Spectrally isometric elementary operators

by
Martin Mathieu and Matthew Young (Belfast)
Dedicated to Professor Richard V. Kadison
on the occasion of his 90th birthday

Abstract

We present criteria for unital elementary operators (of small length) on unital semisimple Banach algebras to be spectral isometries. The surjective ones among them turn out to be algebra automorphisms.

1. Introduction. The study of isometries on Banach spaces is a vast and active area of research. See, for example, the proceedings volume 12] for some recent developments. Many of the results describe (linear, surjective) isometries between certain types of spaces in considerable detail; often one discovers a high degree of compatibility with algebraic or ordertheoretic structure. For our purposes, we highlight Kadison's theorem [13] which states that when $T: A \rightarrow B$ is a surjective linear isometry between two unital C^{*}-algebras A and B, then $T 1$ is a unitary in B and the mapping $x \mapsto(T 1)^{-1} T x, x \in A$, is a Jordan ${ }^{*}$-isomorphism (that is, it preserves selfadjoint elements and squares). A fortiori, if $T 1=1$ (that is, T is unital), then T preserves invertibility of elements in both directions; hence the spectrum $\sigma(x)$ of each $x \in A$ agrees with $\sigma(T x)$ and thus the spectral radius $r(x)$ remains unaltered. We will refer to a linear mapping T with the property $r(T x)=r(x)$ for all x in the domain of T as a spectral isometry.

It has been an open question for some time (see [16] and [14]) whether the following non-selfadjoint version of Kadison's theorem holds: Every unital surjective spectral isometry between unital C^{*}-algebras is a Jordan isomorphism. (It is a fact that a unital surjective linear mapping is an isometry if and only if it is a selfadjoint spectral isometry.) As it stands, this conjecture

[^0]is still open, though there has been substantial progress towards it: see, e.g., [1], [8, [15], 18] and the references contained therein. The present paper aims to contribute to these studies, but rather than putting additional conditions on the algebras involved, we investigate special spectral isometries on arbitrary semisimple Banach algebras, that is, we put the constraints on the operators.

Let A be a complex, unital Banach algebra. A linear mapping $S: A \rightarrow A$ is said to be an elementary operator if there exist $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in A$ such that $S x=\sum_{j=1}^{n} a_{j} x b_{j}$ for all $x \in A$. As such a representation of S is far from unique, we define the length $\ell(S)$ of S as follows. For $a, b \in A$, let $M_{a, b}$ stand for the two-sided multiplication $x \mapsto a x b$. If $S=0$ then $\ell(S)=0$. If $S \neq 0$ then $\ell(S)$ is the smallest $n \in \mathbb{N}$ such that S can be written as a sum of n two-sided multiplications. We shall denote the algebra of all elementary operators on A by $\mathcal{E} \ell(A)$ and the space of all elementary operators of length at most n by $\mathcal{E} \ell_{n}(A)$.

Elementary operators on Banach algebras have been studied under a variety of aspects for many decades. Recent interest in elementary operators on C^{*}-algebras has been sparked by the fact that the completely positive ones describe the quantum channels in Quantum Information Theory. Several newer investigations have been compiled in [10]. Elementary operators that are spectrally bounded, that is, $r(S x) \leq M r(x)$ for some $M \geq 0$ and all $x \in A$, are investigated in [4] and [6], extending earlier work in [9], for instance. General spectrally bounded operators do not allow for a detailed structure theory; for example, every bounded linear operator from a commutative C^{*}-algebra is spectrally bounded. Nevertheless, there are some surprisingly strong structural results; once again we refer to [15] for details and references. Our aim in this paper is to determine when elementary operators are spectrally isometric; this problem does not seem to have been attacked so far.

Suppose $S=\sum_{j=1}^{n} M_{a_{j}, b_{j}}$ for n-tuples $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right), \boldsymbol{b}=\left(b_{1}, \ldots, b_{n}\right)$ $\in A^{n}$. We will abbreviate this fact by $S=S_{a, b}$ whenever convenient. With this notation, the two questions we pursue in the following are:
(i) Suppose $S=S_{\boldsymbol{a}, \boldsymbol{b}}$; which conditions on \boldsymbol{a} and \boldsymbol{b} ensure that S is a spectral isometry?
(ii) Suppose S is a spectral isometry; can we represent $S=S_{a, b}$ with "nice" properties of \boldsymbol{a} and \boldsymbol{b} ?
Throughout, we will shall make the assumption that S is unital $(S 1=1)$ and at times that S is surjective, too. The main results of this paper are Theorems 4.2 and 4.4 which, somewhat surprisingly, state that conditions on \boldsymbol{a} and \boldsymbol{b} which imply that $S=S_{\boldsymbol{a}, \boldsymbol{b}}$ is spectrally bounded together with the assumption that S is unital already entail that S is a spectral isometry. If, moreover, S is surjective, it turns out to be an inner automorphism.

In Corollary 4.6 we prove that every unital surjective spectrally isometric $S \in \mathcal{E} \ell_{3}(A)$ on a C^{*}-algebra A is an automorphism. On the other hand, we provide an example (Example 4.7) of a non-surjective spectrally isometric unital elementary operator of length three which is not a Jordan homomorphism.
2. Preliminaries. In the following, A and B will denote unital Banach algebras over the complex numbers \mathbb{C}. We let $\operatorname{rad}(A)$ stand for the Jacobson radical of the algebra A, while $Z(A)$ denotes its centre.

The following basic properties of spectral isometries are by now standard; see, e.g., [16], 18].

Lemma 2.1. Let $T: A \rightarrow B$ be a surjective spectral isometry. Then $T \operatorname{rad}(A)=\operatorname{rad}(B)$.

As a result, if A is semisimple (i.e., $\operatorname{rad}(A)=0)$ then B is semisimple, and we can without loss of generality always assume that our algebras are semisimple (in order to avoid formulating the results "modulo the radical").

Lemma 2.2. Let $T: A \rightarrow B$ be a spectral isometry, where A is semisimple. Then T is injective.

Consequently, in this case, a surjective spectral isometry has an inverse which is also a spectral isometry. Moreover, such a mapping is a linear topological isomorphism by [2, Theorem 5.5.2].

Lemma 2.3. Let $T: A \rightarrow B$ be a surjective spectral isometry, where A is semisimple. Then $T Z(A)=Z(B)$.

This result has a number of very neat applications. Since $Z(A)$ is a commutative semisimple Banach algebra whenever A is a semisimple Banach algebra, we can apply Gelfand theory to it. As norm and spectral radius coincide for continuous functions on a compact Hausdorff space, a spectral isometry turns into an isometry (with respect to the spectral norm) when restricted to the centres. Thus one can apply the very rich theory of isometries, which has been successfully exploited in [19]. While it is difficult to control the behaviour of $T 1$ when T is just a spectrally bounded operator (see the discussion in [15]), if T is a surjective spectral isometry, then $T 1$ is central and $\sigma(T 1)$ is always contained in the unit circle \mathbb{T} [19, Proposition 2.3]. By the afore-mentioned method, this follows immediately from a description of non-unital isometries on subalgebras of algebras of continuous functions due to deLeeuw-Rudin-Wermer [11, Corollary 2.3.16]. Replacing T by $x \mapsto(T 1)^{-1} T x, x \in A$, if necessary, we can henceforth assume that our spectral isometries are unital. This will turn out to be an important simplification.

Before we move on to our main theme, we shall illustrate our techniques by an example of an isometric elementary operator.

Example 2.4. Let $A \subseteq B(H)$ be a unital C^{*}-algebra acting faithfully on a Hilbert space H. Let s_{1}, s_{2} be two isometries in A satisfying $s_{1} s_{1}^{*}+s_{2} s_{2}^{*}$ $=1$ (in particular, they have orthogonal ranges). Let $S \in \mathcal{E} \ell(A)$ be defined by $S=M_{s_{1}, s_{1}^{*}}+M_{s_{2}, s_{2}^{*}}$. Then S is unital and completely positive. Moreover, S is isometric, multiplicative and not surjective. The quickest way to check the isometric property is probably by observing that

$$
\begin{aligned}
& \left\|\left(\begin{array}{cc}
s_{1} & s_{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x & 0 \\
0 & x
\end{array}\right)\left(\begin{array}{cc}
s_{1}^{*} & 0 \\
s_{2}^{*} & 0
\end{array}\right)\right\|^{2} \\
& \quad=\left\|\left(\begin{array}{cc}
s_{1} & s_{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x^{*} & 0 \\
0 & x^{*}
\end{array}\right)\left(\begin{array}{cc}
s_{1}^{*} & 0 \\
s_{2}^{*} & 0
\end{array}\right)\left(\begin{array}{cc}
s_{1} & s_{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x & 0 \\
0 & x
\end{array}\right)\left(\begin{array}{cc}
s_{1}^{*} & 0 \\
s_{2}^{*} & 0
\end{array}\right)\right\| \\
& \quad=\left\|\left(\begin{array}{cc}
s_{1} & s_{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x^{*} x & 0 \\
0 & x^{*} x
\end{array}\right)\left(\begin{array}{cc}
s_{1}^{*} & 0 \\
s_{2}^{*} & 0
\end{array}\right)\right\| \\
& \quad=\left\|\left(\begin{array}{cc}
x & 0 \\
0 & x
\end{array}\right)\left(\begin{array}{cc}
s_{1}^{*} & 0 \\
s_{2}^{*} & 0
\end{array}\right)\left(\begin{array}{cc}
s_{1} & s_{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x^{*} & 0 \\
0 & x^{*}
\end{array}\right)\right\| \\
& \quad=\left\|\left(\begin{array}{cc}
x^{*} x & 0 \\
0 & x^{*} x
\end{array}\right)\right\|=\left\|\left(\begin{array}{cc}
x & 0 \\
0 & x
\end{array}\right)\right\|^{2}
\end{aligned}
$$

since $\left(\begin{array}{cc}s_{1}^{*} & 0 \\ s_{2}^{*} & 0\end{array}\right)\left(\begin{array}{cc}s_{1} & s_{2} \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, and that

$$
\begin{aligned}
\|S x\| & =\left\|\left(\begin{array}{cc}
S x & 0 \\
0 & 0
\end{array}\right)\right\|=\left\|\left(\begin{array}{cc}
s_{1} x s_{1}^{*}+s_{2} x s_{2}^{*} & 0 \\
0 & 0
\end{array}\right)\right\| \\
& =\left\|\left(\begin{array}{cc}
s_{1} & s_{2} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x & 0 \\
0 & x
\end{array}\right)\left(\begin{array}{cc}
s_{1}^{*} & 0 \\
s_{2}^{*} & 0
\end{array}\right)\right\| .
\end{aligned}
$$

Let $x, y \in A$. Then

$$
\begin{aligned}
(S x)(S y) & =\left(s_{1} x s_{1}^{*}+s_{2} x s_{2}^{*}\right)\left(s_{1} y s_{1}^{*}+s_{2} y s_{2}^{*}\right) \\
& =s_{1} x s_{1}^{*} s_{1} y s_{1}^{*}+s_{2} x s_{2}^{*} s_{1} y s_{1}^{*}+s_{1} x s_{1}^{*} s_{2} y s_{2}^{*}+s_{2} x s_{2}^{*} s_{2} y s_{2}^{*} \\
& =s_{1} x s_{1}^{*} s_{1} y s_{1}^{*}+s_{2} x s_{2}^{*} s_{2} y s_{2}^{*}=S(x y)
\end{aligned}
$$

so that S is multiplicative.
Finally, suppose S is surjective and thus $s_{1} x s_{1}^{*}+s_{2} x s_{2}^{*}=s_{1}$ for some $x \in A$. Then $x=s_{2}^{*} s_{2} x s_{2}^{*} s_{2}=s_{2}^{*} s_{1} s_{2}^{*}=0$, which is impossible.

Similar arguments will be used regularly in the next two sections, with the norm replaced by the spectral radius.
3. Spectrally bounded elementary operators. Let A be a semisimple unital Banach algebra. The recent papers [4]-[6] by Boudi and Mathieu contain necessary and sufficient conditions for an elementary operator S on A to be spectrally bounded; some restrictions on the length of S had to be imposed too. We shall recall some of these results below, as we will need them in the discussion on spectral isometries in the next section. However, we will throughout restrict our attention to the unital case, that is, we assume that $S 1=1$. This is justified by the properties of surjective spectral isometries as explained in the previous section and the fact that $x \mapsto u S x$, $x \in A$, is another elementary operator on A for any $u \in A$. We shall make this assumption on S even if S is not surjective (and it will at times help to find out whether S is surjective or not).

To begin with, the simple identity $r\left(M_{a, b} x\right)=r(b a x)=r\left(M_{b a, 1} x\right)$ together with Pták's description of spectrally bounded one-sided multiplications ([20], see also [9] for an alternative proof) tells us that $M_{a, b}$ is spectrally bounded if and only if $b a \in Z(A)$. Now if $a b=M_{a, b} 1=1$ then $b a=b a a b=a b a b=1$ too. As a result, $b=a^{-1}$ and we find that $M_{a, b}=M_{a, a^{-1}}$ is an inner automorphism of A, thus a surjective spectral isometry. In this way, we obtain our first observation.

Proposition 3.1. Let A be a unital semisimple Banach algebra and let $a, b \in A$. The following conditions are equivalent:
(a) $M_{a, b}$ is unital and spectrally bounded;
(b) $M_{a, b}$ is a unital spectral isometry;
(c) a is invertible with $b=a^{-1}$.

In each case, $M_{a, b}$ is automatically surjective.
When the length of the elementary operator is greater than 1, the situation becomes of course more involved. This is due to the different choices for the coefficients representing the same elementary operator we may have. From [6, Corollary 2.6] we immediately obtain the following result.

Proposition 3.2. Let A be a semisimple unital Banach algebra. Let $S \in \mathcal{E}_{n}(A)$ be unital. Suppose that $S=S_{\boldsymbol{a}, \boldsymbol{b}}$ with $b_{i} a_{i} \in Z(A)$ for all $1 \leq i \leq n$ and $b_{i} a_{j}=0$ for all $i<j$. Then S is a spectral contraction, that is, $r(S x) \leq r(x)$ for all $x \in A$.

Proof. Note that the different convention " $i<j$ " we use here simply amounts to a re-enumeration of the coefficient n-tuples in comparison with [6, Corollary 2.6]. From $\sum_{i=1}^{n} a_{i} b_{i}=1$ we obtain $b_{k}=\sum_{i=1}^{n} b_{k} a_{i} b_{i}=$ $\sum_{i=1}^{k} b_{k} a_{i} b_{i}$ for each $1 \leq k \leq n$. Hence $b_{k} a_{k}=\sum_{i=1}^{k} b_{k} a_{i} b_{i} a_{k}=\left(b_{k} a_{k}\right)^{2}$, so that each $e_{k}=b_{k} a_{k}$ is a central idempotent in A. Moreover, $b_{1}=b_{1} e_{1}$ and $a_{n}=a_{n} e_{n}$. In particular, for each $1 \leq i \leq n, r\left(M_{a_{i}, b_{i}} x\right) \leq r(x)$ for all $x \in A$.

Following the argument in [6, proof of Corollary 2.6, and the end of the proof of Proposition 2.5], we find that $r(S x) \leq r(x)$ for all $x \in A$.

It was shown in [4, Proposition 2.3] that $S=M_{a, b}+M_{c, d}$ is spectrally bounded if $b a, d c \in Z(A)$ and $b c=0$. Note that this condition is however not necessary as $M_{a, 1}+M_{1, d}$ is spectrally bounded if and only if $a, d \in Z(A)$ [9, Theorem B]. Under the assumption that S is unital, we obtain a stronger result.

Corollary 3.3. Let A be a semisimple unital Banach algebra. Suppose $S=M_{a, b}+M_{c, d}$ is unital and $e=b a, f=d c \in Z(A)$ and $b c=0$. Then S is an injective spectral contraction, and S is surjective if and only if $e+f=1$. In the latter case, there is an invertible element $w \in A$ such that $S=$ $M_{w, w^{-1}}$.

Proof. From the above proposition we know that both e and f are central idempotents and that S is a spectral contraction. Moreover, $b=b e$ and $c=c f$.

Take $x \in A$ with $a x b+c x d=0$. Then $0=c x d c=c x f=c x$ and hence $f x=0$. Substituting this back yields $0=b a x b=e x b=x b$ and hence $x e=0$. From $S 1=1$ we conclude that $x=(a b+c d) x=a b e x+c d f x=0$ and thus S is injective.

Suppose that $e+f=1$. From $e f=0$ we obtain $c x b=c f x b e=0$ for all x and thus, setting $w=a e+c$, it is straightforward to check that w is invertible with inverse $b+f d$. Since

$$
\begin{align*}
w x w^{-1} & =(a e+c) x(b+f d)=a x b+c x b+a e x f d+c x f d \tag{3.1}\\
& =a x b+c x d=S x
\end{align*}
$$

for all $x \in A$, we find that S is an inner automorphism, in particular surjective.

Suppose that $e+f \neq 1$. Then there must be a primitive ideal P in A such that $e_{P}+f_{P} \neq 1_{P}$ (where $x_{P}=x+P$ denotes the coset in $\left.A / P\right)$. As $Z(A / P)=\mathbb{C} 1_{P}$ this implies that $e_{P}=f_{P}=1_{P}\left(e_{P}=f_{P}=0\right.$ is ruled out by $S 1=1)$. From

$$
\begin{equation*}
d_{P} a_{P}=d_{P}\left(a_{P} b_{P}+c_{P} d_{P}\right) a_{P}=\left(e_{P}+f_{P}\right) d_{P} a_{P}=2 d_{P} a_{P} \tag{3.2}
\end{equation*}
$$

we obtain $d_{P} a_{P}=0$. If $x \in A$ satisfies $a_{P} x_{P} b_{P}+c_{P} x_{P} d_{P}=a_{P}$ then $x_{P}=$ $d_{P} c_{P} x_{P} d_{P} c_{P}=d_{P} a_{P} c_{P}=0$, which is impossible since $e_{P}=b_{P} a_{P}=1$. Therefore S cannot be surjective.
4. Spectrally isometric elementary operators. In Example 2.4 we determined that a certain unital elementary operator of length 2 is isometric and multiplicative while not surjective. Using similar ideas, we will
now obtain a more general result for spectral isometries which strengthens Corollary 3.3 above.

We first need to have a look at the behaviour of an elementary operator with respect to primitive quotients. Let A be a semisimple unital Banach algebra and let $P \subseteq A$ be a primitive ideal in A. Let S be an elementary operator on A with $\ell(S)=n>0$. As $S P \subseteq P$ we obtain an induced elementary operator $S_{P} \in \mathcal{E} \ell_{n}(A / P)$ via $S_{P} x_{P}=(S x)_{P}$, where $x_{P}=x+P$ denotes the coset of $x \in A$. Clearly, if $S=S_{a, \boldsymbol{b}}$ then $S_{P}=S_{a_{P}, \boldsymbol{b}_{P}}$, and S is unital if and only if S_{P} is unital for every primitive ideal P.

Denote by $\operatorname{Prim}(A)$ the set of all primitive ideals of A. If S_{P} is spectrally bounded for each $P \in \operatorname{Prim}(A)$, say $r\left(S_{P} x_{P}\right) \leq M_{P} r\left(x_{P}\right)$ for some $M_{P} \geq 0$ and all $x \in A$, and if $M=\sup _{P} M_{P}<\infty$, then S is spectrally bounded with $r(S x) \leq M r(x)$ for all $x \in A$. However, assuming that S is spectrally bounded we cannot conclude that each S_{P} is spectrally bounded in general.

From [4, Theorem 3.5] (see also [6, Corollary 3.7]), we can deduce the following characterisation for spectral boundedness of a unital elementary operator $S \in \mathcal{E} \ell_{2}(A)$. Note that the exceptional case pointed out in [6, Corollary 3.7] cannot occur if $S 1=1$.

Lemma 4.1. Let A be a semisimple unital Banach algebra. Let $S \in$ $\mathcal{E} \ell_{2}(A)$ be unital. Then S is spectrally bounded if and only if, for each $P \in$ $\operatorname{Prim}(A)$, there exist $a_{P}, b_{P}, c_{P}, d_{P} \in A / P$ such that $S_{P}=M_{a_{P}, b_{P}}+M_{c_{P}, d_{P}}$ and $e_{P}=b_{P} a_{P}, f_{P}=d_{P} c_{P}$ are central idempotents in A / P and $b_{P} c_{P}=0$. In particular, S is a spectral contraction.

Proof. By Corollary 3.3, the conditions on the coefficients imply that each S_{P} is a spectral contraction. Hence so is S, which proves the "if" part.

To obtain the "only if" part suppose that $S=M_{u, v}+M_{s, t}$ for some $u, v, s, t \in A$ is unital and spectrally bounded. Let $P \in \operatorname{Prim}(A)$. By [4, Theorem 3.5], there is $\beta_{P} \in \mathbb{C}$ such that

$$
\left(v_{P}+\beta_{P} t_{P}\right) u_{P} \in \mathbb{C} 1_{P} \quad \text { and } \quad t_{P}\left(s_{P}-\beta_{P} u_{P}\right) \in \mathbb{C} 1_{P}
$$

and either $\left(v_{P}+\beta_{P} t_{P}\right)\left(s_{P}-\beta_{P} u_{P}\right)=0$, or $\beta_{P}=0$ and $t_{P} u_{P}=0$. In the first case, we set $b_{P}=v_{P}+\beta_{P} t_{P}, a_{P}=u_{P}, c_{P}=s_{P}-\beta_{P} u_{P}$ and $d_{P}=t_{P}$. Then
$M_{a_{P}, b_{P}}+M_{c_{P}, d_{P}}=M_{u_{P}, v_{P}+\beta_{P} t_{P}}+M_{s_{P}-\beta_{P} u_{P}, t_{P}}=M_{u_{P}, v_{P}}+M_{s_{P}, t_{P}}=S_{P}$
and $b_{P} c_{P}=0$. From $S_{P} 1_{P}=1_{P}$ it follows as in Corollary 3.3 that $e_{P}=b_{P} a_{P}$ and $f_{P}=d_{P} c_{P}$ are central idempotents in A / P.

In the second case, set $a_{P}=s_{P}, b_{P}=t_{P}, c_{P}=u_{P}$ and $d_{P}=v_{P}$. Clearly, $S_{P}=M_{a_{P}, b_{P}}+M_{c_{P}, d_{P}}$ and the other conditions are satisfied as well.

In either case, each $S_{P}, P \in \operatorname{Prim}(A)$ is a spectral contraction, so S is too.

Theorem 4.2. Let A be a semisimple unital Banach algebra. Suppose $S \in \mathcal{E}_{2}(A)$ is unital. The following conditions are equivalent:
(a) S is spectrally bounded;
(b) S is spectrally isometric;
(c) S is multiplicative.

Proof. If S is multiplicative and unital then $\sigma(S x) \subseteq \sigma(x)$ for all $x \in A$; hence S is a spectral contraction, which proves (c) \Rightarrow (a). Evidently (b) $\Rightarrow(\mathrm{a})$. We now show $(\mathrm{a}) \Rightarrow(\mathrm{b})$ and $(\mathrm{a}) \Rightarrow(\mathrm{c})$ simultaneously.

Let $P \in \operatorname{Prim}(A)$ and choose $a_{P}, b_{P}, c_{P}, d_{P} \in A / P$ such that $S_{P}=$ $M_{a_{P}, b_{P}}+M_{c_{P}, d_{P}}$ and the other conditions in Lemma 4.1 are satisfied. As $e_{P}=b_{P} a_{P}$ and $f_{P}=d_{P} c_{P}$ are central idempotents in A / P they can only be either 0 or 1_{P}. We distinguish the following four cases.

CASE 1: $e_{P}=f_{P}=0$. From $a_{P} b_{P}+c_{P} d_{P}=1_{P}$ we obtain $c_{P} d_{P} c_{P}=c_{P}$ and $b_{P} a_{P} b_{P}=b_{P}$, that is,

$$
\begin{equation*}
c_{P} f_{P}=c_{P} \quad \text { and } \quad b_{P} e_{P}=b_{P} \tag{4.1}
\end{equation*}
$$

In the case under consideration this would imply $c_{P}=b_{P}=0$, which contradicts $S_{P} 1_{P}=1_{P}$; so this case cannot occur.

Case 2: $e_{P}=1, f_{P}=0$. From (4.1) we obtain $S_{P}=M_{a_{P}, b_{P}}$, which is a spectral isometry as $b_{P} a_{P}=1_{P}$. In fact, $b_{P}=a_{P}^{-1}$ (cf. Proposition 3.1), hence S_{P} is an inner automorphism in this case.

Case 3: $e_{P}=0, f_{P}=1$. This case is treated analogously to the previous one, and $S_{P}=M_{c_{P}, c_{P}^{-1}}$.

Case 4: $e_{P}=f_{P}=1$. From (3.2) we get $d_{P} a_{P}=0$ and a straightforward computation shows that S_{P} is multiplicative in this case. Moreover,

$$
\begin{aligned}
r\left(S_{P} x_{P}\right) & =r\left(\left(\begin{array}{cc}
S_{P} x_{P} & 0 \\
0 & 0
\end{array}\right)\right)=r\left(\left(\begin{array}{cc}
a_{P} & c_{P} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x_{P} & 0 \\
0 & x_{P}
\end{array}\right)\left(\begin{array}{ll}
b_{P} & 0 \\
d_{P} & 0
\end{array}\right)\right) \\
& =r\left(\left(\begin{array}{cc}
b_{P} & 0 \\
d_{P} & 0
\end{array}\right)\left(\begin{array}{cc}
a_{P} & c_{P} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
x_{P} & 0 \\
0 & x_{P}
\end{array}\right)\right) \\
& =r\left(\left(\begin{array}{cc}
b_{P} a_{P} & 0 \\
0 & d_{P} c_{P}
\end{array}\right)\left(\begin{array}{cc}
x_{P} & 0 \\
0 & x_{P}
\end{array}\right)\right)=r\left(\left(\begin{array}{cc}
x_{P} & 0 \\
0 & x_{P}
\end{array}\right)\right)=r\left(x_{P}\right)
\end{aligned}
$$

for all $x \in A$.
We conclude that S_{P} is a spectral isometry in each case, and therefore

$$
r(S x)=\sup _{P} r\left(S_{P} x_{P}\right)=\sup _{P} r\left(x_{P}\right)=r(x)
$$

for all x. The fact that S_{P} is multiplicative for all P completes the argument.

Note that Theorem 4.2 entails in particular that a unital spectrally bounded elementary operator of length at most two is injective. To determine when such an operator is surjective we employ a similar criterion to the one in Corollary 3.3, however, since we do not have a global condition on the coefficients, the argument is slightly more involved.

Following the notation used in [6], for $S \in \mathcal{E} \ell_{n}(A), S=S_{a, b}$, we write S^{*} for the elementary operator $S^{*}=S_{b, a}$.

Proposition 4.3. Let A be a semisimple unital Banach algebra. Suppose $S \in \mathcal{E} \ell_{2}(A)$ is unital and spectrally bounded. Then S is surjective if and only if $S^{*} 1=1$.

Proof. We first note the following. If $S=M_{u, v}+M_{s, t}$ with $u, v, s, t \in A$ then $S^{*}=M_{v, u}+M_{t, s}$ and therefore

$$
\left(S^{*}\right)_{P}=M_{v_{P}, u_{P}}+M_{t_{P}, s_{P}}=\left(S_{P}\right)^{*} ;
$$

thus it is legitimate to simply write S_{P}^{*}. As A is semisimple, $S^{*} 1=1$ if and only if $S_{P}^{*} 1_{P}=1_{P}$ for all $P \in \operatorname{Prim}(A)$. Continuing to use the notation in the proof of Lemma 4.1, we have

$$
S_{P}^{*} 1_{P}=v_{P} u_{P}+t_{P} s_{P}=b_{P} a_{P}+d_{P} c_{P}=e_{P}+f_{P}
$$

with $b_{P} c_{P}=0$ and $b_{P} e_{P}=b_{P}\left(\right.$ where $\left.e_{P}=b_{P} a_{P}\right)$ and $c_{P} f_{P}=c_{P}$ (where $f_{P}=d_{P} c_{P}$) whichever case for $P \in \operatorname{Prim}(A)$ occurs in this lemma.

Suppose now that $S^{*} 1 \neq 1$. Pick $P \in \operatorname{Prim}(A)$ such that $S_{P}^{*} 1_{P} \neq 1_{P}$ and write $S_{P}=M_{a_{P}, b_{P}}+M_{c_{P}, d_{P}}$ in a representation as in Lemma 4.1. Then $e_{P}+f_{P}=S_{P}^{*} 1_{P} \neq 1_{P}$, and since both e_{P} and f_{P} are central idempotents in A / P, we must have $e_{P}=f_{P}=1$. It follows from (3.2) and the subsequent argument that $d_{P} a_{P}=0$ and S_{P} is not surjective. As a result, S is not surjective.

Assuming on the other hand that $S^{*} 1=1$, which means $e_{P}+f_{P}=$ $S_{P}^{*} 1_{P}=1_{P}$ for all $P \in \operatorname{Prim}(A)$, we can follow the argument in the proof of Corollary 3.3 to show that S_{P} is an inner automorphism of A / P in this case. Indeed, setting $w_{P}=a_{P} e_{P}+c_{P}$ we find that w_{P} is invertible with inverse $b_{P}+f_{P} d_{P}$, because $e_{P} f_{P}=0$. The same calculation as in identity (3.1) entails that $S_{P}=M_{w_{P}, w_{P}^{-1}}$.

Define $T: A \rightarrow A$ by $(T x)_{P}=M_{w_{P}^{-1}, w_{P}} x_{P}$ for $x \in A$. Since A is semisimple, it is easily verified that T is well defined and that $T S=S T=\operatorname{id}_{A}$. Consequently, $T=S^{-1}$; in particular, S is surjective.

Next we extend this condition for surjectivity to elementary operators of arbitrary length. However, in the absence of an if-and-only-if condition for spectral boundedness we have to use the slightly stronger assumptions of Proposition 3.2 instead, which in fact implies that the operator is spectrally isometric, thus extending Corollary 3.3 and part of Theorem 4.2.

Theorem 4.4. Let A be a semisimple unital Banach algebra. Let $S \in$ $\mathcal{E} \ell_{n}(A)$ be unital. Suppose that $S=S_{a, b}$ with $e_{i}=b_{i} a_{i} \in Z(A)$ for all $1 \leq i \leq n$ and $b_{i} a_{j}=0$ for all $i<j$. Then S is a spectral isometry. Moreover, the following are equivalent:
(a) S is surjective;
(b) $\sum_{i=1}^{n} e_{i}=1$;
(c) $S=M_{w, w^{-1}}$ for an invertible element $w \in A$.

Proof. First recall from the proof of Proposition 3.2 that each $e_{i}=b_{i} a_{i}$ is a central idempotent in A and that $b_{1}=b_{1} e_{1}, a_{n}=a_{n} e_{n}$. We shall obtain more complicated relations for the other coefficients of S below.

By Proposition $3.2, r(S x) \leq r(x)$ for all $x \in A$ so it suffices to show that $r(S x) \geq r\left(x^{P}\right)$ for all $x \in A$ and $P \in \operatorname{Prim}(A)$ (where we now changed the notation to $x^{P}=x+P$ in order to avoid the conflict with subscripts). We accomplish this by induction on n. The cases $n=1$ and $n=2$ are Proposition 3.1 and Theorem 4.2 respectively. Thus suppose that $S=\sum_{j=1}^{n+1} M_{a_{j}, b_{j}}$ with $n \geq 2$ and $e_{i}=b_{i} a_{i} \in Z(A)$ and $b_{i} a_{j}=0$ for all $1 \leq i<j \leq n+1$, and that the statement holds for elementary operators of length at most n. Let $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n+1}\right), \boldsymbol{b}=\left(b_{1}, \ldots, b_{n+1}\right)$ and $\boldsymbol{x}=\operatorname{diag}(x, \ldots, x)$. Then, with \boldsymbol{b}^{t} denoting the obvious column, we have

$$
S x=\boldsymbol{a} \boldsymbol{x} \boldsymbol{b}^{t}
$$

and hence

$$
\begin{aligned}
r(S x) & =r\left(\boldsymbol{b}^{t} \boldsymbol{a x}\right) \\
& =r\left(\left(\begin{array}{cccc}
b_{1} a_{1} & 0 & \ldots & 0 \\
b_{2} a_{1} & b_{2} a_{2} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
b_{n+1} a_{1} & b_{n+1} a_{2} & \ldots & b_{n+1} a_{n+1}
\end{array}\right)\left(\begin{array}{cccc}
x & 0 & \ldots & 0 \\
0 & x & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \ldots & x
\end{array}\right)\right) .
\end{aligned}
$$

Applying the same reasoning in the primitive quotient A / P we have

$$
r\left(S_{P} x^{P}\right)=r\left(\left(\begin{array}{cccc}
e_{1}^{P} & 0 & \ldots & 0 \\
\left(b_{2} a_{1}\right)^{P} & e_{2}^{P} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
\left(b_{n+1} a_{1}\right)^{P} & \left(b_{n+1} a_{2}\right)^{P} & \ldots & e_{n+1}^{P}
\end{array}\right)\left(\begin{array}{cccc}
x^{P} & 0 & \ldots & 0 \\
0 & x^{P} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \ldots & x^{P}
\end{array}\right)\right)
$$

where $e_{i}^{P} \in\left\{0,1^{P}\right\}, 1 \leq i \leq n+1$. If $e_{n+1}^{P}=0$ then $a_{n+1}^{P}=a_{n+1}^{P} e_{n+1}^{P}=0$ and therefore $\ell\left(S_{P}\right) \leq n$, so that we can apply the induction hypothesis to get $r(S x) \geq r\left(x^{P}\right)$. Otherwise, for $\lambda \in \mathbb{C}$ and $y \in A$,

$$
\left.\begin{array}{c}
\lambda-\left(\begin{array}{cccc}
e_{1}^{P} & 0 & \ldots & 0 \\
\left(b_{2} a_{1}\right)^{P} & e_{2}^{P} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
\left(b_{n+1} a_{1}\right)^{P} & \left(b_{n+1} a_{2}\right)^{P} & \ldots & 1^{P}
\end{array}\right)\left(\begin{array}{cccc}
x^{P} & 0 & \ldots & 0 \\
0 & x^{P} & \ldots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \ldots & x^{P}
\end{array}\right)
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
y^{P}
\end{array}\right) .
$$

Let $\lambda \in \sigma\left(x^{P}\right)$ be such that $|\lambda|=r\left(x^{P}\right)$. Then λ belongs to the left approximate point spectrum of x_{P}, and thus we can take a sequence $\left(y_{n}^{P}\right)_{n \in \mathbb{N}}$ of unit elements in A / P with $\left(\lambda-x^{P}\right) y_{n}^{P} \rightarrow 0(n \rightarrow \infty)$. The above calculations show that $r\left(S_{P} x^{P}\right) \geq|\lambda|=r\left(x^{P}\right)$.

Since this argument yields $r(S x) \geq r\left(x_{P}\right)$ for every primitive ideal P, we conclude that S is a spectral isometry.

As for the equivalence of the three conditions listed, evidently (c) $\Rightarrow(\mathrm{a})$. In order to establish $(\mathrm{a}) \Rightarrow(\mathrm{b})$, suppose that $\sum_{i=1}^{n} e_{i} \neq 1$. Then there is $P \in \operatorname{Prim}(A)$ such that $\sum_{i=1}^{n} e_{i}^{P} \neq 1^{P}$. As $Z(A / P)=\mathbb{C} 1^{P}$ this entails that there are $k, \ell \in\{1, \ldots, n\}, k<\ell$, such that $e_{k}^{P}=e_{\ell}^{P}=1^{P}$. (It is easy to verify that the assumption $S 1=1$ rules out the possibility that all $e_{i}^{P}=0$, $1 \leq i \leq n$.) Take $x \in A$. Upon multiplying the identity

$$
S_{P} x^{P}=\sum_{j=1}^{n} a_{j}^{P} x^{P} b_{j}^{P}
$$

first on the left by b_{k}^{P} and then on the right by a_{k}^{P} and noting that $b_{i}^{P} a_{j}^{P}=0$ for all $i<j$ we obtain in succession

$$
b_{k}^{P}\left(S_{P} x^{P}\right)=\sum_{j=1}^{k-1} b_{k}^{P} a_{j}^{P} x^{P} b_{j}^{P}+b_{k}^{P} a_{k}^{P} x^{P} b_{k}^{P}, \quad b_{k}^{P}\left(S_{P} x^{P}\right) a_{k}^{P}=e_{k}^{P} x^{P} e_{k}^{P}=x^{P} .
$$

Consequently, no $x \in A$ can satisfy $S_{P} x^{P}=a_{\ell}^{P}$ as the last identity on the left hand side yields $b_{k}^{P} a_{\ell}^{P} a_{k}^{P}=0$ but $x_{P}=0$ is incompatible with $b_{\ell}^{P} a_{\ell}^{P}=1^{P}$. We conclude that S_{P} cannot be surjective, so S cannot be surjective either.

Finally, to show $(\mathrm{b}) \Rightarrow(\mathrm{c})$ we note first that $\sum_{i=1}^{n} e_{i}=1$ implies that all e_{i} 's are mutually orthogonal (which follows at once from the fact that $Z(A)$ is a commutative semisimple Banach algebra, or purely algebraically). Consequently, any sum of the form $\sum_{i \in I} \sum_{j \in J} e_{i} e_{j}$ with $I, J \subseteq\{1, \ldots, n\}$ reduces to $\sum_{k \in I \cap J} e_{k}$ (which we interpret as 0 if $I \cap J=\emptyset$). This fact will be used repeatedly in the following.

From $S 1=\sum_{j=1}^{n} a_{j} b_{j}=1$ we obtain

$$
\begin{align*}
& b_{k}=b_{k} \sum_{j=1}^{n} a_{j} b_{j}=b_{k}\left(\sum_{j=1}^{k-1} a_{j} b_{j}+e_{k}\right) \tag{4.2}\\
& a_{k}=\sum_{j=1}^{n} a_{j} b_{j} a_{k}=\left(\sum_{j=k+1}^{n} a_{j} b_{j}+e_{k}\right) a_{k} \tag{4.3}
\end{align*}
$$

for each $1 \leq k \leq n$. Our next claim is that

$$
\begin{equation*}
b_{k}=b_{k} \sum_{j=1}^{k} e_{j} \quad \text { and } \quad a_{k}=a_{k} \sum_{j=k}^{n} e_{j} \quad(1 \leq k \leq n) \tag{4.4}
\end{equation*}
$$

which we shall prove by induction and "induction from the top", respectively. We have $b_{1}=b_{1} e_{1}$ and thus assume that $b_{\ell}=b_{\ell} \sum_{j=1}^{\ell} e_{j}$ for all $1 \leq \ell<k$. This entails

$$
b_{\ell}=b_{\ell} \sum_{j=1}^{\ell} e_{j}=b_{\ell} \sum_{j=1}^{\ell} e_{j} \sum_{i=1}^{k} e_{i}=b_{\ell} \sum_{i=1}^{k} e_{i}
$$

Putting this identity together with (4.2) we find that

$$
\begin{aligned}
b_{k} \sum_{i=1}^{k} e_{i} & =b_{k}\left(\sum_{\ell=1}^{k-1} a_{\ell} b_{\ell}+e_{k}\right) \sum_{i=1}^{k} e_{i} \\
& =b_{k}\left(\sum_{\ell=1}^{k-1} a_{\ell}\left(b_{\ell} \sum_{i=1}^{k} e_{i}\right)+e_{k}\right) \\
& =b_{k}\left(\sum_{\ell=1}^{k-1} a_{\ell} b_{\ell}+e_{k}\right)=b_{k}
\end{aligned}
$$

which proves the claim for the b_{k}. We also know that $a_{n}=a_{n} e_{n}$, and thus assume that $a_{\ell}=a_{\ell} \sum_{j=\ell}^{n} e_{j}$ for all $k<\ell \leq n$. It follows that

$$
a_{\ell}=a_{\ell} \sum_{j=\ell}^{n} e_{j}=a_{\ell} \sum_{j=\ell}^{n} e_{j} \sum_{i=k}^{n} e_{i}=a_{\ell} \sum_{i=k}^{n} e_{i}
$$

This identity together with (4.3) gives

$$
\begin{aligned}
a_{k} \sum_{i=k}^{n} e_{i} & =\left(\sum_{\ell=k+1}^{n} a_{\ell} b_{\ell}+e_{k}\right) a_{k} \sum_{i=k}^{n} e_{i}=\left(\sum_{\ell=k+1}^{n}\left(a_{\ell} \sum_{i=k}^{n} e_{i}\right) b_{\ell}+e_{k}\right) a_{k} \\
& =\left(\sum_{\ell=k+1}^{n} a_{\ell} b_{\ell}+e_{k}\right) a_{k}=a_{k}
\end{aligned}
$$

proving the second half of our claim.
The identities in 4.4 immediately yield the following information on the $M_{a_{k}, b_{k}}$:

$$
\begin{equation*}
M_{a_{k}, b_{k}}=\sum_{i=k}^{n} \sum_{j=1}^{k} e_{i} e_{j} M_{a_{k}, b_{k}}=e_{k} M_{a_{k}, b_{k}} \quad(1 \leq k \leq n) \tag{4.5}
\end{equation*}
$$

Set $w=\sum_{k=1}^{n} a_{k} e_{k}$ and $v=\sum_{j=1}^{n} b_{j} e_{j}$. Then

$$
\begin{aligned}
& w v=\sum_{k=1}^{n} \sum_{j=1}^{n} e_{k} e_{j} a_{k} b_{j}=\sum_{k=1}^{n} e_{k} a_{k} b_{k}=\sum_{k=1}^{n} a_{k} b_{k}=1 \\
& v w=\sum_{j=1}^{n} \sum_{k=1}^{n} e_{j} e_{k} b_{j} a_{k}=\sum_{j=1}^{n} e_{j}=1
\end{aligned}
$$

Therefore w is invertible with $w^{-1}=v$. Finally, from (4.5),

$$
M_{w, w^{-1}}=\sum_{k=1}^{n} \sum_{j=1}^{n} e_{k} e_{j} M_{a_{k}, b_{j}}=\sum_{k=1}^{n} e_{k} M_{a_{k}, b_{k}}=S,
$$

which completes the proof of Theorem 4.4.
In the remainder of this paper we shall discuss the state of our knowledge concerning the gap between a full description of spectrally isometric elementary operators of length (at most) two (Theorem 4.2) and the somewhat more restricted conclusion in the general case (Theorem 4.4).

In contrast to length two elementary operators there is (at present) no necessary condition for spectral boundedness of a length three elementary operator, such as in Lemma 4.1, without further assumptions. Firstly, starting with a spectrally bounded elementary operator S, the induced operator S_{P} may or may not be spectrally bounded. Even if it is, we only have a complete description for $S_{P} \in \mathcal{E} \ell_{3}(A / P)$ under the assumption that the representation space has dimension at least 4 . We can slightly improve this description, which was obtained in [6, Theorem 4.3], under the hypothesis that $S_{P} 1^{P}=1^{P}$, which we record here for completeness.

Proposition 4.5. Let A be a unital Banach algebra acting irreducibly as bounded linear operators on a Banach space E of dimension at least 4.

Let $S \in \mathcal{E} \ell_{3}(A)$ be unital. Then S is spectrally bounded if and only if there exist $\boldsymbol{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\boldsymbol{b}=\left(b_{1}, b_{2}, b_{3}\right)$ in $\mathscr{L}(E)^{3}$ such that $S=S_{\boldsymbol{a}, \boldsymbol{b}}$, $e_{i}=b_{i} a_{i}, 1 \leq i \leq 3$, are central idempotents and $b_{i} a_{j}=0$ for $1 \leq i<j \leq 3$. In this case, S is in fact a spectral contraction.

Proof. Clearly we can extend $S: A \rightarrow A$ to an elementary operator on $\mathscr{L}(E)$, the algebra of all bounded linear operators on E, by the same formula. The conditions on the coefficients imply that the extended operator is spectrally bounded, indeed a spectral contraction, by Proposition 3.2. As the spectral radius of an element is independent of the surrounding Banach algebra, it follows that $S: A \rightarrow A$ is a spectral contraction. This proves the "if" part.

For the "only if" part we only have to deal with the exceptional cases that are listed in [6, Theorem 4.3], as this result will then imply the statement. By hypothesis, if S is not already represented as claimed in the above result, then cases (ii) and (iii) in [6, Theorem 4.3] can be summarised as follows:

$$
S=\sum_{j=1}^{3} M_{u_{j}, v_{j}} \quad \text { where } \quad\left(v_{i} u_{j}\right)_{1 \leq i, j \leq 3}=\left(\begin{array}{ccc}
\lambda & r & 0 \tag{4.6}\\
s & \lambda & r \\
0 & -s & \lambda
\end{array}\right)
$$

for some $\lambda \in \mathbb{C}$ and rank one operators $r, s \in \mathscr{L}(E)$. We can read off the following identities:

$$
v_{1} u_{3}=v_{3} u_{1}=0, \quad v_{1} u_{2}=v_{2} u_{3}, \quad v_{2} u_{1}=-v_{3} u_{2}
$$

Upon multiplying $S 1=1$ on the left by v_{1} and on the right by u_{3} and using $v_{1} u_{3}=0$ we find that $v_{1} u_{2} v_{2} u_{3}=0$. As $v_{1} u_{2}=v_{2} u_{3}$ it follows that the rank one operator $r=v_{2} u_{3}$ has square zero and therefore must be zero. We conclude that $v_{i} u_{j}=0$ whenever $i<j$, as desired. Finally, multiplying $S 1=1$ simply on the right by u_{3} yields $u_{3} v_{3} u_{3}=u_{3}$, thus $(\lambda-1) u_{3}=0$, so $\lambda=1$, which finishes the argument.

A Banach algebra A is called an $S R$-algebra if the spectral radius formula holds in every quotient of A; that is, if I is a closed ideal of A then, for each $x \in A, r(x+I)=\inf _{y \in I} r(x+y)$. Every C^{*}-algebra has this property.

Corollary 4.6. Let A be a unital semisimple $S R$-algebra. Then every unital surjective $S \in \mathcal{E} \ell_{3}(A)$ which is spectrally isometric is an algebra automorphism of A.

Proof. Let $P \in \operatorname{Prim}(A)$. By assumption and as $S P \subseteq P, S_{P} \in \mathcal{E} \ell_{3}(A / P)$ is unital, surjective and a spectral contraction, by [6, Proposition 2.2] or [17. Proposition 9], and is spectrally isometric if $S P=P$. Suppose first that $\operatorname{dim} A / P<\infty$. Take $y \in P$ and write $y=S x$ for a (unique) $x \in A$. Then $0=S x+P=S_{P}(x+P)$, and therefore $x+P=0$ as S_{P} is injective (it is
surjective on the finite-dimensional space $A / P)$. Consequently, $x \in P$ and hence $P=S P$. Since $A / P \cong M_{n}(\mathbb{C})$ for some $n \in \mathbb{N}$, we conclude that S_{P} is a Jordan automorphism by [3, Proposition 2] (see also [7, Corollary 1.4] and [15, Example 5.4] for independent proofs).

It is well known that every Jordan automorphism of $M_{n}(\mathbb{C}), n>1$, is either of the form $x \mapsto w x w^{-1}$ or $x \mapsto w x^{t} w^{-1}$ for some invertible $w \in$ $M_{n}(\mathbb{C})$, where x^{t} denotes the transpose of x (see, e.g., [21, Corollary 1.4]). Note that $x \mapsto x^{t}$ is the elementary operator $T=\sum_{i, j=1}^{n} M_{e_{j i}, e_{j i}}$, where $e_{i j}$, $1 \leq i, j \leq n$, denotes the usual set of matrix units. As this set is linearly independent, $\ell(T)=n^{2}$. Since $\left\{w e_{j i} \mid 1 \leq i, j \leq n\right\}$ and $\left\{e_{j i} w^{-1} \mid 1 \leq\right.$ $i, j \leq n\}$ are linearly independent too, whenever $w \in M_{n}(\mathbb{C})$ is invertible, $\ell\left(M_{w, w^{-1}} T\right)=n^{2}>3$ for all $n>1$. Hence, $S \neq T$, and therefore S is multiplicative.

Suppose next that $\operatorname{dim} A / P=\infty$. Applying Proposition 4.5 together with Theorem 4.4 to S_{P} (and its extension to $\mathscr{L}(E)$) we find that S_{P} is an inner automorphism. As a result, S_{P} is multiplicative in either case, and therefore S is an algebra automorphism of A.

We will now discuss an example illustrating that Theorem 4.2 cannot be entirely extended to length three elementary operators.

Example 4.7. Let $A=\mathscr{L}(E)$ for an infinite-dimensional Banach space E. Let $S \in \mathcal{E} \ell(A)$ with $S 1=1$ and $\ell(S)=3$. Suppose S is a spectral isometry. By the results above, there exist two linearly independent subsets $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ of A such that $S=\sum_{j=1}^{3} M_{a_{j}, b_{j}}, e_{i}=b_{i} a_{i} \in\{0,1\}, 1 \leq i \leq 3$, and $b_{i} a_{j}=0$ for $1 \leq i<j \leq 3$. Suppose that $e_{1}=e_{3}=1$ and $e_{2}=0$ (and thus S is non-surjective by Theorem 4.4). For a concrete realisation of this situation, we can, e.g., take the isometries s_{1}, s_{2} from Example 2.4 and a non-zero operator $z \in \mathscr{L}(E)$ with $z^{2}=0$ and let $a_{1}=s_{1}, a_{2}=s_{2} z, a_{3}=s_{2}$, $b_{1}=s_{1}^{*}, b_{2}=z s_{1}^{*}$ and $b_{3}=s_{2}^{*}$. It is easily verified that these choices satisfy the above conditions. We claim that S is not a Jordan homomorphism.

To show this, we first observe that neither $\left\{1, b_{2} a_{1}\right\}$ nor $\left\{1, b_{3} a_{2}\right\}$ can be linearly dependent. For example, using $a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}=1$ and multiplying this identity on the left by b_{2} yields $b_{2} a_{1} b_{1}=b_{2}$, thus, if $b_{2} a_{1}=\lambda 1$ for some $\lambda \in \mathbb{C}$, we obtain $\lambda b_{1}=b_{2}$ violating the above assumption of linear independence. Similarly, linear dependence of $\left\{1, b_{3} a_{2}\right\}$ would result in linear dependence of $\left\{a_{2}, a_{3}\right\}$.

We can therefore find $\zeta, \eta \in E$ such that $\left\{\zeta, b_{2} a_{1} \zeta\right\}$ and $\left\{\eta, b_{3} a_{2} \eta\right\}$ are linearly independent. Since $\zeta=b_{1} a_{1} \zeta$, setting $\xi=a_{1} \zeta$, we see $\left\{b_{1} \xi, b_{2} \xi\right\}$ is linearly independent, and since $\eta=b_{3} a_{3} \eta$, it follows that $\left\{a_{3} \eta, a_{2} \eta\right\}$ is linearly independent too. Take $x \in A$ such that $x b_{1} \xi=0$ and $x b_{2} \xi=\eta$. If $\eta \in \operatorname{lin} \mu\left\{b_{1} \xi, b_{2} \xi\right\}$ then $x \eta=\beta \eta$ for some $\beta \in \mathbb{C}$. If $b_{3} a_{2} \eta \in \operatorname{lin} \mu\left\{b_{1} \xi, b_{2} \xi\right\}$ then $x b_{3} a_{2} \eta=\beta^{\prime} \eta$ for some $\beta^{\prime} \in \mathbb{C}$. Suppose that both cases occur together
and $\beta=\beta^{\prime}=0$. Then $\eta=\alpha b_{1} \xi$ and $b_{3} a_{2} \eta=\alpha^{\prime} b_{1} \xi$ for some $\alpha, \alpha^{\prime} \in \mathbb{C} \backslash\{0\}$. However, this violates the linear independence of $\left\{\eta, b_{3} a_{2} \eta\right\}$, thus it cannot happen. Consequently, if both cases occur together, we have

$$
x \eta=\beta \eta \quad \text { and } \quad x b_{3} a_{2} \eta=\beta^{\prime} \eta \quad \text { with }|\beta|^{2}+\left|\beta^{\prime}\right|^{2} \neq 0
$$

In the case when $\left\{b_{1} \xi, b_{2} \xi, \eta\right\}$ is linearly independent, we can also require of x that $x \eta=\eta$, and in the case when $\left\{b_{1} \xi, b_{2} \xi, b_{3} a_{2} \eta\right\}$ is linearly independent, we can additionally require that $x b_{3} a_{2} \eta=\eta$. It follows that, in any of the cases, we have $x \in A$ satisfying

$$
\begin{align*}
& x b_{1} \xi=0, \quad x b_{2} \xi=\eta \tag{4.7}\\
& x \eta=\beta \eta, \quad x b_{3} a_{2} \eta=\beta^{\prime} \eta \quad \text { with }|\beta|^{2}+\left|\beta^{\prime}\right|^{2} \neq 0
\end{align*}
$$

We will complete the argument by showing that, for this $x,(S x)^{2} \neq S\left(x^{2}\right)$, so S is not a Jordan homomorphism.

The initial assumptions on the coefficients of S reduce the left hand side in the first line below to the right hand side, and then we apply the special choice of x as given in 4.7). We have

$$
\begin{aligned}
\left((S x)^{2}-S\left(x^{2}\right)\right) \xi & =a_{2} x b_{2} a_{1} x b_{1} \xi+a_{3} x b_{3} a_{1} x b_{1} \xi+a_{3} x b_{3} a_{2} x b_{2} \xi-a_{2} x^{2} b_{2} \xi \\
& =a_{3} x b_{3} a_{2} \eta-a_{2} x \eta=\beta^{\prime} a_{3} \eta-\beta a_{2} \eta
\end{aligned}
$$

with $|\beta|^{2}+\left|\beta^{\prime}\right|^{2} \neq 0$. As $\left\{a_{3} \eta, a_{2} \eta\right\}$ is linearly independent, it follows that $\left((S x)^{2}-S\left(x^{2}\right)\right) \xi \neq 0$, as desired.

We conclude this paper by noting that a unital spectrally bounded elementary operator of length four and above which is not surjective need not be a spectral isometry. As an example the trace on $M_{2}(\mathbb{C})$ can serve which can be represented as

$$
x \mapsto \frac{1}{2} \sum_{j=1}^{4} e_{i j} x e_{j i}
$$

where $e_{i j}$ denotes the standard matrix units.
Acknowledgments. Some of the results in this paper were obtained in the second-named author's PhD thesis written under the supervision of the first-named author.

References

[1] J. Alaminos, J. Extremera and A. R. Villena, Spectral preservers and approximate spectral preservers on operator algebras, Linear Algebra Appl. 496 (2016), 36-70.
[2] B. Aupetit, A Primer on Spectral Theory, Springer, New York, 1991.
[3] B. Aupetit, Spectral characterization of the radical in Banach and Jordan-Banach algebras, Math. Proc. Cambridge Philos. Soc. 114 (1993), 31-35.
[4] N. Boudi and M. Mathieu, Elementary operators that are spectrally bounded, in 10, 1-15.
[5] N. Boudi and M. Mathieu, Locally quasi-nilpotent elementary operators, Oper. Matrices 8 (2014), 785-798.
[6] N. Boudi and M. Mathieu, More elementary operators that are spectrally bounded, J. Math. Anal. Appl. 428 (2015), 471-489.
[7] C. Costara, A Cartan type theorem for finite-dimensional algebras, Linear Algebra Appl. 426 (2007), 299-304.
[8] C. Costara and D. Repovš, Spectral isometries onto algebras having a separating family of finite-dimensional irreducible representations, J. Math. Anal. Appl. 365 (2010), 605-608.
[9] R. E. Curto and M. Mathieu, Spectrally bounded generalized inner derivations, Proc. Amer. Math. Soc. 123 (1995), 2431-2434.
[10] R. E. Curto and M. Mathieu (eds.), Elementary Operators and Their Applications (Belfast, 2009), Oper. Theory Adv. Appl. 212, Birkhäuser, Basel, 2011.
[11] R. J. Fleming and J. E. Jamison, Isometries on Banach Spaces: Function Spaces, Chapman \& Hall/CRC Monogr. Surveys Pure Appl. Math. 129, Chapman \& Hall, Boca Raton, FL, 2003.
[12] K. Jarosz (ed.), Function Spaces in Analysis (Edwardsville, IL, 2014), Contemp. Math. 645, Amer. Math. Soc., Providence, RI, 2015.
[13] R. V. Kadison, Isometries of operator algebras, Ann. Math. 54 (1951), 325-338.
[14] M. Mathieu, Towards a non-selfadjoint version of Kadison's theorem, Ann. Math. Inform. 32 (2005), 87-94.
[15] M. Mathieu, A collection of problems on spectrally bounded operators, Asian-Eur. J. Math. 2 (2009), 487-501.
[16] M. Mathieu and G. J. Schick, First results on spectrally bounded operators, Studia Math. 152 (2002), 187-199.
[17] M. Mathieu and A. R. Sourour, Hereditary properties of spectral isometries, Arch. Math. (Basel) 82 (2004), 222-229.
[18] M. Mathieu and A. R. Sourour, Spectral isometries on non-simple C^{*}-algebras, Proc. Amer. Math. Soc. 142 (2014), 129-145.
[19] M. Mathieu and M. Young, Spectral isometries into commutative Banach algebras, in [12], 217-222.
[20] V. Pták, Derivations, commutators and the radical, Manuscripta Math. 23 (1978), 355-362.
[21] P. Šemrl, Maps on matrix spaces, Linear Algebra Appl. 413 (2006), 364-393.
Martin Mathieu, Matthew Young
Pure Mathematics Research Centre
Queen's University Belfast
Belfast BT7 1NN, Northern Ireland
E-mail: m.m@qub.ac.uk myoung14@qub.ac.uk

[^0]: 2010 Mathematics Subject Classification: Primary 47B47; Secondary 46H99, 47A10, 47A65, 47B48.
 Key words and phrases: spectral isometries, elementary operators, Jordan isomorphisms. Received 12 February 2016; revised 20 May 2016.
 Published online 7 September 2016.

