for high-dimensional problems (see references to [2] and [13]). We focus on
the variable selection problem in the high-dimensional linear model

(1) Y = Xβ + ε,

where Y =(Y1, . . . , Yn)′, X is a fixed n × p design matrix, β is a true p × 1
parameter vector and ε is an n×1 stochastic error vector with ε1, . . . , εn i.i.d.
having E(ε1) = 0, Var(ε1) = σ2 <∞ and p is much larger than n (p� n);
more precisely, we have p = p(n), and p(n)/n → ∞ as n → ∞. We assume
that βj 6= 0 for j ∈ I0 and βj = 0 for j ∈ I1 := {1, . . . , p} \ I0 (|I0| = p0)
and p0 is fixed and does not depend on n. For parameter estimation we use
Ridge regression

β̂ = arg min
β

(‖Y− Xβ‖22/n+ λ‖β‖22)(2)

= (n−1X′X + λI)−1n−1X′Y,
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where λ = λn is a regularization parameter, and I is the identity matrix.
Let X =RSV′ be the SVD decomposition. Denote by R(X) ⊂ Rp the linear
space generated by the n rows of X. Then the projection of Rp onto R(X)
has the form PX = X′(XX′)−X =VV′ and we set θ :=PXβ = VV′β, where
(XX′)− denotes the pseudo-inverse of the matrix XX′. In [13] we can find
a characterization of identifiability in a high-dimensional linear model with
fixed design X. In particular, if p > n and β ∈ R(X), then β is identifiable.

It is well known that β̂ is a biased estimator of β with bias under the
null hypothesis Hj : βj = 0 (see [2]) given by∑

k 6=j
(PX)j,kβk.

Taking an initial estimator β̂int of β to be the Lasso estimator ([16]), we
have an estimator of this bias∑

k 6=j
(PX)j,kβ̂int,k,

and a corrected Ridge estimator (see [2])

(3) β̂corr,j = β̂j −
∑
k 6=j

(PX)j,kβ̂int,k

for j = 1, . . . , p. Let Σ̂ = n−1X′X. Then Cov(β̂) = n−1σ2Ω, where

Ω = Ω(λ) = (Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1.

Set

an,j :=
√
nσ−1Ω

−1/2
j,j .

We consider the following assumptions:

(A) There are constants ∆j,n > 0 such that

P
( p⋂
j=1

{∣∣∣an,j∑
k 6=j

(PX)j,k(β̂int,k − βk)
∣∣∣ ≤ ∆j,n

})
→ 1 as n→∞.

(B) The regularization parameter λ = λn satisfies

λn(Ωmin(λn))−1/2 = o(n−1/2‖θ‖−12 λmin 6=0(Σ̂)) as n→∞,

where Ωmin(λ) = minj=1,...,p Ωj,j(λ) > 0 and λmin 6=0(Σ̂) is the small-

est non-zero eigenvalue of Σ̂.

A thorough discussion of conditions (A)–(B) is given in [2]. The assump-
tion Ωmin(λ) > 0 is very mild and (B) is fulfilled for λn sufficiently small.
In Remarks 3–5 we also make some new comments on these conditions.

We test the multiple hypotheses

(h0) Hi : βi = 0 versus H ′i : βi 6= 0, for i = 1, . . . , p.
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Similarly to [2], we assume that the p-value for single hypothesis testing
Hi vs. H ′i has the form

(4) πi = 2
(
1− Φ((an,i|β̂corr,i| −∆i,n)+)

)
for i = 1, . . . , p, where Φ is the c.d.f. of the standard normal random variable.
As already mentioned, the problem of variable selection in linear regression
can be viewed as multiple testing (h0). In a linear Gaussian model, based on
the p-values πi, Bühlmann [2] constructed a method related to the Westfall–
Young procedure [19], where the corrected p-values Pcorr,i have the form

Pcorr,i = FZ(πi + ζ),

where ζ > 0 is an arbitrarily small number, and FZ is the distribution
function of min1≤i≤p 2(1−Φ(an,i|Zi|)), where (Z1, . . . , Zp) ∼ Np(0, σ

2n−1Ω).
Hypothesis Hi is rejected if Pcorr,i ≤ α (0 < α < 1). In [2] it is shown
that under assumptions (A)–(B) the procedure asymptotically controls the
familywise error rate on level α.

In testing problem (h0), we use stepdown procedures ([1], [8]–[11]), which
we describe as follows. Let π1, . . . , πp be the p-values for individual tests, let
π(1) ≤ · · · ≤ π(p) denote these p-values ordered, and let H(1), . . . ,H(p) stand
for the corresponding null hypotheses. Let in addition α1 ≤ · · · ≤ αp be given
thresholds that may depend on n. We proceed according to the following
scheme. If π(1) > α1, we reject no null hypotheses. Otherwise, if

(h1) π(1) ≤ α1, . . . , π(r) ≤ αr,

we reject the hypotheses H(1), . . . ,H(r), where the largest r satisfying (h1) is
used. Stepdown procedures with data-dependent thresholds can be found in
[12], [15], [18]. A selection procedure for the linear regression model may be
described by the set Î of all indices i ∈ I0 ∪ I1 for which the null hypothesis
Hi is rejected, and it is called consistent if

P(Î = I0)→ 1 as n→∞.

We assume that this convergence holds for any parameter vector β since P
belongs to a class of probability measures dependent on β, i.e., P = Pβ. In
our further considerations we will assume that all convergences with P hold
for any parameter vector β. Let R be the total number of rejections, and V
the number of false rejections for the multitesting problem (h0), (h1). It is
easy to check that a selection procedure is consistent (see [3]) if

(5) P(R = p0, V = 0)→ 1 as n→∞.

This condition holds if

P(V ≥ 1)→ 0 and P(R 6= p0)→ 0
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as n→∞. Since

(6) P(V ≥ 1) ≤
∑
j∈I1

P(πj ≤ αp) ≤ pmax
j∈I1

P(πj ≤ αp),

and

P(R 6= p0) ≤
p0∑
j=1

P(π(j) > αj) + P(π(p0+1) ≤ αp0+1),

and if maxj∈I0(1 − Fj(αp)) → 0 as n → ∞, where Fj is the distribution
function of the p-value πj for j ∈ I0, in the sparse model when |I0| = p0 is
fixed and independent of n (for details see [6]–[7]), we have

p0∑
j=1

P(π(j) > αj) + P(π(p0+1) > αp0+1)

= O
(

max
j∈I0

(1− Fj(αj)) +
∑
j∈I1

P(πj ≤ αp)
)

= O
(

max
j∈I0

(1− Fj(α1)) + pmax
j∈I1

P(πj ≤ αp)
)
.

Of course maxj∈I0(1− Fj(αp)) ≤ maxj∈I0(1− Fj(α1)). Hence, we obtain

Consistency of a stepdown selection procedure. A stepdown
selection procedure is consistent if

(i) pP (πi ≤ αp)→ 0 as n→∞ for i ∈ I1;
(ii) maxj∈I0(1− Fj(α1))→ 0 as n→∞ for j ∈ I0.
In Section 2 we establish asymptotic control of the familywise error rate

and consistency of the stepdown procedure when the errors in (1) are Gaus-
sian (Proposition 1, Theorem 2) and when they are non-Gaussian (Propo-
sition 7, Theorem 8). In Remarks 3–5 and 9 we discuss conditions under
which our main results are satisfied. All proofs are given in the Appendix.
A simulation study supports the results obtained.

2. Main results

2.1. Gaussian model. We assume that the random errors in (1) have
Gaussian distribution. We consider the following assumptions:

(C) pαp → 0 as n→∞.
(D) |(PX)j,jβj | ≥ n−c for some c ∈ (0, 1/2) and ∆j,n = O(1), an,j >

√
n

for all j ∈ I0, and n1/2−c − Φ−1(1− α1/2)→∞ as n→∞.

Proposition 1. For any stepdown procedure satisfying (A)–(C), we
have

(7) lim sup
n→∞

P (V ≥ 1)− pαp ≤ 0.



Variable selection using stepdown procedures 161

Theorem 2. Any stepdown procedure satisfying (A)–(D) is consistent
for the variable selection problem in the linear regression model (1).

Remark 3. Since∣∣∣an,j∑
k 6=j

(PX)j,k(β̂int,k − βk)
∣∣∣ ≤ an,j max

k 6=j
|(PX)j,k| ‖β̂int − β‖1,

(A) holds for ∆j,n = an,j maxk 6=j |(PX)j,k| ‖β̂int − β‖1. For the compatibility
conditions with constant φ20,n such that lim infn→∞ φ

2
0,n > 0 (see [17]) for

sparse linear models (see [2, Lemma 2]) if we take the Lasso estimator for
an initial estimator of β with λLasso = 2

√
log(p)/n (in our case |I0| = p0 is

constant and ξ = 0) we have

‖β̂Lasso − β‖1 = OP
(√

log(p)/n
)
,

and

(8) ∆j,n = max
k 6=j

an,j |(PX)j,k|
√

log(p)/n

satisfies condition (A).

Remark 4. If we assume the sparsity condition on θ ([13, condition
(C1)])

(9) ‖θ‖2 = O(na),

where ‖θ‖2 is the l2 norm of the vector θ, and ([13, condition (C2)])

(10) λ−1min 6=0(Σ̂) = O(n1−b)

as n→∞ for some 0 < a < b < 1, then (B) holds if

(11) λn = o(n−(3/2+a−b)) as n→∞.

Remark 5. In (D), we have ∆j,n = O (1) if

(12)
√

log(p) Ω
−1/2
min (λn) max

k 6=j
|(PX)j,k| = O(1).

This follows from (8) and from the bound

(13) an,j ≤
√
nσ−1Ω

−1/2
min (λn).

We also have an,j >
√
n if σ−1Ω

−1/2
max (λn) > 1, where

Ωmax(λn) = max
j=1,...,p

Ωj,j(λ).

Of course working in real data we must estimate σ from the data by a
consistent estimator. For large a, 1 − Φ(a) ≤ ϕ(a), where ϕ is the density
function of the standard normal r.v. If we take a large ã such that ϕ(ã) ≤
α1/2, we have 1−Φ(ã) ≤ α1/2 and then n1/2−c−Φ−1(1−α1/2) ≥ n1/2−c−ã.
Setting ã =

√
log(1/α2

1) and αp := exp
(
−1

2 log(p)
)
/p, α1 = αp/cp for some
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cp →∞, and cp ≤ p, we obtain pαp → 0 as n→∞, and for large n, we have

n1/2−c − Φ−1(1− α1/2) ≥ n1/2−c −
√

log(p5). Assuming

(14) n1/2−c −
√

log(p5)→∞ as n→∞,

we have n1/2−c − Φ−1(1− α1/2) → ∞ as n → ∞. In the special case when
p = nβ for some β > 1 or in ultra-high dimension when p = exp(nγ) for some
γ ∈ (0, 1 − 2c), we obtain (14). Similarly, taking αp := 1/(p log(p)), α1 =
αp/cp for some cp→∞, and cp≤ p, we find that n1/2−c−Φ−1(1−α1/2)→∞ if

(15) n1/2−c −
√

log(p4 log2(p))→∞ as n→∞,

which is a weaker assumption than (14).

Example 6. We consider the following stepdown procedures:

(a) the Holm procedure with

αj =
qn

p+ 1− j
,

(b) a generalization of the Holm (UHolm) procedure [11] with

αj =
([γj] + 1)qn

p+ [γj] + 1− j
for some 0 < γ < 1,

for some qn → 0 as n→∞,
(c) the Bonferroni procedure with

αj = exp
(
−1

2 log(p)
)
/p,

where j = 1, . . . , p. It is easy to check that (14) holds if qn =
exp
(
−1

2 log(p)
)
/p and (15) holds if qn = 1/(p log(p)).

2.2. Non-Gaussian model. We assume that the errors ε1, . . . , εn are
i.i.d. with E(ε1) = 0, E |ε1|3 <∞. Instead of (B) we consider the condition

(B1) The regularization parameter λ = λn satisfies

λn(Ωmin(λn))−1/2 = o(p−1n−1/2‖θ‖−12 λmin 6=0(Σ̂)) as n→∞.

Proposition 7. For any stepdown procedure satisfying (A), (B1), (C),
we have (7).

Theorem 8. Any stepdown procedure satisfying (A), (B1), (C), (D) is
consistent for the variable selection problem in the linear regression model (1).

Remark 9. Assuming (9)–(10) and

(16) λn = o(p−1n−(3/2+a−b))

as n→∞, we obtain (B1). As in Remarks 3–5, (8) implies (A), and (12)–(14)
for αp = exp

(
−1

2 log(p)
)
/p or (12)–(15) for αp = 1/(p log(p)) imply (D).
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3. Simulation study. First, we generated p independent vectors Xj

from the standard normal distribution, j = 1, . . . , p; second, we generated
p vectors Xj from the normal distribution with covariance matrix Σ, where
σi,i = 1 and σi,j = 0.3 for i 6= j; and in the end we generated p vectors Xj

from the normal distribution with covariance matrix Σ, where σi,i = 1 and
σi,j = 0.6 for i 6= j.

We consider two families of true models:

(M1) Y =

p0∑
j=1

Xj + ε,

(M2) Y =

p0∑
j=1

1.5Xj + ε,

for p0 ≤ p, where ε is a vector generated from the standard normal distri-
bution (σ = 1) or Student’s t distribution with df = 5 (σ =

√
5/3). In our

simulations, in all models we considered two cases for n = 100: p = 500,
p0 = 5; p = 2000, p0 = 5, and four cases for n = 200: p = 500, p0 = 5;
p = 500, p0 = 10; p = 1000, p0 = 5; p = 1000, p0 = 10.

Table 1. Checking conditions (B) and (D) for Σ = I

n 100 100 200 200 200 200

p=500,p0=5 p=2000,p0=5 p=500,p0=5 p=500,p0=10 p=1000,p0=5 p=1000,p0=10

Ω1
min(λn) 0.03 0.001 0.20 0.19 0.04 0.04

maxj∈I0 a
1
n,j 44.97 192.57 28.47 28.91 69.65 69.02

maxj∈I0 ∆
1
j,n 0.69 1.16 0.38 0.44 0.53 0.59

Ω2
min(λn) 0.03 0.001 0.18 0.18 0.03 0.04

maxj∈I0 a
2
n,j 49.85 229.79 28.57 31.99 66.81 70.90

maxj∈I0 ∆
2
j,n 0.73 1.03 0.37 0.33 0.18 0.17

λmin 6=0(Σ̂) 1.52 12.19 0.33 0.35 1.60 1.56

minj∈I0 |(PX)j,jβ
M1
j | 0.17 0.04 0.35 0.32 0.18 0.17

minj∈I0 |(PX)j,jβ
M2
j | 0.26 0.06 0.53 0.48 0.27 0.26

‖θM1‖2 1.04 0.54 1.43 2.02 0.98 1.40

‖θM2‖2 1.56 0.81 2.15 3.03 1.47 2.1

We simulated from the above linear models and we recorded the numbers
of true models selected from each of N = 1000 MC replications with the use
of the following stepdown procedures: Holm’s, a generalization of Holm’s
(UHolm for γ = 0.01, 0.1, 0.5, 0.9) for qn = exp

(
−1

2 log(p)
)
/p (superscript 1

in Tables 4–10) and for qn = 1/(p log(p)) (superscript 2 in Tables 4–10)
and Bonferroni’s (Bonf) for αj = exp

(
−1

2 log(p)
)
/p (see Example 6). In

each replication we have fixed a design matrix X that corresponds to a
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Table 2. Checking conditions (B) and (D) for σi,j = 0.3 for i 6= j and σi,i = 1

n 100 100 200 200 200 200

p=500,p0=5 p=2000,p0=5 p=500,p0=5 p=500,p0=10 p=1000,p0=5 p=1000,p0=10

Ω1
min(λn) 0.04 0.002 0.27 0.28 0.05 0.05

maxj∈I0 a
1
n,j 39.97 181.80 24.46 25.74 55.45 58.22

maxj∈I0 ∆
1
j,n 0.63 0.99 0.35 0.32 0.49 0.47

Ω2
min(λn) 0.05 0.002 0.24 0.27 0.05 0.05

maxj∈I0 a
2
n,j 41.73 165.30 25.00 24.29 60.50 57.08

maxj∈I0 ∆
2
j,n 0.63 0.91 0.32 0.40 0.46 0.45

λmin 6=0(Σ̂) 1.10 8.62 0.25 0.25 1.10 1.11

minj∈I0 |(PX)j,jβ
M1
j | 0.17 0.04 0.35 0.32 0.18 0.17

minj∈I0 |(PX)j,jβ
M2
j | 0.26 0.06 0.53 0.48 0.27 0.26

‖θM1‖2 1.01 0.53 1.39 1.99 1.00 1.40

‖θM2‖2 1.52 0.80 2.09 2.99 1.5 2.10

Table 3. Checking conditions (B) and (D) for σi,j = 0.6 for i 6= j and σi,i = 1

n 100 100 200 200 200 200

p=500,p0=5 p=2000,p0=5 p=500,p0=5 p=500,p0=10 p=1000,p0=5 p=1000,p0=10

Ω1
min(λn) 0.08 0.004 0.46 0.42 0.08 0.09

maxj∈I0 a
1
n,j 30.00 131.00 17.94 19.36 41.87 44.18

maxj∈I0 ∆
1
j,n 0.45 0.60 0.29 0.27 0.33 0.37

Ω2
min(λn) 0.07 0.004 0.47 0.48 0.08 0.09

maxj∈I0 a
2
n,j 34.81 133.19 18.15 18.39 44.09 43.29

maxj∈I0 ∆
2
j,n 0.43 0.69 0.25 0.28 0.34 0.39

λmin 6=0(Σ̂) 0.62 4.94 0.15 0.14 0.63 0.61

minj∈I0 |(PX)j,jβ
M1
j | 0.19 0.05 0.40 0.36 0.17 0.18

minj∈I0 |(PX)j,jβ
M2
j | 0.29 0.08 0.6 0.54 0.26 0.27

‖θM1‖2 1.02 0.52 1.50 1.94 1.05 1.52

‖θM2‖2 1.53 0.78 2.25 2.91 1.58 2.28

linear model with fixed design. As initial estimator of β in (3) we used the
Lasso estimator with regularization parameter λLasso = 2

√
log(p)/n from

the library glmnet in the R package [5]. This choice guarantees condition
(A) (for more details see Remark 3). The parameter λ for Ridge regression
(2) was chosen to be λ = 1/n, which satisfies (11) for Gaussian errors,
and λ = 1/(pn), which satisfies (16) for Student-t errors (in both cases
0 < a < b < 1 and b > a + 1/2—see Remarks 4, 9). We compared our
procedures with the SCAD algorithm with tuning parameter λ = 1/n (see
[4] for details of this algorithm). The results for the SCAD algorithm are
given in Table 12.
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Table 4. Frequencies of the true model that are selected by multiple procedures in 1000
simulations for M1 models when Σ = I for Gaussian errors, and λ = 1/n

n 100 100 200 200 200 200

p=500,p0=5 p=2000,p0=5 p=500,p0=5 p=500,p0=10 p=1000,p0=5 p=1000,p0=10

Bonf 767 499 947 728 867 404
1 Holm 897 941 1000 995 1000 977
1 UHolm 0.01 897 941 1000 995 1000 977
1 UHolm 0.1 897 941 1000 990 1000 960
1 UHolm 0.5 928 949 999 975 999 927
1 UHolm 0.9 939 949 999 965 998 919
2 Holm 991 979 998 996 998 987
2 UHolm 0.01 991 979 998 996 998 987
2 UHolm 0.1 991 979 998 994 998 974
2 UHolm 0.5 974 965 995 982 994 940
2 UHolm 0.9 964 960 991 974 993 917

From Tables 1–3,we can see that the assumptions onPX, Ωmin, λmin 6=0(Σ̂),
maxj∈I0 an,j , maxj∈I0 ∆j,n are reasonable for design matrices X (see condi-
tions (B), (D) and Remarks 3–5). From M1 and M2 models, we note that
βM1
j = 1 for j ∈ I0, β

M1
j = 0 for j ∈ I1 and βM2

j = 1.5 for j ∈ I0,

βM2
j = 0 for j ∈ I1. Similarly θM1 = PXβ

M1 and θM2 = PXβ
M2, where

βM1 = (βM1
j , j ∈ I0 ∪ I1), βM2 = (βM2

j , j ∈ I0 ∪ I1). In Tables 1–3 the super-
script 1 on Ωmin, an,j , ∆j,n corresponds to λ = 1/n, and the superscript 2
corresponds to λ = 1/(pn).

Table 5. Frequencies selected in 1000 simulations for M1 models when σi,j = 0.3 for
i 6= j and σi,i = 1 for Gaussian errors, and λ = 1/n

n 100 100 200 200 200 200

p=500,p0=5 p=2000,p0=5 p=500,p0=5 p=500,p0=10 p=1000,p0=5 p=1000,p0=10

Bonf 960 856 980 981 993 988
1 Holm 670 365 1000 992 998 997
1 UHolm 0.01 670 365 1000 992 998 997
1 UHolm 0.1 670 365 1000 994 998 997
1 UHolm 0.5 769 432 999 997 1000 998
1 UHolm 0.9 802 472 999 996 1000 999
2 Holm 700 287 1000 999 1000 1000
2 UHolm 0.01 700 287 1000 999 1000 1000
2 UHolm 0.1 700 287 1000 998 1000 1000
2 UHolm 0.5 777 362 1000 998 1000 1000
2 UHolm 0.9 815 407 1000 998 1000 1000
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Table 6. Frequencies selected in 1000 simulations for M1 models when σi,j = 0.6 for
i 6= j and σi,i = 1 for Gaussian errors, and λ = 1/n

n 100 100 200 200 200 200

p=500,p0=5 p=2000,p0=5 p=500,p0=5 p=500,p0=10 p=1000,p0=5 p=1000,p0=10

Bonf 385 465 971 896 991 935
1 Holm 23 9 668 370 922 513
1 UHolm 0.01 23 9 668 370 922 513
1 UHolm 0.1 23 9 668 440 922 580
1 UHolm 0.5 36 24 770 556 952 683
1 UHolm 0.9 52 37 808 608 960 723
2 Holm 26 28 856 552 956 795
2 UHolm 0.01 26 28 856 552 956 795
2 UHolm 0.1 26 28 856 635 956 846
2 UHolm 0.5 71 56 912 757 978 902
2 UHolm 0.9 90 72 928 794 985 926

Table 7. Frequencies selected in 1000 simulations for M2 models when σi,j = 0.6 for
i 6= j and σi,i = 1 for Gaussian errors, and λ = 1/n

n 100 100 200 200 200 200

p=500, p0=5 p=2000, p0=5 p=500, p0=5 p=500, p0=10 p=1000, p0=5 p=1000, p0=10

Bonf 986 976 982 986 991 989
1 Holm 954 723 1000 1000 1000 998
1 UHolm 0.01 954 726 1000 1000 1000 998
1 UHolm 0.1 954 726 1000 1000 1000 999
1 UHolm 0.5 977 799 1000 1000 1000 1000
1 UHolm 0.9 980 819 1000 1000 1000 1000
2 Holm 966 919 1000 1000 1000 1000
2 UHolm 0.01 966 919 1000 1000 1000 1000
2 UHolm 0.1 966 919 1000 1000 1000 1000
2 UHolm 0.5 986 953 1000 999 999 1000
2 UHolm 0.9 966 961 1000 999 999 1000

3.1. Conclusions based on simulation studies. We observe that
in all the models considered, UHolm and Holm procedures worked better
than the Bonferroni method when the design matrix was simulated from
uncorrelated predictors (Σ = I, Tables 4, 9). When the correlation of the
predictors is stronger (0.6 compared to 0.3), the Bonferroni method works
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Table 8. Frequencies selected in 1000 simulations for M2 models when σi,j = 0.6 for
i 6= j and σi,i = 1 for Student-t errors, and λ = 1/(pn)

n 100 100 200 200 200 200

p=500, p0=5 p=2000, p0=5 p=500, p0=5 p=500, p0=10 p=1000, p0=5 p=1000, p0=10

Bonf 683 742 580 594 653 695
1 Holm 698 633 971 974 996 984
1 UHolm 0.01 698 633 971 974 996 984
1 UHolm 0.1 698 633 971 962 996 976
1 UHolm 0.5 740 685 957 948 989 965
1 UHolm 0.9 764 702 948 940 981 962
2 Holm 890 896 953 950 965 971
2 UHolm 0.01 890 896 953 950 965 971
2 UHolm 0.1 890 896 953 948 965 958
2 UHolm 0.5 894 900 917 914 937 934
2 UHolm 0.9 893 899 911 892 922 914

Table 9. Frequencies selected in 1000 simulations for M1 models when Σ = I for Stu-
dent-t errors, and λ = 1/(pn)

n 100 100 200 200 200 200

p=500, p0=5 p=2000, p0=5 p=500, p0=5 p=500, p0=10 p=1000, p0=5 p=1000, p0=10

Bonf 127 210 455 262 401 52
1 Holm 423 896 968 922 961 821
1 UHolm 0.01 423 896 968 922 961 821
1 UHolm 0.1 423 896 968 892 961 758
1 UHolm 0.5 431 851 934 852 934 658
1 UHolm 0.9 453 831 925 812 921 604
2 Holm 741 666 933 794 935 587
2 UHolm 0.01 741 666 933 794 935 587
2 UHolm 0.1 741 666 933 736 935 489
2 UHolm 0.5 667 571 879 605 890 339
2 UHolm 0.9 632 543 851 539 866 280

better and has greater power than the other stepdown procedures in M1
models for Gaussian errors (Table 6) and for n = 100, p = 500, p0 = 5;
p = 2000, p0 = 5, and n = 200, p = 1000, p0 = 10 for Student-t errors
(Table 11); however, when increasing the sample size, the power of UHolm
procedures approaches the power of the Bonferroni method when we use
qn = 1/(p log(p)). In M2 models Holm and UHolm procedures work better
than the Bonferroni method (Table 7) except for two cases: n = 100, p = 500,
p0 = 5; p = 2000, p0 = 5. In M1 models with Student-t errors UHolm
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Table 10. Frequencies selected in 1000 simulations for M1 models when σi,j = 0.3 for
i 6= j and σi,i = 1 for Student-t errors, and λ = 1/(pn)

n 100 100 200 200 200 200

p=500,p0=5 p=2000,p0=5 p=500,p0=5 p=500,p0=10 p=1000,p0=5 p=1000,p0=10

Bonf 656 536 603 584 625 716
1 Holm 514 187 946 884 973 929
1 UHolm 0.01 514 187 946 884 973 929
1 UHolm 0.1 514 187 946 906 973 936
1 UHolm 0.5 596 239 935 915 970 935
1 UHolm 0.9 620 187 929 904 964 927
2 Holm 260 320 939 926 967 965
2 UHolm 0.01 260 320 939 926 967 965
2 UHolm 0.1 260 320 939 922 967 956
2 UHolm 0.5 341 400 899 904 943 932
2 UHolm 0.9 374 434 886 890 933 919

Table 11. Frequencies selected in 1000 simulations for M1 models when σi,j = 0.6 for
i 6= j and σi,i = 1 for Student-t errors, and λ = 1/(pn)

n 100 100 200 200 200 200

p=500,p0=5 p=2000,p0=5 p=500,p0=5 p=500,p0=10 p=1000,p0=5 p=1000,p0=10

Bonf 194 56 526 413 644 628
1 Holm 9 2 499 115 702 406
1 UHolm 0.01 9 2 499 115 702 406
1 UHolm 0.1 9 2 499 147 702 447
1 UHolm 0.5 18 3 571 225 763 564
1 UHolm 0.9 25 3 599 256 783 597
2 Holm 39 19 551 224 673 273
2 UHolm 0.01 39 19 551 224 673 273
2 UHolm 0.1 39 19 551 274 673 312
2 UHolm 0.5 60 28 619 389 736 410
2 UHolm 0.9 70 39 633 427 761 445

procedures work better than the Bonferroni method in both cases for qn =
1/p3/2 and qn = 1/(p log(p)) except in two cases: n = 100, p = 500, p0 = 5;
p = 2000, p0 = 5 (Tables 9–11). The power of all procedures is increasing
with the sample size and decreasing with the number of predictors p. We
may also observe the poor power of stepdown procedures for dependent
predictors for M1 models and with small sample sizes (Table 6, Table 11).
In comparison to the stepdown procedures the SCAD algorithm (Table 12)
works poorly for M1 models with uncorrelated predictors. The power the
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Table 12. Frequencies selected in 1000 simulations for SCAD algorithm for M1, M2
models with Gaussian or Student-t errors, when σi,j = 0.3 or 0.6 for i 6= j or Σ = I

n 100 100 200 200 200 200

p=500,p0=5 p=2000,p0=5 p=500,p0=5 p=500,p0=10 p=1000,p0=5 p=1000,p0=10

M1, Gauss, Σ = I 36 44 47 0 46 1

M2, Gauss, Σ = I 803 797 968 708 960 683

M1, Gauss, σi,j= 0.3 960 917 999 999 999 999

M1, Gauss, σi,j= 0.6 816 767 976 738 976 646

M2, Gauss, σi,j= 0.6 824 709 989 739 991 674

M1, t(5), Σ = I 30 31 42 0 57 3

M1, t(5), σi,j= 0.3 915 392 999 999 573 567

M1, t(5), σi,j= 0.6 744 306 972 630 975 578

SCAD algorithm for M2 models is greater than for M1 models but still less
than that of the stepdown procedures. In the case of Gaussian errors with
correlated predictors (σi,j = 0.6) for n = 100 and p = 500, p0 = 5 and
p = 2000, p0 = 5 the SCAD algorithm has greater power than the power
of the stepdown procedures. For Student-t errors with correlated predictors
(σi,j = 0.6) we can observe that the SCAD algorithm works better than the
stepdown procedures.

4. Appendix

Proof of Proposition 1. By [2, Proposition 2], for any j = 1, . . . , p, we
have the decomposition

(17) β̂corr,j = Zj + (PX)j,jβj −
∑
k 6=j

(PX)j,k(β̂int,k − βk) + bj ,

where Zj = β̂j −E(β̂j), Wj := an,jZj ∼ N(0, 1), bj = E(β̂j)− θj . For j ∈ I1,
we have

P(πj ≤ αp) = P
(
an,j |β̂corr,j | ≥ ∆j,n + Φ−1(1− αp/2)

)
= P

(∣∣∣Wj − an,j
∑
k 6=j

(PX)j,k(β̂int,k − βk) + an,jbj

∣∣∣ ≥ ∆j,n + Φ−1(1− αp/2)
)
.

By (A) for large n, with probability tending to 1,∣∣∣Wj − an,j
∑
k 6=j

(PX)j,k(β̂int,k − βk) + an,jbj

∣∣∣ ≤ |Wj |+∆j,n + ‖an,jbj‖∞.

Note that from (B), we have ‖an,jbj‖∞ → 0 (see [2]) and for large n, with
probability tending to 1,∣∣∣Wj − an,j

∑
k 6=j

(PX)j,k(β̂int,k − βk) + an,jbj

∣∣∣ ≤ |Wj |+∆j,n.
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Therefore for j ∈ I1, for sufficiently large n,

P(πj ≤ αp) ≤ P
(
|Wj | ≥ Φ−1(1− αp/2)

)
= αp.

Thus from (6) and (C), we get (7).

Proof of Theorem 2. By the Introduction, we must show conditions
(i)–(ii). From (7), we obtain (i).

For all j ∈ I0,
1− Fj (α1) = P(πj ≥ α1) = P

(
2(1− Φ(an,j |β̂corr,j | −∆j,n)) ≥ α1

)
= P

(
an,j |β̂corr,j | ≤ ∆j,n + Φ−1(1− α1/2)

)
.

By (17) and the triangle inequality,

an,j |β̂corr,j | ≥ an,j |(PX)j,jβj | − |Wj | − an,j
∣∣∣∑
k 6=j

(PX)j,k(β̂int,k − βk)
∣∣∣− |an,jbj |.

From (A) we have, with probability tending to 1,

an,j |β̂corr,j | ≥ an,j |(PX)j,jβj | − |Wj | −∆j,n − |an,jbj |.
Since ‖an,jbj‖∞ → 0, with probability tending to 1 for sufficiently large n
we obtain

an,j |β̂corr,j | ≥ an,j |(PX)j,jβj | − |Wj | −∆j,n,

and

P
(
an,j |β̂corr,j | ≤ ∆j,n + Φ−1(1− α1/2)

)
≤ P

(
|Wj | ≥ an,j |(PX)j,jβj | − 2∆j,n − Φ−1(1− α1/2)

)
.

Therefore, we have (ii) if an,j |(PX)j,jβj | − 2∆j,n − Φ−1(1 − α1/2) → ∞ as
n→∞. This may be obtained from (D).

Proof of Proposition 7. As in (17), we obtain

(18) β̂corr,j = Z̃j + (PX)j,jβj −
∑
k 6=j

(PX)j,k(β̂int,k − βk) + bj ,

where W̃j := an,jZ̃j and Z̃j := β̂j−E(β̂j) = ((n−1X′X+λI)−1n−1X′ε)j is the
j-component of the vector. Since (B1) implies (B), we have ‖an,jbj‖∞ → 0,
and using the same arguments as in the proof of Proposition 1, we obtain,
for j ∈ I1,

P(πj ≤ αp) ≤ P
(
|W̃j | ≥ Φ−1(1− αp/2)

)
.

If we show

(19) pP
(
|W̃j | ≥ Φ−1(1− αp/2)

)
→ 0

as n → ∞, then we obtain (i). It is obvious that we can get (19) from (C)
and from the condition

(20) p sup
x∈R
‖P(W̃j ≤ x)− Φ(x)‖∞ → 0
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as n → ∞. Let (wi,1, . . . , wi,n) be the ith row of (n−1X′X + λI)−1n−1X′.
Then W̃j = an,j

∑n
i=1wj,iεi and σ2a2n,j

∑n
i=1w

2
j,i = 1, and from the Berry-

Esséen bound (see [14]),

sup
x∈R
‖P(W̃j ≤ x)− Φ(x)‖∞ = O(an,j max

i
|wi,j |).

Using the bound of the bias of β̂ given in [13, proof of Theorem 1], we have

max
i
|wi,j | ≤ λ‖θ‖2λ−1min 6=0(Σ̂).

Now (13) and (B1) imply (20) and we obtain (7).

Proof of Theorem 8. From (7), we obtain (i). Replacing Wj by W̃j , we
can obtain condition (ii) as in the proof of Theorem 2.
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