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1. Introduction. The sequence {Fn}n≥1 of Fibonacci numbers is given
by

F1 = 1, F2 = 1, Fn+2 = Fn+1 + Fn, n ≥ 1.

A Diophantine m-tuple is a set {a1, . . . , am} of positive integers such that
aiaj + 1 is a perfect square for all i 6= j in {1, . . . ,m}. In 1977, Hoggatt and
Bergum [4] proved that {F2n, F2n+2, F2n+4, 4F2n+1F2n+2F2n+3} is a Dio-
phantine quadruple. In 1999, Dujella [2] proved that if d is a positive inte-
ger such that {F2n, F2n+2, F2n+4, d} is a Diophantine quadruple, then d =
4F2n+1F2n+2F2n+3. Here, we take this one step further, by fixing a positive
integer n and looking at positive integers k such that {F2n, F2n+2, Fk} is a
Diophantine triple. Our result is the following.

Theorem 1. If {F2n, F2n+2, Fk} is a Diophantine triple, then k ∈
{2n + 4, 2n − 2}, except when n = 2, in which case we have the additional
solution k = 1.

Note that the exception k = 1 in case n = 2 is not truly an exception: it
appears merely due to the fact that F1 = F2.

2. Intersection of two sequences. For any fixed positive integer n,
assume that there exist positive integers k, x, y such that

(1) F2nFk + 1 = x2, F2n+2Fk + 1 = y2.

Eliminating Fk, we deduce the norm form equation

(2) F2n · y2 − F2n+2 · x2 = F2n − F2n+2.
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Since F2n < F2n+2 < 4F2n, by [5, Theorem 8], we have

y
√
F2n + x

√
F2n+2 = (±

√
F2n +

√
F2n+2)(F2n+1 +

√
F2nF2n+2)

j , j ≥ 0.

Define

Vj + Uj
√
F2nF2n+2 := (F2n+1 +

√
F2nF2n+2)

j .

Then we obtain

(3) x = xj = Vj ± F2nUj .

Substituting (3) into the first equation of (1), we get

(4) Fk = ±2VjUj + (F2n + F2n+2)U
2
j .

This is the main equation to be solved. Let

(5) C
(±)
j := ±2VjUj + (F2n + F2n+2)U

2
j for j = 1, 2, . . . .

Therefore, we have to solve the equation

(6) C
(±)
j = Fk

for some positive integers j and k. Notice that the above equation has solu-
tions

(7) C
(+)
1 = F2n+4 and C

(−)
1 = F2n−2,

which are the ones appearing in the statement of Theorem 1. We need
to show that there are no other solutions (except when n = 2, for which

C
(−)
1 = F2·2−2 = F2 = F1). So, we shall assume that j ≥ 2 in order to get a

contradiction.

Let

α =
1 +
√

5

2
and ᾱ =

1−
√

5

2
.

We use the well-known Binet formula

(8) Fk =
αk − ᾱk√

5
for all k ≥ 1.

We set

βn := F2n+1 +
√
F 2
2n+1 − 1,

and also

(9) Vj :=
βjn + β−jn

2
, Uj =

βjn − β−jn
2
√
F 2
2n+1 − 1

.

Technically, Vj and Uj depend on n, but we shall assume that n is fixed
throughout the argument. Define

(10) γ(±)n := ± 1

2
√
F 2
2n+1 − 1

+
F2n + F2n+2

4(F 2
2n+1 − 1)

.
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Formula (5) leads to

C
(±)
j = ± β2jn − β−2jn

2
√
F 2
2n+1 − 1

+ (F2n + F2n+2) ·
β2jn − 2 + β−2jn

4(F 2
2n+1 − 1)

(11)

= β2jn γ
(±)
n − F2n + F2n+2

2(F 2
2n+1 − 1)

+ β−2jn γ(∓)n .

Therefore, by (8) and (11), equation (6) becomes

(12) β2jn γ
(±)
n − F2n + F2n+2

2(F 2
2n+1 − 1)

+ β−2jn γ(∓)n =
αk − ᾱk√

5
.

3. A linear form in three logarithms

Lemma 1. We have

(i) 1.46α−2n < γ
(+)
n < 1.66α−2n;

(ii) 0.08α−2n < γ
(−)
n < 0.13α−2n.

Proof. From the definition of γ
(±)
n , we deduce

2

√
γ
(±)
n =

1√
F2n
± 1√

F2n+2
(13)

= 51/4α−n
(

1√
1− 1/α4n

± 1

α
√

1− 1/α4n+4

)
.

The Taylor series of (1− x)−1/2 is

1√
1− x

= 1 +
1

2
x+

3

8
x2 +

5

16
x3 + · · · ,

which implies

1 +
1

2
x <

1√
1− x

< 1 +
x

2(1− x)
for x ∈ (0, 1).

Therefore,

(14) 1± 1

α
<

1√
1− 1/α4n

± 1

α
√

1− 1/α4n+4
< 1.1± 1

α
.

Using (13) and (14), we get

1± 1

α
<

2

√
γ
(±)
n

51/4α−n
< 1.1± 1

α
.

Straightforward calculations give the results (i) and (ii) in the lemma.

Now, we define the following linear form in three logarithms:

(15) Λ := 2j log βn − k logα+ log(
√

5 · γ(±)n ).

The next result determines an upper bound for Λ.
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Lemma 2. If j ≥ 2, then 0 < Λ < 66β−2jn .

Proof. Using equation (12), we have

β2jn γ
(±)
n − αk√

5
=
F2n + F2n+2

2(F 2
2n+1 − 1)

− β−2jn γ(∓)n − ᾱk√
5
.

Suppose first that β2jn γ
(±)
n ≤ αk/

√
5. Then

√
5

αk
≤ β−2jn

γ
(±)
n

≤ β−2jn

γ
(−)
n

and
1

F2n+2
<

1

2F2n
+

1

2F2n+2
=
F2n + F2n+2

2(F 2
2n+1 − 1)

< β−2jn γ(∓)n +
ᾱk√

5
≤ β−2jn γ(+)

n +
1√

5 · αk
imply

(16)
1

F2n+2
< β−2jn

(
γ(+)
n +

1

5γ
(−)
n

)
.

Inequality (16) and Lemma 1 give

4jF j2nF
j
2n+2 < β2jn < F2n+2

(
γ(+)
n +

1

5γ
(−)
n

)
< F2n+2(1.66α−2n + 2.5α2n),

so

(17) 4jF j2nF
j−1
2n+2 < 1.66α−2n + 2.5α2n.

Inequality (17) implies easily that j < 2, which contradicts the assumption.

So, we have β2jn γ
(±)
n > αk/

√
5. Therefore, Λ > 0. Moreover, as

|αk5−1/2β−2jn γ(±)n

−1−1| < F2n + F2n+2

2(F 2
2n+1 − 1)

· 1

β2jn γ
(±)
n

<
1

F2n
· 1

β2jn γ
(−)
n

< 33β−2jn

and the rightmost quantity above is < 1/2, we deduce that Λ < 66β−2jn .
Here, we have used the fact that

(18) |Λ| < 2|eΛ − 1| whenever |eΛ − 1| < 1/2.

For any non-zero algebraic number γ of degree d over Q whose minimal
polynomial over Z is a

∏d
j=1(X − γ(j)), we denote by

h(γ) =
1

d

(
log a+

d∑
j=1

log max(1, |γ(j)|)
)

its absolute logarithmic height. We need the following result due to Mat-
veev [8].
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Lemma 3. Let Λ be a linear form in logarithms of multiplicatively in-
dependent totally real algebraic numbers α1, . . . , αN with rational integer
coefficients b1, . . . , bN (bN 6= 0). Let h(αj) denote the absolute logarithmic
height of αj for 1 ≤ j ≤ N . Define the numbers D, Aj (1 ≤ j ≤ N)
and E by D := [Q(α1, . . . , αN ) : Q], Aj := max{Dh(αj), |logαj |}, E :=
max{1,max{|bj |Aj/AN ; 1 ≤ j ≤ N}}. Then

log |Λ| > −C(N)C0W0D
2Ω,

where

C(N) :=
8

(N − 1)!
(N + 2)(2N + 3)(4e(N + 1))N+1,

C0 := log(e4.4N+7N5.5D2 log(eD)),

W0 := log(1.5eED log(eD)), Ω = A1 · · ·AN .

In order to apply Lemma 3 to the linear form in three logarithms

Λ = 2j log βn − k logα+ log(
√

5 · γ(±)n ),

we take

N = 3, D = 4, b1 = 2j, b2 = −k, b3 = 1,

and

α1 = βn, α2 = α, α3 =
√

5 · γ(±)n .

We need to justify that α1, α2, α3 are multiplicatively independent. But
note that α2 ∈ Q(

√
5) and α1, α

2
3 ∈ Q(

√
F2nF2n+2). Let us show that

F2nF2n+2 is neither a square nor 5 times a square. Indeed, otherwise, since
gcd(F2n, F2n+2) = Fgcd(2n,2n+2) = F2 = 1, one of F2n or F2n+2 would be
a square. It is well-known that the only squares in the Fibonacci sequence
are 1 and 144, leading to n = 1, 5, 6, but none of F2F4, F10F12, F12F14 is a
square or 5 times a square. Thus, if we write F2nF2n+2 = du2 for an integer
u and a square-free integer d, then d > 1 and d 6= 5. So, if α1, α2, α3 are
multiplicatively dependent, then α1 and α2

3 are multiplicatively dependent
(because no power of α2 of a non-zero integer exponent is in Q(

√
d)). Since

α1 is a unit in Q(
√
d), we deduce that α2

3 = 5(γ
(±)
n )2 is a unit, which is false

since the norm of 5(γ
(±)
n )2 is

25(γ(+)
n γ(−)n )2 =

25F 4
2n+1

256F 4
2nF

4
2n+2

,

and the above fraction is not an integer for any n ≥ 1.

One can see that

h(α1) = h(βn) =
1

2
log βn and h(α2) = h(α) =

1

2
logα.
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As γ
(+)
n , γ

(−)
n are conjugate and are roots of the quadratic polynomial

16F 2
2nF

2
2n+2X

2 − 8(F 2
2nF2n+2 + F2nF

2
2n+2)X + (F2n+2 − F2n)2,

and furthermore

|γ(±)n | ≤ |γ(+)
n | =

1

4

(
1√
F2n

+
1√
F2n+2

)2

< 1,

we get

h(γ(±)n ) ≤ 1

2
log(16F 2

2nF
2
2n+2) = log(4F2nF2n+2) < log(4/5) + (4n+ 2) logα,

where we have used the fact that F` < α`/
√

5 for ` ∈ {2n, 2n + 2}. This
implies

h(α3) = h(
√

5 · γ(±)n ) ≤ h(
√

5) + h(γ(±)n )

<
1

2
log 5 + log(4/5) + (4n+ 2) logα

= log(4/
√

5) + (4n+ 2) logα < 4(n+ 1) logα,

where we have used the inequality 4/
√

5 < α2. We set

A1 = 2 log βn, A2 = 2 logα, A3 = 16(n+ 1) logα.

Relabeling the three numbers for the purpose of computing E (so making
the substitution α2 ↔ α3), we see that we can take

E = max

{
2j log βn

logα
, 8(n+ 1), k

}
≤ 4j(n+ 1).

For the last inequality above we have used, on the one hand, the fact that
α`−2 ≤ F` ≤ α`−1 for all ` ≥ 1 to deduce that

βn < 2F2n+1 < 2α2n < α2(n+1),

because α2 > 2, and on the other hand the fact that for n ≥ 2 we have

αk−1 < 2αk−2 ≤ 2Fk ≤ 4UjVj + 2(F2n + F2n+2)U
2
j

= (Vj + Uj
√
F2nF2n+2)

2 = (F2n+1 +
√
F2nF2n+2)

2j

< (2α2n)2j < α4j(n+1),

while for n = 1 we have k ≤ 6 by a result of Robbins [9].

By Lemmas 2 and 3 we get

C(3) =
8

2!
(3 + 2)(6 + 3)(42e)4 < 6.45 · 108,

C0 = log(e4.4·3+735.542 log(4e)) < 30,

W0 = log(1.5 · 4eE log(4e)) < log(156j(n+ 1)),

Ω = (2 log βn)(2 logα)(16(n+ 1) logα),
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so

2j log βn − log 66 < − log |Λ|
< (6.45 · 108) · 30 · 42 log(156j(n+ 1))(2 log βn)(2 logα)(16(n+ 1) logα),

which leads to
j < 2.3 · 1012(n+ 1) log(156j(n+ 1)).

We record what we have obtained:

Proposition 1. If equation (4) has a positive integer solution (j, k)
with j > 1, then

(19) j < 2.3 · 1012(n+ 1) log(156j(n+ 1)).

4. A linear form in two logarithms. From (7), when j = 1, one can
see that equation (4) has the solutions

(20) k =

{
2n− 2 for C = C

(−)
1 ,

2n+ 4 for C = C
(+)
1 .

This leads us to define

(21) Λ0 = 2 log βn − ((2n+ 1)± 3) logα+ log(
√

5 · γ(±)n ).

Lemma 4. We have |Λ0| < 66β−2n .

Proof. For n = 1, this can be checked directly. Assume that n ≥ 2.
Substituting (20) into (12), we have

β2nγ
(±)
n − α(2n+1)±3

√
5

=
F2n + F2n+2

2(F 2
2n+1 − 1)

− β−2n γ(∓)n − α−(2n+1)∓3
√

5
.

If β2nγ
(±)
n ≤ α(2n+1)±3/

√
5, then α−(2n+1)∓3/

√
5 ≤ 1/(5β2nγ

(±)) and hence

|α((2n+1)±3)5−1/2β−2n /γ(±)n − 1| < β−2n γ
(∓)
n + α−(2n+1)∓3/

√
5

β2nγ
(±)
n

<
γ
(∓)
n + 1/(5γ

(±)
n )

β4nγ
(±)
n

<
20.75 + 31.25α4n

β4n
.

This inequality together with βn > 2 +
√

3 and βn > α2n gives

|α((2n+1)±3)5−1/2β−2n /γ(±)n − 1| < 32.8β−2n .

On the other hand, if β2nγ
(±)
n > α(2n+1)±3/

√
5, then

|α((2n+1)±3)5−1/2β−2n /γ(±)n − 1| < 1/(2F2n) + 1/(2F2n+2)

β2nγ
(±)
n

<
1

F2nβ2nγ
(±)
n

< 8.7β−2n .
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In both cases,

(22) |α((2n+1)±3)5−1/2β−2n /γ(±)n − 1| < 32.8β−2n .

Since n ≥ 2, we have βn ≥ 5 +
√

24, so β2n > 66, and inequality (22) implies
|Λ0| < 66β−2n via (18).

Let K := (2j − 1)(2n+ 1)− k ± 3 and

(23) Λ1 := K logα− (j − 1) log(5/4).

Lemma 5. We have |Λ1| < (6j + 192)α−4n−2.

Proof. We know that

βn = F2n+1 +
√
F 2
2n+1 − 1 = 2F2n+1 −

1

F2n+1 +
√
F 2
2n+1 − 1

(24)

= 2F2n+1

(
1− 1

2F2n+1(F2n+1 +
√
F 2
2n+1 − 1)

)
and

2F2n+1 =
2√
5

(α2n+1 − ᾱ2n+1) =
2√
5
α2n+1

(
1 +

1

α4n+2

)
.

We define

δn =

(
1− 1

2F2n+1(F2n+1 +
√
F 2
2n+1 − 1)

)(
1 +

1

α4n+2

)
.

From the above, we deduce that

log βn = log(2/
√

5) + (2n+ 1) logα+ log δn.

Using (15) and (21), we have

Λ− Λ0 = (2j − 2) log βn − (k − (2n+ 1)∓ 3) logα

= (2j − 2) log
2√
5

+ (2j − 2)(2n+ 1) logα

+ (2j − 2) log δn − (k − (2n+ 1)∓ 3) logα

= (2j − 2) log δn +K logα− (j − 1) log(5/4).

The above calculation and the definition of Λ1 give

Λ1 = Λ− Λ0 − (2j − 2) log δn.

One can see that Lemmas 2, 4 and the inequalities

|log δn| ≤
∣∣∣∣log

(
1− 1

2F2n+1(F2n+1 +
√
F 2
2n+1 − 1)

)∣∣∣∣+

∣∣∣∣log

(
1 +

1

α4n+2

)∣∣∣∣
<

1.2

2F2n+1(F2n+1 +
√
F 2
2n+1 − 1)

+
1

α4n+2
<

3

α4n+2
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imply

(25) |Λ1| ≤ |Λ|+ |Λ0|+ |(2j − 2) log δn| <
132

β2n
+

6(j − 1)

α4n+2
.

Clearly,

βn = F2n+1

(
1 +

√
1− 1

F 2
2n+1

)
≥ F2n+1(1 +

√
3/2)

> α2n+1(1 +
√

3/2)/
√

5,

so

(26) β2n > α4n+2 (1 +
√

3/2)2

5
>

2α4n+2

3
.

From (25) and (26), we get the desired conclusion.

At this point, we recall the following result of Laurent [7].

Lemma 6. Let γ1 > 1 and γ2 > 1 be two real multiplicatively independent
algebraic numbers, b1, b2 ∈ Z not both 0 and

Λ = b2 log γ2 − b1 log γ1.

Let D := [Q(γ1, γ2) : Q]. Let

hi ≥ max

{
h(γi),

|log γi|
D

,
1

D

}
for i = 1, 2, b′ ≥ |b1|

Dh2
+
|b2|
Dh1

.

Then

log |Λ| ≥ −17.9D4

(
max

{
log b′ + 0.38,

30

D
,
1

2

})2

h1h2.

To apply Lemma 6 to Λ1, we set

D = 2, γ1 = 5/4, γ2 = α, b1 = j − 1, b2 = K.

The conditions of the lemma are fulfilled for our choices of parameters.
Furthermore, we can take h1 = log 5, h2 = 1/2. By Lemma 5, we have

K <
(j − 1) log(5/4) + (6j + 192)α−4n−2

logα

< 0.47(j − 1) + 0.7j + 22.3 < 1.2j + 22.

So, we can take

b′ = 1.38j + 6.9 > (j − 1) +
K

2 log 5
=
|b1|
Dh2

+
|b2|
Dh1

.

Therefore, Lemma 6 yields

(27) log |Λ1| > −17.9 · 8 log 5 · (max{log(1.38j + 6.9) + 0.38, 15})2.
From Lemma 5, we get

(28) log |Λ1| < −(4n+ 2) logα+ log(6j + 192).
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Combining the two bounds (27) and (28) on log |Λ1|, we have

(29) n < 120(max{log(1.38j + 6.9) + 0.38, 15})2 + 0.6 log(6j + 192).

If

log(1.38j + 6.9) + 0.38 ≤ 15,

then

j < 1619963 and n < 120 · 152 + 0.6 log(6 · 1619963 + 192) < 27010.

Otherwise,

(30) n < 120(log(1.38j + 6.9) + 0.38)2 + 0.6 log(6j + 192).

Substituting inequality (30) into Proposition 1, we have

j < 2.3 · 1012(120(log(1.38j + 6.9) + 0.38)2 + 0.6 log(6j + 192) + 1)(31)

× log
(
156j

(
120(log(1.38j+6.9)+0.38)2+0.6 log(6j + 192)+1

))
.

A straightforward calculation gives j < 4 · 1019, which together with (30)
implies n < 252158. Therefore, we get the following result.

Lemma 7. If equation (4) has a positive integer solution (j, k) with j>1,
then

j < 4 · 1019 and n < 252158.

5. Better bounds on j and n. From Lemma 5, we have

|K logα− (j − 1) log(5/4)| < (6j + 192)α−4n−2.

Hence,

(32)

∣∣∣∣ log(5/4)

logα
− K

j − 1

∣∣∣∣ < 6j + 192

(j − 1)α4n+2 logα
.

Assume first that

(33)
6j + 192

(j − 1)α4n+2 logα
<

1

2(j − 1)2
.

Then ∣∣∣∣ log(5/4)

logα
− K

j − 1

∣∣∣∣ < 1

2(j − 1)2
.

This implies, by a criterion of Legendre, that K/(j − 1) is a convergent in
the simple continued fraction expansion of log(5/4)/logα. We know that

log(5/4)

logα
= [0, 2, 6, 2, 1, 1, 3, 7, 1, 3, 1, 1, 22, 2, 1, 1, 4, 3, 1, 2, 1, 1, 1, 1, 4,

1, 12, 6, 1, 1, 4, 1, 8, 2, 1, 49, 1, 10, 6, 1, 1, 3, 1, 1, 1, 5, 22, 1, . . .].
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The denominator of the 46th convergent

25158053660121411107

54253653513327093513

is greater than the upper bound 4 · 1019 on j. The 45th convergent

4460457560349832575

9619031832089360168
provides the lower bound

(34)

∣∣∣∣ log(5/4)

logα
− K

j − 1

∣∣∣∣ > 1.9 · 10−39.

From (32) and (34), we get

1.9 · 10−39 <
6j + 192

(j − 1)α4n+2 logα
< 204α−4n−2(logα)−1,

which implies that n < 49. It is known (see [6]) that if pr/qr is the rth such
convergent of log(5/4)/logα, then∣∣∣∣ log(5/4)

logα
− pr
qr

∣∣∣∣ > 1

(ar+1 + 2)q2r
,

where ar+1 is the (r+1)st partial quotient of log(5/4)/(logα). We thus have

(35) min

{
1

(ar+1 + 2)(j − 1)2

}
<

6j + 192

(j − 1)α4n+2 logα
for 2 ≤ r ≤ 45.

Since max{ar+1 : 2 ≤ r ≤ 45} = a36 = 49, from (35) we get

α4n+2 < 51(j − 1)(6j + 192)(logα)−1.

All this was when inequality (33) holds. On the other hand, if (33) does
not hold, then

α4n+2 ≤ 2(j − 1)(6j + 192)(logα)−1.

Both possibilities give

α4n+2 < 51(j − 1)(6j + 192)(logα)−1 < 636j(j + 32) < 20988j2.

Therefore, we deduce the following result.

Proposition 2. If equation (4) has a positive integer solution (j, k)
with j > 1, then

(36) n < 1.04 log j + 4.7.

This bound is better than that in (30). Combining Propositions 1 and 2,
we get

j < 2.3 · 1012(1.04 log j + 5.7) log(156j(1.04 log j + 5.7)),

which implies that j < 5 · 1015. Using Proposition 2, we get the following
result.
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Lemma 8. If equation (4) has a positive integer solution (j, k) with j>1,
then

j < 5 · 1015 and n < 43.

6. The Baker–Davenport reduction method. In order to deal with
the remaining cases, for 1 ≤ n ≤ 42 we used a Diophantine approxima-
tion algorithm called the Baker–Davenport reduction method. The following
lemma is a slight modification of the original version of the Baker–Davenport
reduction method (see [3, Lemma 5a]).

Lemma 9. Assume that κ and µ are real numbers and M is a positive
integer. Let P/Q be the convergent of the continued fraction expansion of κ
such that Q > 6M and let

η = ‖µQ‖ −M · ‖κQ‖,

where ‖ · ‖ denotes the distance from the nearest integer. If η > 0, then
there is no solution of the inequality

0 < jκ− k + µ < AB−j

in integers j and k with

log(AQ/η)

logB
≤ j ≤M.

As

0 < 2j log βn − k logα+ log(
√

5 · γ(±)n ) < 66β−2jn ,

we apply Lemma 9 with

κ =
2 log βn
logα

, µ =
log(
√

5 · γ(±)n )

logα
, A =

66

logα
, B = β2n, M = 5 · 1015.

The program was developed in PARI/GP running with 200 digits. For the
computations, if the first convergent such that q > 6M does not satisfy the
condition η > 0, then we use the next convergent until we find the one that
satisfies the conditions. In one minute all the computations were done. In
all cases, we obtained j ≤ 17. From Proposition 2, we deduce that n < 8.
We set M = 17 to check again in the range 1 ≤ n ≤ 7. The second run of
the reduction method yields j ≤ 6 and then n ≤ 6. So we have the following
result.

Lemma 10. If equation (4) has a positive integer solution (j, k) with
j > 1, then

j ≤ 6 and n ≤ 6.

We are now ready to prove Theorem 1.
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7. The proof of Theorem 1. For 1 ≤ n ≤ 6, 2 ≤ j ≤ 6, we compute

all C
(±)
j . None of them is a Fibonacci number. This means that equation (4)

has no positive integer solution (j, k) with j ≥ 2. When j = 1, we have

C
(+)
1 = 2V1U1 + (F2n + F2n+2)U

2
1 = 2F2n+1 + F2n + F2n+2 = F2n+4

for n ≥ 1, and

C
(−)
1 = −2V1U1 + (F2n + F2n+2)U

2
1 = −2F2n+1 + F2n + F2n+2 = F2n−2

for n = 1, 2. Since F1 = F2 = 1, the additional solutions come from the
triple {F1, F4, F6} = {F2, F4, F6} = {1, 3, 8}.

8. Final remark. We close by offering the following conjectures.

Conjecture 1. There are no four positive integers p, q, m, n such that
{Fp, Fq, Fm, Fn} is a Diophantine quadruple.

Conjecture 2. If there exist three positive integers p < q < r such that
{Fp, Fq, Fr} is a Diophantine triple, then (p, q, r) = (2n, 2n+ 2, 2n+ 4) for
some n ≥ 1 with the additional exception (p, q, r) = (1, 4, 6).
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