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Spectrally isometric elementary operators
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Dedicated to Professor Richard V. Kadison
on the occasion of his 90th birthday

Abstract. We present criteria for unital elementary operators (of small length) on
unital semisimple Banach algebras to be spectral isometries. The surjective ones among
them turn out to be algebra automorphisms.

1. Introduction. The study of isometries on Banach spaces is a vast
and active area of research. See, for example, the proceedings volume [12]
for some recent developments. Many of the results describe (linear, sur-
jective) isometries between certain types of spaces in considerable detail;
often one discovers a high degree of compatibility with algebraic or order-
theoretic structure. For our purposes, we highlight Kadison’s theorem [13]
which states that when T : A → B is a surjective linear isometry between
two unital C∗-algebras A and B, then T1 is a unitary in B and the map-
ping x 7→ (T1)−1Tx, x ∈ A, is a Jordan ∗-isomorphism (that is, it preserves
selfadjoint elements and squares). A fortiori, if T1 = 1 (that is, T is unital),
then T preserves invertibility of elements in both directions; hence the spec-
trum σ(x) of each x ∈ A agrees with σ(Tx) and thus the spectral radius r(x)
remains unaltered. We will refer to a linear mapping T with the property
r(Tx) = r(x) for all x in the domain of T as a spectral isometry.

It has been an open question for some time (see [16] and [14]) whether the
following non-selfadjoint version of Kadison’s theorem holds: Every unital
surjective spectral isometry between unital C∗-algebras is a Jordan isomor-
phism. (It is a fact that a unital surjective linear mapping is an isometry if
and only if it is a selfadjoint spectral isometry.) As it stands, this conjecture
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is still open, though there has been substantial progress towards it: see, e.g.,
[1], [8], [15], [18] and the references contained therein. The present paper
aims to contribute to these studies, but rather than putting additional con-
ditions on the algebras involved, we investigate special spectral isometries
on arbitrary semisimple Banach algebras, that is, we put the constraints on
the operators.

Let A be a complex, unital Banach algebra. A linear mapping S : A→ A
is said to be an elementary operator if there exist a1, . . . , an, b1, . . . , bn ∈ A
such that Sx =

∑n
j=1 ajxbj for all x ∈ A. As such a representation of S is

far from unique, we define the length `(S) of S as follows. For a, b ∈ A, let
Ma,b stand for the two-sided multiplication x 7→ axb. If S = 0 then `(S) = 0.
If S 6= 0 then `(S) is the smallest n ∈ N such that S can be written as a sum
of n two-sided multiplications. We shall denote the algebra of all elementary
operators on A by È (A) and the space of all elementary operators of length
at most n by È n(A).

Elementary operators on Banach algebras have been studied under a
variety of aspects for many decades. Recent interest in elementary operators
on C∗-algebras has been sparked by the fact that the completely positive
ones describe the quantum channels in Quantum Information Theory. Several
newer investigations have been compiled in [10]. Elementary operators that
are spectrally bounded , that is, r(Sx) ≤Mr(x) for someM ≥ 0 and all x ∈ A,
are investigated in [4] and [6], extending earlier work in [9], for instance.
General spectrally bounded operators do not allow for a detailed structure
theory; for example, every bounded linear operator from a commutative
C∗-algebra is spectrally bounded. Nevertheless, there are some surprisingly
strong structural results; once again we refer to [15] for details and refer-
ences. Our aim in this paper is to determine when elementary operators are
spectrally isometric; this problem does not seem to have been attacked so far.

Suppose S =
∑n

j=1Maj ,bj for n-tuples a = (a1, . . . , an), b = (b1, . . . , bn)
∈ An. We will abbreviate this fact by S = Sa,b whenever convenient. With
this notation, the two questions we pursue in the following are:

(i) Suppose S = Sa,b; which conditions on a and b ensure that S is a
spectral isometry?

(ii) Suppose S is a spectral isometry; can we represent S = Sa,b with
“nice” properties of a and b?

Throughout, we will shall make the assumption that S is unital (S1 = 1)
and at times that S is surjective, too. The main results of this paper are
Theorems 4.2 and 4.4, which, somewhat surprisingly, state that conditions
on a and b which imply that S = Sa,b is spectrally bounded together with
the assumption that S is unital already entail that S is a spectral isome-
try. If, moreover, S is surjective, it turns out to be an inner automorphism.
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In Corollary 4.6 we prove that every unital surjective spectrally isometric
S ∈ È 3(A) on a C∗-algebra A is an automorphism. On the other hand, we
provide an example (Example 4.7) of a non-surjective spectrally isometric
unital elementary operator of length three which is not a Jordan homomor-
phism.

2. Preliminaries. In the following, A and B will denote unital Banach
algebras over the complex numbers C. We let rad(A) stand for the Jacobson
radical of the algebra A, while Z(A) denotes its centre.

The following basic properties of spectral isometries are by now standard;
see, e.g., [16], [18].

Lemma 2.1. Let T : A → B be a surjective spectral isometry. Then
T rad(A) = rad(B).

As a result, if A is semisimple (i.e., rad(A) = 0) then B is semisimple,
and we can without loss of generality always assume that our algebras are
semisimple (in order to avoid formulating the results “modulo the radical”).

Lemma 2.2. Let T : A → B be a spectral isometry, where A is semi-
simple. Then T is injective.

Consequently, in this case, a surjective spectral isometry has an inverse
which is also a spectral isometry. Moreover, such a mapping is a linear
topological isomorphism by [2, Theorem 5.5.2].

Lemma 2.3. Let T : A→ B be a surjective spectral isometry, where A is
semisimple. Then TZ(A) = Z(B).

This result has a number of very neat applications. Since Z(A) is a com-
mutative semisimple Banach algebra whenever A is a semisimple Banach
algebra, we can apply Gelfand theory to it. As norm and spectral radius
coincide for continuous functions on a compact Hausdorff space, a spectral
isometry turns into an isometry (with respect to the spectral norm) when
restricted to the centres. Thus one can apply the very rich theory of isome-
tries, which has been successfully exploited in [19]. While it is difficult to
control the behaviour of T1 when T is just a spectrally bounded operator
(see the discussion in [15]), if T is a surjective spectral isometry, then T1
is central and σ(T1) is always contained in the unit circle T [19, Proposi-
tion 2.3]. By the afore-mentioned method, this follows immediately from a
description of non-unital isometries on subalgebras of algebras of continuous
functions due to deLeeuw–Rudin–Wermer [11, Corollary 2.3.16]. Replacing
T by x 7→ (T1)−1Tx, x ∈ A, if necessary, we can henceforth assume that
our spectral isometries are unital. This will turn out to be an important
simplification.
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Before we move on to our main theme, we shall illustrate our techniques
by an example of an isometric elementary operator.

Example 2.4. Let A ⊆ B(H) be a unital C∗-algebra acting faithfully
on a Hilbert space H. Let s1, s2 be two isometries in A satisfying s1s

∗
1 +s2s

∗
2

= 1 (in particular, they have orthogonal ranges). Let S ∈ È (A) be defined
by S = Ms1,s

∗
1

+Ms2,s
∗
2
. Then S is unital and completely positive. Moreover,

S is isometric, multiplicative and not surjective. The quickest way to check
the isometric property is probably by observing that∥∥∥∥(s1 s2

0 0

)(
x 0

0 x

)(
s∗1 0

s∗2 0

)∥∥∥∥2
=

∥∥∥∥(s1 s2

0 0

)(
x∗ 0

0 x∗

)(
s∗1 0

s∗2 0

)(
s1 s2

0 0

)(
x 0

0 x

)(
s∗1 0

s∗2 0

)∥∥∥∥
=

∥∥∥∥(s1 s2

0 0

)(
x∗x 0

0 x∗x

)(
s∗1 0

s∗2 0

)∥∥∥∥
=

∥∥∥∥(x 0

0 x

)(
s∗1 0

s∗2 0

)(
s1 s2

0 0

)(
x∗ 0

0 x∗

)∥∥∥∥
=

∥∥∥∥(x∗x 0

0 x∗x

)∥∥∥∥ =

∥∥∥∥(x 0

0 x

)∥∥∥∥2,
since

( s∗1 0
s∗2 0

)( s1 s2
0 0

)
=
(
1 0
0 1

)
, and that

‖Sx‖ =

∥∥∥∥(Sx 0

0 0

)∥∥∥∥ =

∥∥∥∥(s1xs∗1 + s2xs
∗
2 0

0 0

)∥∥∥∥
=

∥∥∥∥(s1 s2

0 0

)(
x 0

0 x

)(
s∗1 0

s∗2 0

)∥∥∥∥.
Let x, y ∈ A. Then

(Sx)(Sy) = (s1xs
∗
1 + s2xs

∗
2)(s1ys

∗
1 + s2ys

∗
2)

= s1xs
∗
1s1ys

∗
1 + s2xs

∗
2s1ys

∗
1 + s1xs

∗
1s2ys

∗
2 + s2xs

∗
2s2ys

∗
2

= s1xs
∗
1s1ys

∗
1 + s2xs

∗
2s2ys

∗
2 = S(xy),

so that S is multiplicative.

Finally, suppose S is surjective and thus s1xs
∗
1 + s2xs

∗
2 = s1 for some

x ∈ A. Then x = s∗2s2xs
∗
2s2 = s∗2s1s

∗
2 = 0, which is impossible.

Similar arguments will be used regularly in the next two sections, with
the norm replaced by the spectral radius.
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3. Spectrally bounded elementary operators. Let A be a semi-
simple unital Banach algebra. The recent papers [4]–[6] by Boudi and Ma-
thieu contain necessary and sufficient conditions for an elementary operator
S on A to be spectrally bounded; some restrictions on the length of S had to
be imposed too. We shall recall some of these results below, as we will need
them in the discussion on spectral isometries in the next section. However,
we will throughout restrict our attention to the unital case, that is, we
assume that S1 = 1. This is justified by the properties of surjective spectral
isometries as explained in the previous section and the fact that x 7→ uSx,
x ∈ A, is another elementary operator on A for any u ∈ A. We shall make
this assumption on S even if S is not surjective (and it will at times help to
find out whether S is surjective or not).

To begin with, the simple identity r(Ma,bx) = r(bax) = r(Mba,1x) to-
gether with Pták’s description of spectrally bounded one-sided multipli-
cations ([20], see also [9] for an alternative proof) tells us that Ma,b is
spectrally bounded if and only if ba ∈ Z(A). Now if ab = Ma,b1 = 1
then ba = baab = abab = 1 too. As a result, b = a−1 and we find that
Ma,b = Ma,a−1 is an inner automorphism of A, thus a surjective spectral
isometry. In this way, we obtain our first observation.

Proposition 3.1. Let A be a unital semisimple Banach algebra and let
a, b ∈ A. The following conditions are equivalent:

(a) Ma,b is unital and spectrally bounded;
(b) Ma,b is a unital spectral isometry;
(c) a is invertible with b = a−1.

In each case, Ma,b is automatically surjective.

When the length of the elementary operator is greater than 1, the situ-
ation becomes of course more involved. This is due to the different choices
for the coefficients representing the same elementary operator we may have.
From [6, Corollary 2.6] we immediately obtain the following result.

Proposition 3.2. Let A be a semisimple unital Banach algebra. Let
S ∈ È n(A) be unital. Suppose that S = Sa,b with biai ∈ Z(A) for all
1 ≤ i ≤ n and biaj = 0 for all i < j. Then S is a spectral contraction, that
is, r(Sx) ≤ r(x) for all x ∈ A.

Proof. Note that the different convention “i < j” we use here sim-
ply amounts to a re-enumeration of the coefficient n-tuples in comparison
with [6, Corollary 2.6]. From

∑n
i=1 aibi = 1 we obtain bk =

∑n
i=1 bkaibi =∑k

i=1 bkaibi for each 1 ≤ k ≤ n. Hence bkak =
∑k

i=1 bkaibiak = (bkak)
2, so

that each ek = bkak is a central idempotent in A. Moreover, b1 = b1e1 and
an = anen. In particular, for each 1 ≤ i ≤ n, r(Mai,bix) ≤ r(x) for all x ∈ A.
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Following the argument in [6, proof of Corollary 2.6, and the end of the proof
of Proposition 2.5], we find that r(Sx) ≤ r(x) for all x ∈ A.

It was shown in [4, Proposition 2.3] that S = Ma,b + Mc,d is spectrally
bounded if ba, dc ∈ Z(A) and bc = 0. Note that this condition is however
not necessary as Ma,1+M1,d is spectrally bounded if and only if a, d ∈ Z(A)
[9, Theorem B]. Under the assumption that S is unital, we obtain a stronger
result.

Corollary 3.3. Let A be a semisimple unital Banach algebra. Suppose
S = Ma,b +Mc,d is unital and e = ba, f = dc ∈ Z(A) and bc = 0. Then S is
an injective spectral contraction, and S is surjective if and only if e+f = 1.
In the latter case, there is an invertible element w ∈ A such that S =
Mw,w−1.

Proof. From the above proposition we know that both e and f are central
idempotents and that S is a spectral contraction. Moreover, b = be and
c = cf .

Take x ∈ A with axb + cxd = 0. Then 0 = cxdc = cxf = cx and hence
fx = 0. Substituting this back yields 0 = baxb = exb = xb and hence
xe = 0. From S1 = 1 we conclude that x = (ab + cd)x = abex + cdfx = 0
and thus S is injective.

Suppose that e + f = 1. From ef = 0 we obtain cxb = cfxbe = 0 for
all x and thus, setting w = ae + c, it is straightforward to check that w is
invertible with inverse b+ fd. Since

wxw−1 = (ae+ c)x(b+ fd) = axb+ cxb+ aexfd+ cxfd(3.1)

= axb+ cxd = Sx

for all x ∈ A, we find that S is an inner automorphism, in particular surjec-
tive.

Suppose that e + f 6= 1. Then there must be a primitive ideal P in A
such that eP + fP 6= 1P (where xP = x+ P denotes the coset in A/P ). As
Z(A/P ) = C1P this implies that eP = fP = 1P (eP = fP = 0 is ruled out
by S1 = 1). From

(3.2) dPaP = dP (aP bP + cPdP )aP = (eP + fP )dPaP = 2 dPaP

we obtain dPaP = 0. If x ∈ A satisfies aPxP bP + cPxPdP = aP then xP =
dP cPxPdP cP = dPaP cP = 0, which is impossible since eP = bPaP = 1.
Therefore S cannot be surjective.

4. Spectrally isometric elementary operators. In Example 2.4 we
determined that a certain unital elementary operator of length 2 is iso-
metric and multiplicative while not surjective. Using similar ideas, we will
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now obtain a more general result for spectral isometries which strengthens
Corollary 3.3 above.

We first need to have a look at the behaviour of an elementary operator
with respect to primitive quotients. Let A be a semisimple unital Banach
algebra and let P ⊆ A be a primitive ideal in A. Let S be an elementary
operator on A with `(S) = n > 0. As SP ⊆ P we obtain an induced
elementary operator SP ∈ È n(A/P ) via SPxP = (Sx)P , where xP = x+ P
denotes the coset of x ∈ A. Clearly, if S = Sa,b then SP = SaP ,bP , and S is
unital if and only if SP is unital for every primitive ideal P .

Denote by Prim(A) the set of all primitive ideals of A. If SP is spectrally
bounded for each P ∈ Prim(A), say r(SPxP ) ≤MP r(xP ) for some MP ≥ 0
and all x ∈ A, and if M = supP MP < ∞, then S is spectrally bounded
with r(Sx) ≤ M r(x) for all x ∈ A. However, assuming that S is spectrally
bounded we cannot conclude that each SP is spectrally bounded in general.

From [4, Theorem 3.5] (see also [6, Corollary 3.7]), we can deduce the
following characterisation for spectral boundedness of a unital elementary
operator S ∈ È 2(A). Note that the exceptional case pointed out in [6,
Corollary 3.7] cannot occur if S1 = 1.

Lemma 4.1. Let A be a semisimple unital Banach algebra. Let S ∈
È 2(A) be unital. Then S is spectrally bounded if and only if, for each P ∈
Prim(A), there exist aP , bP , cP , dP ∈ A/P such that SP = MaP ,bP +McP ,dP

and eP = bPaP , fP = dP cP are central idempotents in A/P and bP cP = 0.
In particular, S is a spectral contraction.

Proof. By Corollary 3.3, the conditions on the coefficients imply that
each SP is a spectral contraction. Hence so is S, which proves the “if” part.

To obtain the “only if” part suppose that S = Mu,v + Ms,t for some
u, v, s, t ∈ A is unital and spectrally bounded. Let P ∈ Prim(A). By [4,
Theorem 3.5], there is βP ∈ C such that

(vP + βP tP )uP ∈ C1P and tP (sP − βPuP ) ∈ C1P

and either (vP + βP tP )(sP − βPuP ) = 0, or βP = 0 and tPuP = 0. In the
first case, we set bP = vP + βP tP , aP = uP , cP = sP − βPuP and dP = tP .
Then

MaP ,bP +McP ,dP = MuP ,vP+βP tP +MsP−βPuP ,tP = MuP ,vP +MsP ,tP = SP

and bP cP = 0. From SP 1P = 1P it follows as in Corollary 3.3 that eP = bPaP
and fP = dP cP are central idempotents in A/P .

In the second case, set aP = sP , bP = tP , cP = uP and dP = vP . Clearly,
SP = MaP ,bP +McP ,dP and the other conditions are satisfied as well.

In either case, each SP , P ∈ Prim(A) is a spectral contraction, so S is
too.
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Theorem 4.2. Let A be a semisimple unital Banach algebra. Suppose
S ∈ È 2(A) is unital. The following conditions are equivalent:

(a) S is spectrally bounded;
(b) S is spectrally isometric;
(c) S is multiplicative.

Proof. If S is multiplicative and unital then σ(Sx) ⊆ σ(x) for all x ∈ A;
hence S is a spectral contraction, which proves (c)⇒(a). Evidently (b)⇒(a).
We now show (a)⇒(b) and (a)⇒(c) simultaneously.

Let P ∈ Prim(A) and choose aP , bP , cP , dP ∈ A/P such that SP =
MaP ,bP + McP ,dP and the other conditions in Lemma 4.1 are satisfied. As
eP = bPaP and fP = dP cP are central idempotents in A/P they can only
be either 0 or 1P . We distinguish the following four cases.

Case 1: eP = fP = 0. From aP bP + cPdP = 1P we obtain cPdP cP = cP
and bPaP bP = bP , that is,

(4.1) cP fP = cP and bP eP = bP .

In the case under consideration this would imply cP = bP = 0, which con-
tradicts SP 1P = 1P ; so this case cannot occur.

Case 2: eP = 1, fP = 0. From (4.1) we obtain SP = MaP ,bP , which is
a spectral isometry as bPaP = 1P . In fact, bP = a−1P (cf. Proposition 3.1),
hence SP is an inner automorphism in this case.

Case 3: eP = 0, fP = 1. This case is treated analogously to the previous
one, and SP = McP ,c

−1
P

.

Case 4: eP = fP = 1. From (3.2) we get dPaP = 0 and a straightforward
computation shows that SP is multiplicative in this case. Moreover,

r(SPxP ) = r

((
SPxP 0

0 0

))
= r

((
aP cP

0 0

)(
xP 0

0 xP

)(
bP 0

dP 0

))

= r

((
bP 0

dP 0

)(
aP cP

0 0

)(
xP 0

0 xP

))

= r

((
bPaP 0

0 dP cP

)(
xP 0

0 xP

))
= r

((
xP 0

0 xP

))
= r(xP )

for all x ∈ A.

We conclude that SP is a spectral isometry in each case, and therefore

r(Sx) = sup
P
r(SPxP ) = sup

P
r(xP ) = r(x)

for all x. The fact that SP is multiplicative for all P completes the argu-
ment.
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Note that Theorem 4.2 entails in particular that a unital spectrally
bounded elementary operator of length at most two is injective. To deter-
mine when such an operator is surjective we employ a similar criterion to
the one in Corollary 3.3; however, since we do not have a global condition
on the coefficients, the argument is slightly more involved.

Following the notation used in [6], for S ∈ È n(A), S = Sa,b, we write
S∗ for the elementary operator S∗ = Sb,a.

Proposition 4.3. Let A be a semisimple unital Banach algebra. Suppose
S ∈ È 2(A) is unital and spectrally bounded. Then S is surjective if and only
if S∗1 = 1.

Proof. We first note the following. If S = Mu,v +Ms,t with u, v, s, t ∈ A
then S∗ = Mv,u +Mt,s and therefore

(S∗)P = MvP ,uP +MtP ,sP = (SP )∗;

thus it is legitimate to simply write S∗P . As A is semisimple, S∗1 = 1 if and
only if S∗P 1P = 1P for all P ∈ Prim(A). Continuing to use the notation in
the proof of Lemma 4.1, we have

S∗P 1P = vPuP + tP sP = bPaP + dP cP = eP + fP

with bP cP = 0 and bP eP = bP (where eP = bPaP ) and cP fP = cP (where
fP = dP cP ) whichever case for P ∈ Prim(A) occurs in this lemma.

Suppose now that S∗1 6= 1. Pick P ∈ Prim(A) such that S∗P 1P 6= 1P
and write SP = MaP ,bP +McP ,dP in a representation as in Lemma 4.1. Then
eP +fP = S∗P 1P 6= 1P , and since both eP and fP are central idempotents in
A/P , we must have eP = fP = 1. It follows from (3.2) and the subsequent
argument that dPaP = 0 and SP is not surjective. As a result, S is not
surjective.

Assuming on the other hand that S∗1 = 1, which means eP + fP =
S∗P 1P = 1P for all P ∈ Prim(A), we can follow the argument in the proof of
Corollary 3.3 to show that SP is an inner automorphism of A/P in this case.
Indeed, setting wP = aP eP + cP we find that wP is invertible with inverse
bP + fPdP , because eP fP = 0. The same calculation as in identity (3.1)
entails that SP = MwP ,w

−1
P

.

Define T : A → A by (Tx)P = Mw−1
P ,wP

xP for x ∈ A. Since A is semi-

simple, it is easily verified that T is well defined and that TS = ST = idA.
Consequently, T = S−1; in particular, S is surjective.

Next we extend this condition for surjectivity to elementary operators of
arbitrary length. However, in the absence of an if-and-only-if condition for
spectral boundedness we have to use the slightly stronger assumptions of
Proposition 3.2 instead, which in fact implies that the operator is spectrally
isometric, thus extending Corollary 3.3 and part of Theorem 4.2.
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Theorem 4.4. Let A be a semisimple unital Banach algebra. Let S ∈
È n(A) be unital. Suppose that S = Sa,b with ei = biai ∈ Z(A) for all
1 ≤ i ≤ n and biaj = 0 for all i < j. Then S is a spectral isometry.
Moreover, the following are equivalent:

(a) S is surjective;
(b)

∑n
i=1 ei = 1;

(c) S = Mw,w−1 for an invertible element w ∈ A.

Proof. First recall from the proof of Proposition 3.2 that each ei = biai
is a central idempotent in A and that b1 = b1e1, an = anen. We shall obtain
more complicated relations for the other coefficients of S below.

By Proposition 3.2, r(Sx) ≤ r(x) for all x ∈ A so it suffices to show that
r(Sx) ≥ r(xP ) for all x ∈ A and P ∈ Prim(A) (where we now changed the
notation to xP = x + P in order to avoid the conflict with subscripts). We
accomplish this by induction on n. The cases n = 1 and n = 2 are Proposi-
tion 3.1 and Theorem 4.2, respectively. Thus suppose that S =

∑n+1
j=1 Maj ,bj

with n ≥ 2 and ei = biai ∈ Z(A) and biaj = 0 for all 1 ≤ i < j ≤ n+ 1, and
that the statement holds for elementary operators of length at most n. Let
a = (a1, . . . , an+1), b = (b1, . . . , bn+1) and x = diag(x, . . . , x). Then, with
bt denoting the obvious column, we have

Sx = axbt

and hence

r(Sx) = r(btax)

= r




b1a1 0 . . . 0

b2a1 b2a2 . . . 0
...

...
...

bn+1a1 bn+1a2 . . . bn+1an+1



x 0 . . . 0

0 x . . . 0
...

. . .
...

0 0 . . . x


 .

Applying the same reasoning in the primitive quotient A/P we have

r(SPx
P ) = r




eP1 0 . . . 0

(b2a1)
P eP2 . . . 0

...
...

...

(bn+1a1)
P (bn+1a2)

P . . . ePn+1



xP 0 . . . 0

0 xP . . . 0
...

. . .
...

0 0 . . . xP


 ,

where ePi ∈ {0, 1P }, 1 ≤ i ≤ n + 1. If ePn+1 = 0 then aPn+1 = aPn+1e
P
n+1 = 0

and therefore `(SP ) ≤ n, so that we can apply the induction hypothesis to
get r(Sx) ≥ r(xP ). Otherwise, for λ ∈ C and y ∈ A,
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eP1 0 . . . 0

(b2a1)
P eP2 . . . 0

...
...

. . .
...

(bn+1a1)
P (bn+1a2)

P . . . 1P



xP 0 . . . 0

0 xP . . . 0
...

. . .
...

0 0 . . . xP





0

0
...

yP



=


λ− eP1 xP 0 . . . 0

−(b2a1)
PxP λ− eP2 xP . . . 0

...
...

. . .
...

−(bn+1a1)
PxP −(bn+1a2)

PxP . . . λ− xP




0

0
...

yP



=


0

0
...

(λ− xP )yP

 .

Let λ ∈ σ(xP ) be such that |λ| = r(xP ). Then λ belongs to the left approxi-
mate point spectrum of xP , and thus we can take a sequence (yPn )n∈N of unit
elements in A/P with (λ − xP )yPn → 0 (n → ∞). The above calculations
show that r(SPx

P ) ≥ |λ| = r(xP ).
Since this argument yields r(Sx) ≥ r(xP ) for every primitive ideal P ,

we conclude that S is a spectral isometry.
As for the equivalence of the three conditions listed, evidently (c)⇒(a).

In order to establish (a)⇒(b), suppose that
∑n

i=1 ei 6= 1. Then there is
P ∈ Prim(A) such that

∑n
i=1 e

P
i 6= 1P . As Z(A/P ) = C1P this entails that

there are k, ` ∈ {1, . . . , n}, k < `, such that ePk = eP` = 1P . (It is easy to
verify that the assumption S1 = 1 rules out the possibility that all ePi = 0,
1 ≤ i ≤ n.) Take x ∈ A. Upon multiplying the identity

SPx
P =

n∑
j=1

aPj x
P bPj

first on the left by bPk and then on the right by aPk and noting that bPi a
P
j = 0

for all i < j we obtain in succession

bPk (SPx
P ) =

k−1∑
j=1

bPk a
P
j x

P bPj + bPk a
P
k x

P bPk , bPk (SPx
P )aPk = ePk x

P ePk = xP .

Consequently, no x ∈ A can satisfy SPx
P = aP` as the last identity on

the left hand side yields bPk a
P
` a

P
k = 0 but xP = 0 is incompatible with

bP` a
P
` = 1P . We conclude that SP cannot be surjective, so S cannot be

surjective either.
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Finally, to show (b)⇒(c) we note first that
∑n

i=1 ei = 1 implies that
all ei’s are mutually orthogonal (which follows at once from the fact that
Z(A) is a commutative semisimple Banach algebra, or purely algebraically).
Consequently, any sum of the form

∑
i∈I
∑

j∈J eiej with I, J ⊆ {1, . . . , n}
reduces to

∑
k∈I∩J ek (which we interpret as 0 if I ∩ J = ∅). This fact will

be used repeatedly in the following.

From S1 =
∑n

j=1 ajbj = 1 we obtain

bk = bk

n∑
j=1

ajbj = bk

(k−1∑
j=1

ajbj + ek

)
,(4.2)

ak =
n∑
j=1

ajbjak =
( n∑
j=k+1

ajbj + ek

)
ak(4.3)

for each 1 ≤ k ≤ n. Our next claim is that

(4.4) bk = bk

k∑
j=1

ej and ak = ak

n∑
j=k

ej (1 ≤ k ≤ n),

which we shall prove by induction and “induction from the top”, respectively.
We have b1 = b1e1 and thus assume that b` = b`

∑`
j=1 ej for all 1 ≤ ` < k.

This entails

b` = b`
∑̀
j=1

ej = b`
∑̀
j=1

ej

k∑
i=1

ei = b`

k∑
i=1

ei.

Putting this identity together with (4.2) we find that

bk

k∑
i=1

ei = bk

(k−1∑
`=1

a`b` + ek

) k∑
i=1

ei

= bk

(k−1∑
`=1

a`

(
b`

k∑
i=1

ei

)
+ ek

)
= bk

(k−1∑
`=1

a`b` + ek

)
= bk,

which proves the claim for the bk. We also know that an = anen, and thus
assume that a` = a`

∑n
j=` ej for all k < ` ≤ n. It follows that

a` = a`

n∑
j=`

ej = a`

n∑
j=`

ej

n∑
i=k

ei = a`

n∑
i=k

ei.
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This identity together with (4.3) gives

ak

n∑
i=k

ei =
( n∑
`=k+1

a`b` + ek

)
ak

n∑
i=k

ei =
( n∑
`=k+1

(
a`

n∑
i=k

ei

)
b` + ek

)
ak

=
( n∑
`=k+1

a`b` + ek

)
ak = ak,

proving the second half of our claim.
The identities in (4.4) immediately yield the following information on

the Mak,bk :

(4.5) Mak,bk =
n∑
i=k

k∑
j=1

eiejMak,bk = ekMak,bk (1 ≤ k ≤ n).

Set w =
∑n

k=1 akek and v =
∑n

j=1 bjej . Then

wv =

n∑
k=1

n∑
j=1

ekejakbj =

n∑
k=1

ekakbk =

n∑
k=1

akbk = 1,

vw =
n∑
j=1

n∑
k=1

ejekbjak =
n∑
j=1

ej = 1.

Therefore w is invertible with w−1 = v. Finally, from (4.5),

Mw,w−1 =

n∑
k=1

n∑
j=1

ekejMak,bj =

n∑
k=1

ekMak,bk = S,

which completes the proof of Theorem 4.4.

In the remainder of this paper we shall discuss the state of our knowl-
edge concerning the gap between a full description of spectrally isometric
elementary operators of length (at most) two (Theorem 4.2) and the some-
what more restricted conclusion in the general case (Theorem 4.4).

In contrast to length two elementary operators there is (at present) no
necessary condition for spectral boundedness of a length three elementary
operator, such as in Lemma 4.1, without further assumptions. Firstly, start-
ing with a spectrally bounded elementary operator S, the induced operator
SP may or may not be spectrally bounded. Even if it is, we only have a
complete description for SP ∈ È 3(A/P ) under the assumption that the rep-
resentation space has dimension at least 4. We can slightly improve this
description, which was obtained in [6, Theorem 4.3], under the hypothesis
that SP 1P = 1P , which we record here for completeness.

Proposition 4.5. Let A be a unital Banach algebra acting irreducibly
as bounded linear operators on a Banach space E of dimension at least 4.
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Let S ∈ È 3(A) be unital. Then S is spectrally bounded if and only if there
exist a = (a1, a2, a3) and b = (b1, b2, b3) in L (E) 3 such that S = Sa,b,
ei = biai, 1 ≤ i ≤ 3, are central idempotents and biaj = 0 for 1 ≤ i < j ≤ 3.
In this case, S is in fact a spectral contraction.

Proof. Clearly we can extend S : A → A to an elementary operator
on L (E), the algebra of all bounded linear operators on E, by the same
formula. The conditions on the coefficients imply that the extended operator
is spectrally bounded, indeed a spectral contraction, by Proposition 3.2. As
the spectral radius of an element is independent of the surrounding Banach
algebra, it follows that S : A→ A is a spectral contraction. This proves the
“if” part.

For the “only if” part we only have to deal with the exceptional cases that
are listed in [6, Theorem 4.3], as this result will then imply the statement.
By hypothesis, if S is not already represented as claimed in the above result,
then cases (ii) and (iii) in [6, Theorem 4.3] can be summarised as follows:

(4.6) S =
3∑
j=1

Muj ,vj where (viuj)1≤i,j≤3 =

λ r 0

s λ r

0 −s λ


for some λ ∈ C and rank one operators r, s ∈ L (E). We can read off the
following identities:

v1u3 = v3u1 = 0, v1u2 = v2u3, v2u1 = −v3u2.
Upon multiplying S1 = 1 on the left by v1 and on the right by u3 and using
v1u3 = 0 we find that v1u2v2u3 = 0. As v1u2 = v2u3 it follows that the
rank one operator r = v2u3 has square zero and therefore must be zero.
We conclude that viuj = 0 whenever i < j, as desired. Finally, multiplying
S1 = 1 simply on the right by u3 yields u3v3u3 = u3, thus (λ− 1)u3 = 0, so
λ = 1, which finishes the argument.

A Banach algebra A is called an SR-algebra if the spectral radius formula
holds in every quotient of A; that is, if I is a closed ideal of A then, for each
x ∈ A, r(x+ I) = infy∈I r(x+ y). Every C∗-algebra has this property.

Corollary 4.6. Let A be a unital semisimple SR-algebra. Then every
unital surjective S ∈ È 3(A) which is spectrally isometric is an algebra au-
tomorphism of A.

Proof. Let P ∈Prim(A). By assumption and as SP ⊆ P , SP ∈ È 3(A/P )
is unital, surjective and a spectral contraction, by [6, Proposition 2.2] or
[17, Proposition 9], and is spectrally isometric if SP = P . Suppose first that
dimA/P < ∞. Take y ∈ P and write y = Sx for a (unique) x ∈ A. Then
0 = Sx + P = SP (x + P ), and therefore x + P = 0 as SP is injective (it is
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surjective on the finite-dimensional space A/P ). Consequently, x ∈ P and
hence P = SP . Since A/P ∼= Mn(C) for some n ∈ N, we conclude that SP
is a Jordan automorphism by [3, Proposition 2] (see also [7, Corollary 1.4]
and [15, Example 5.4] for independent proofs).

It is well known that every Jordan automorphism of Mn(C), n > 1, is
either of the form x 7→ wxw−1 or x 7→ wxtw−1 for some invertible w ∈
Mn(C), where xt denotes the transpose of x (see, e.g., [21, Corollary 1.4]).
Note that x 7→ xt is the elementary operator T =

∑n
i,j=1Meji,eji , where eij ,

1 ≤ i, j ≤ n, denotes the usual set of matrix units. As this set is linearly
independent, `(T ) = n2. Since {weji | 1 ≤ i, j ≤ n} and {ejiw−1 | 1 ≤
i, j ≤ n} are linearly independent too, whenever w ∈ Mn(C) is invertible,
`(Mw,w−1T ) = n2 > 3 for all n > 1. Hence, S 6= T , and therefore S is
multiplicative.

Suppose next that dimA/P = ∞. Applying Proposition 4.5 together
with Theorem 4.4 to SP (and its extension to L (E)) we find that SP is
an inner automorphism. As a result, SP is multiplicative in either case, and
therefore S is an algebra automorphism of A.

We will now discuss an example illustrating that Theorem 4.2 cannot be
entirely extended to length three elementary operators.

Example 4.7. LetA=L (E) for an infinite-dimensional Banach space E.
Let S ∈ È (A) with S1 = 1 and `(S) = 3. Suppose S is a spectral isometry.
By the results above, there exist two linearly independent subsets {a1, a2, a3}
and {b1, b2, b3} of A such that S =

∑3
j=1Maj ,bj , ei = biai ∈ {0, 1}, 1 ≤ i ≤ 3,

and biaj = 0 for 1 ≤ i < j ≤ 3. Suppose that e1 = e3 = 1 and e2 = 0 (and
thus S is non-surjective by Theorem 4.4). For a concrete realisation of this
situation, we can, e.g., take the isometries s1, s2 from Example 2.4 and a
non-zero operator z ∈ L (E) with z2 = 0 and let a1 = s1, a2 = s2z, a3 = s2,
b1 = s∗1, b2 = zs∗1 and b3 = s∗2. It is easily verified that these choices satisfy
the above conditions. We claim that S is not a Jordan homomorphism.

To show this, we first observe that neither {1, b2a1} nor {1, b3a2} can be
linearly dependent. For example, using a1b1 +a2b2 +a3b3 = 1 and multiply-
ing this identity on the left by b2 yields b2a1b1 = b2, thus, if b2a1 = λ1 for
some λ ∈ C, we obtain λb1 = b2 violating the above assumption of linear
independence. Similarly, linear dependence of {1, b3a2} would result in linear
dependence of {a2, a3}.

We can therefore find ζ, η ∈ E such that {ζ, b2a1ζ} and {η, b3a2η} are
linearly independent. Since ζ = b1a1ζ, setting ξ = a1ζ, we see {b1ξ, b2ξ}
is linearly independent, and since η = b3a3η, it follows that {a3η, a2η} is
linearly independent too. Take x ∈ A such that xb1ξ = 0 and xb2ξ = η. If
η ∈ linµ{b1ξ, b2ξ} then xη = βη for some β ∈ C. If b3a2η ∈ linµ{b1ξ, b2ξ}
then xb3a2η = β′η for some β′ ∈ C. Suppose that both cases occur together
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and β = β′ = 0. Then η = αb1ξ and b3a2η = α′b1ξ for some α, α′ ∈ C \ {0}.
However, this violates the linear independence of {η, b3a2η}, thus it cannot
happen. Consequently, if both cases occur together, we have

xη = βη and xb3a2η = β′η with |β|2 + |β′|2 6= 0.

In the case when {b1ξ, b2ξ, η} is linearly independent, we can also require of
x that xη = η, and in the case when {b1ξ, b2ξ, b3a2η} is linearly independent,
we can additionally require that xb3a2η = η. It follows that, in any of the
cases, we have x ∈ A satisfying

(4.7)
xb1ξ = 0, xb2ξ = η,

xη = βη, xb3a2η = β′η with |β|2 + |β′|2 6= 0.

We will complete the argument by showing that, for this x, (Sx)2 6= S(x2),
so S is not a Jordan homomorphism.

The initial assumptions on the coefficients of S reduce the left hand side
in the first line below to the right hand side, and then we apply the special
choice of x as given in (4.7). We have

((Sx)2 − S(x2))ξ = a2xb2a1xb1ξ + a3xb3a1xb1ξ + a3xb3a2xb2ξ − a2x2b2ξ
= a3xb3a2η − a2xη = β′a3η − βa2η

with |β|2 + |β′|2 6= 0. As {a3η, a2η} is linearly independent, it follows that
((Sx)2 − S(x2))ξ 6= 0 , as desired.

We conclude this paper by noting that a unital spectrally bounded ele-
mentary operator of length four and above which is not surjective need not
be a spectral isometry. As an example the trace on M2(C) can serve which
can be represented as

x 7→ 1

2

4∑
j=1

eijxeji

where eij denotes the standard matrix units.
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