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Real Jacobian mates

Janusz Gwoździewicz (Kraków)

Abstract. Let p be a real polynomial in two variables. We say that a polynomial q
is a real Jacobian mate of p if the Jacobian determinant of the mapping (p, q) : R2 → R2

vanishes nowhere. We present a class of polynomials that do not have real Jacobian mates.

1. Introduction. This paper is inspired by [2] where Braun and dos
Santos Filho proved that every polynomial mapping (p, q) : R2 → R2 which
is a local diffeomorphism with deg p ≤ 3 is a global diffeomorphism.

A pair of polynomials p, q ∈ R[x, y] such that the Jacobian determinant
Jac(p, q) = ∂p

∂x
∂q
∂y −

∂p
∂y

∂q
∂x vanishes nowhere, or equivalently the mapping

(p, q) : R2 → R2 is a local diffeomorphism, will be called real Jacobian mates.
The statement that p = x(1 + xy) does not have a real Jacobian mate
is crucial for [2]. Theorem 2.1 below provides a new proof of this fact. In
Theorem 4.1, a wide class of polynomials that do not have real Jacobian mates
is characterized. In particular, every polynomial whoseNewton polygon has an
edge as described in Corollary 4.2 belongs to this class. This gives a new proof
of [3, Theorem 5.5] that polynomials of degree 4 with at least one disconnected
level set do not have real Jacobian mates (see Example 4.4 below for details).

2. Glacial tongues

Theorem 2.1. Let p be a real polynomial in two variables and let B ⊂ A
be subsets of the real plane such that:

(i) the set B is bounded,
(ii) for every t ∈ R the set p−1(t)∩A is either empty, or contained in B,

or homeomorphic to a segment and has endpoints in B,
(iii) the border of A contains a half-line.

Then for every q ∈ R[x, y] there exists v ∈ R2 such that Jac(p, q)(v) = 0.

2010 Mathematics Subject Classification: Primary 14R15; Secondary 14R25.
Key words and phrases: real Jacobian conjecture, Newton polygon.
Received 30 May 2015; revised 27 April 2016 and 12 August 2016.
Published online 9 September 2016.

DOI: 10.4064/ap3740-8-2016 [207] c© Instytut Matematyczny PAN, 2016



208 J. Gwoździewicz

Proof. Suppose that there exists a polynomial q ∈ R[x, y] such that the
mapping Φ = (p, q) : R2 → R2 is a local diffeomorphism.

Take any t ∈ R such that the set At = p−1(t)∩A is nonempty. If At ⊂ B
then Φ(At) ⊂ Φ(B). If At is homeomorphic to a segment with endpoints
in B, then the restriction of Φ to At is a locally injective continuous mapping
from At, which is homeomorphic to a segment, to the vertical line {t} × R,
homeomorphic to R. By the extreme value theorem and the mean value
theorem, such a mapping is either increasing or decreasing. Hence, Φ(At) is
a vertical segment with endpoints in Φ(B).

Since Φ(B) is bounded, so is Φ(A).
Let L be a half-line contained in the border of A. As Φ is bounded on A,

it is also bounded on L. Consequently, the polynomials p and q restricted to
L are constant (because they behave on L like polynomials in one variable).
Hence Φ restricted to L is constant, which contradicts the assumption that
Φ is a local diffeomorphism.

Every set A satisfying the assumptions of Theorem 2.1 will be called a
glacial tongue with a straight border.

Example 2.2. Let p = x(1 + xy). In [2, Lemma 4.1 and Remark 1] it is
established that A = {(x, y) ∈ R2 : 0 < x < 1,−1/x < y ≤ −1} is a glacial
tongue with a straight border for p. Hence, p does not have a real Jacobian
mate.

3. Newton polygon and branches at infinity. Let p =
∑
ai,jx

iyj be
a nonzero polynomial. By definition, the Newton polygon ∆(p) is the convex
hull of the set {(i, j) ∈ Z2 : ai,j 6= 0}. An edge S of ∆(p) will be called an
outer edge if it has a normal vector ~v = (v1, v2) pointing outwards from ∆(p)
such that v1 > 0 or v2 > 0 (if ∆(p) reduces to a segment, then by convention
all normal vectors point outwards). If v1 > 0, then S will be called a right
outer edge. With every right outer edge S, we associate a rational number
θ(S) = v2/v1, called the slope of S.

Example 3.1. The Newton polygon of p = x+x2+x3y+y2+x3y2+xy3

has 4 outer edges. Three of them are right outer edges with slopes −1, 0,
and 2.
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The objective of this section is to describe branches at infinity of the
curve p(x, y) = 0 and associate with each branch a certain outer edge of the
Newton polygon of p.
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Let V = {(x, y) ∈ R2 : p(x, y) = 0}. Assume that V is unbounded and
consider the standard one-point algebraic compactification R̂2 = R2 ∪ {∞}
of the real plane (see [1, Definition 3.6.12]). Then ∞ belongs to the Zariski
closure of V in R̂2. By [4, Lemma 3.3] in a suitable neighborhood of ∞, the
curve V ∪ {∞} is the union of finitely many branches which intersect only
at ∞. Each branch is homeomorphic to an open interval under an analytic
homeomorphism γ : (−ε, ε)→ V ∪ {∞}, γ(0) =∞.

It follows that after passing to x and y coordinates in R2 and substituting
s = 1/t in γ, we obtain the following characterization of branches at infinity.

Lemma 3.2. Assume that V = {(x, y) ∈ R2 : p(x, y) = 0} is an un-
bounded polynomial curve. Then, in the complement of some compact set
K ⊂ R2, V is the union of finitely many pairwise disjoint “branches at in-
finity”. Each branch at infinity is homeomorphic to a union of open intervals
(−∞,−R) ∪ (R,∞) under a homeomorphism (x, y) = (x̃(t), ỹ(t)) given by
Laurent power series

x̃(t) = akt
k + ak−1t

k−1 + ak−2t
k−2 + · · · ,(3.1)

ỹ(t) = blt
l + bl−1t

l−1 + bl−2t
l−2 + · · · ,(3.2)

convergent for |t| > R.

Lemma 3.3. Keep the assumptions and notation of Lemma 3.2. If ak, bk
6= 0, then (k, l) is a normal vector to an outer edge of the Newton polygon
of p.

Proof. Let d=max{ki+ lj : (i, j) ∈ ∆(p)}. Writing p=
∑

ki+lj≤d ci,jx
iyj ,

substituting (x, y) = (x̃(t), ỹ(t)) and collecting the terms of the highest de-
gree we obtain

0 = p(x̃(t), ỹ(t)) =
( ∑
ki+lj=d

ci,ja
i
kb
j
l

)
td + terms of lower degrees.

A necessary condition for this identity to hold is the vanishing of the sum in
parentheses, hence there are at least two nonzero ci,j such that ki+ lj = d.
Thus, the Newton polygon and the line {(i, j) ∈ R2 : ki + lj = d} intersect
along an edge.

Since (x, y) = (x̃(t), ỹ(t)) is a Laurent parametrization of a branch at
infinity, we have ‖(x̃(t), ỹ(t))‖ → ∞ as t → ∞, which proves that k > 0 or
l > 0, and ∆(p) ∩ {(i, j) ∈ R2 : ki+ lj = d} is an outer edge.

It follows from Lemma 3.3 that every branch at infinity of the curve
p = 0, which is not contained in coordinate axes, is associated with one of
the outer edges of the Newton polygon of p. In the next lemma, we will show
that the slope of the associated edge characterizes the asymptotic behavior
of the branch at infinity.
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For real valued functions g, h defined in (R,∞), we will write g(x) ∼ h(x)
if there exist constants c, C, r > 0 such that c|h(x)| ≤ |g(x)| ≤ C|h(x)| for
all x > r.

Lemma 3.4. Let p(x, y) be a nonzero real polynomial such that for ev-
ery x0 the set Xx0 = {(x, y) ∈ R2 : x > x0, y > 0, p(x, y) = 0} is nonempty.
Then for sufficiently large x0 there exists a finite collection of continuous
semialgebraic functions fi : (x0,∞)→ R, i = 1, . . . , s, such that

(i) 0 < f1(x) < · · · < fs(x) for x > x0,
(ii) Xx0 is the union of the graphs {(x, y) ∈ R2 : y = fi(x), x > x0},

i = 1, . . . , s,
(iii) for every fi there exists a right outer edge Si of the Newton polygon

of p(x, y) such that fi(x) ∼ xθ(Si).

Proof. Parts (i) and (ii) follow from the cylindrical decomposition theo-
rem for semialgebraic sets (see for example [1, Theorem 2.2.1]).

To prove (iii) observe that the graph of fi is unbounded and homeomor-
phic to an open interval. Thus, increasing x0 if necessary, we may assume that
this graph is a half-branch at infinity. By Lemma 3.2, there exists a homeo-
morphism of (R,∞) and the graph given by Laurent power series (3.1), (3.2)
with ak, bl 6= 0. The condition x̃(t)→∞ for t→∞ gives k > 0. By x̃(t) ∼ tk,
ỹ(t) ∼ tl and the identity fi(x̃(t)) = ỹ(t), we get fi(x) ∼ xl/k. Finally, by
Lemma 3.3, there exists a right outer edge Si of the Newton polygon of p
such that l/k = θ(Si).

4. Main result

Theorem 4.1. Assume that the Newton polygon of p ∈ R[x, y] has a
right outer edge S of negative slope with endpoint (0, 1), and the curve p = 0
has a real branch at infinity associated with the edge S. Then p has a glacial
tongue with a straight border.

Proof. By the assumptions, there exists a half-branch at infinity of the
curve p = 0 with a Laurent parametrization (x, y) = (x̃(t), ỹ(t)), where
x̃(t) ∼ tk, ỹ(t) ∼ tl, k > 0, l < 0 and (k, l) is a normal vector to S.
Reversing signs of variables if necessary, we may assume that x̃(t), ỹ(t) > 0
for sufficiently large t.

Then, in the notation of Lemma 3.4, this half-branch at infinity is a graph
y = f(x), where f is one of the functions fi, i = 1, . . . , s. Comparing the
asymptotic behavior of these functions, we see that θ(S1) ≤ · · · ≤ θ(Ss).
From the assumptions on S, it has the smallest slope among all right outer
edges of the Newton polygon ∆(p), hence S = S1 and we may assume that
f = f1. One has p(x, f(x)) = p(x, 0) = 0 and p(x, y) 6= 0 for x > x0,
0 < y < f(x).
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Let Wx0 = {(x, y) ∈ R2 : x > x0, 0 < y < f(x)}. The polynomial p
vanishes nowhere on Wx0 , hence, without loss of generality, we may assume
that p is positive on this set.

Claim 1. For every t 6= 0 the set p−1(t) ∩Wx0 is bounded.

Proof of Claim 1. If not, then by the Curve Selection Lemma there exists
a half-branch at infinity of the curve p(x, y) = t contained in Wx0 . Let
y = g(x) be the graph of this half-branch. By Lemma 3.4, g(x) ∼ xθ(T ),
where T is one of the right outer edges of the Newton polygon ∆(p − t).
From 0 < g(x) < f(x), we get θ(T ) ≤ θ(S). This is impossible because all
right outer edges of ∆(p− t) have slopes greater than the slope of S.

Claim 2. For x0 sufficiently large, Wx0 does not contain any critical
points of p.

Proof of Claim 2. If the intersection ofWx0 with the set of critical points
is bounded, then it is enough to enlarge x0. If this intersection is unbounded,
then by the Curve Selection Lemma it contains an unbounded semialgebraic
arc Γ ⊂ Wx0 . It follows that p restricted to Γ is constant and nonzero,
contrary to Claim 1.

We denote V = Wx0 as in Claim 2. We can assume, enlarging x0 if
necessary, that p is positive on {x0}× (0, f(x0)). We denote Vt = p−1(t)∩V
for t ∈ R. Since Vt is a one-dimensional smooth semialgebraic manifold, it
has finitely many connected components, and each connected component is
homeomorphic to a circle or to an open interval.

Claim 3. No connected component of Vt is homeomorphic to a circle.

Proof of Claim 3. Suppose there is such a component. Then by Jordan’s
Theorem it divides the set V into two open regions. One of these regions
is bounded. Since p is constant on the boundary of this region, it attains
an extreme value at some point inside. This is impossible because p has no
critical points in V .

Let h(y) = p(x0, y) be the restriction of p to {x0} × R. The function h
vanishes at the endpoints of the closed interval [0, f(x0)] and is positive
inside. It is easy to find t0 > 0 and two points a < b inside [0, f(x0)] such
that:

• h′(y) 6= 0 for y ∈ (0, a] ∪ [b, f(x0)),
• h increases from 0 to t0 in [0, a],
• h(y) > t0 for a < y < b,
• h decreases from t0 to 0 in [b, f(x0)].

Claim 4. For every t such that 0 < t ≤ t0 the set Vt is connected and
homeomorphic to an open interval. The topological closure of Vt intersects
the vertical segment {x0} × (0, f(x0)) in two points.
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Proof of Claim 4. By the discussion preceding Claim 4, the polynomial p
attains value t precisely at two points of the boundary of V . These are the
points (x0, y1), where 0 < y1 ≤ a and (x0, y2), where b ≤ y2 < f(x0).
Moreover ∂p/∂y does not vanish at these points.

By Claims 2 and 3, the set Vt is a one-dimensional smooth manifold
having a finite number of connected components; each component is semi-
algebraic and homeomorphic to an open interval. Thus, the closure of Vt
is a graph with vertices (x0, y1), (x0, y2) and edges which are connected
components of Vt.

By the Implicit Function Theorem, in a small neighborhood of (x0, yi) for
i = 1, 2, the closure of Vt has the topological type of an interval [0, 1), which
shows that there is exactly one edge that connects (x0, y1) and (x0, y2).

By Claim 4, the closure of Vt0 is a line with endpoints (x0, a) and (x0, b).
Joining these points with a vertical segment, we get a nonsmooth oval. By
Jordan’s Theorem, this oval divides the plane into two open regions. Let
B0 be the bounded region, let B = B0 ∪ ({x0} × (0, f(x0))), and let A =
V ∪ ({x0} × (0, f(x0))).

If t ≤ 0, then At = p−1(t) ∩ A is empty. If 0 < t ≤ t0, then At is
homeomorphic to a segment with endpoints in {x0} × (0, f(x0)). If t > t0,
then either At is empty, or the closure of every connected component of At
intersects the border of A along x0 × (a, b). In this case, At ⊂ B.

Corollary 4.2. Assume that the Newton polygon of a polynomial p ∈
R[x, y] has a right outer edge that begins at (0, 1), has a negative slope, and
its only lattice points are the endpoints. Then p does not have a real Jacobian
mate.

Proof. Let S be the edge satisfying the assumptions of the corollary. Its
endpoints are the lattice points (0, 1) and (a, b) with a ≥ 1, b ≥ 2, and it
has slope θ(S) = −a/(b − 1). Moreover, a or b − 1 is odd since otherwise
(a/2, (b+ 1)/2) would be a lattice point on S.

It is enough to prove that the curve p = 0 has a branch at infinity
associated with S and to apply Theorems 4.1 and 2.1.

The polynomial p has two nonzero terms Ay and Bxayb corresponding
to the endpoints of S. Using the conditions on a and b and reversing the
sign of x or y if necessary, we may assume that A and B have opposite
signs. For (x(t), y(t)) = (ctb−1, t−a), where c is a positive constant, we get
p(x(t), y(t)) = (Bca + A)t−a + terms of lower degrees. Hence, the sign of p
on the curve (x(t), y(t)) for large t depends only on the sign of Bca + A.
The curve (x(t), y(t)) for large t is the graph of hc(x) = ca/(b−1)xθ(S). By an
appropriate choice of c, we get functions g1 = hc1 and g2 = hc2 such that p
has opposite signs on their graphs, g1(x) ∼ g2(x) ∼ xθ(S) and 0 < g1 < g2.
Then, by Lemma 3.4, there is a half-branch at infinity of p = 0 which is the
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graph of a function f such that g1(x) < f(x) < g2(x) for large x. From the
above inequalities we get f(x) ∼ xθ(S), which ends the proof.

Remark 4.3. Using toric modifications of the real plane, one can give a
shorter proof of Corollary 4.2.

Example 4.4. The polynomials p1 = y + xy2 + y4, p2 = y + xy3, p3 =
y + y2 + xy3, p4 = y + x2y2, p5 = y + ay2 + y3 + x2y2, where a2 < 3, all
satisfy the assumptions of Corollary 4.2.

The Newton polygons of these polynomials are drawn below.
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The polynomials in the above example are taken from [3]. Theorem 1.3 in
that paper states that these polynomials are canonical forms up to affine sub-
stitution of polynomials of degree 4 without critical points and with at least
one disconnected level set. Theorem 5.5 of [3] says that none of these poly-
nomials has a real Jacobian mate. The method of its proof uses integration
based on Green’s formula and requires an analysis of each case separately.
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