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Congruences modulo powers of 3 for
generalized Frobenius partitions with six colors
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1. Introduction. This paper is concerned with congruences modulo
powers of 3 for the number of 6-colored generalized Frobenius partitions. In
particular, we confirm a conjecture on a congruence modulo 243 that that
appeared in [19].

The notion of generalized Frobenius partition of n was introduced by
Andrews in his 1984 AMS Memoir [1]; it is a two-row array of the form

<a1 ar)
by - b,
of non-negative integers a;, b; (which we shall call ‘parts’) with

s

(1.1) n:r+2(ai+bi),

i=1
where each row is arranged in non-increasing order. Andrews [I] also dis-
cussed a variant of generalized Frobenius partition which is called a k-colored
generalized Frobenius partition. A k-colored generalized Frobenius partition
is an array of the above form where the integer entries are taken from k
distinct copies of non-negative integers distinguished by color, the rows are
ordered first according to size and then according to color with no two con-
secutive like entries in any row. For any positive integer k, let cor(n) denote
the number of k-colored generalized Frobenius partitions of n. Andrews [I]
also proved that for n > 0,

(1.2) cpa(bn + 3) =0 (mod 5).
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Since then, a number of congruences for c¢i(n) have been proved, typically
for a small number of colors k. See, for example, Baruah and Sarmah [2, 3],
Eichhorn and Sellers [5], Garvan and Sellers [6], Hirschhorn [7], Hirschhorn
and Sellers [9], Kolitsch [10, 11], Lin [12], Lovejoy [13], Ono [14], Paule and
Radu [15], Sellers [16, 17, 18], Xia [19] 20] and Zhang and Wang [21].
Recently, Baruah and Sarmah [3] established 2- and 3-dissection formulas

of the generating function for c¢g(n) which imply that for n > 0,
(1.3) cos(2n +1) =0 (mod 4),
(1.4) cos(3n+1) =0 (mod 9),
(1.5) cps(3n+2) =0 (mod 9).

Baruah and Sarmah [3] also conjectured that for n > 0,
(1.6) cp(3n +2) =0 (mod 27).

Recently, Xia [I9] proved (1.6) by employing the generating function for
cpg(3n + 2) due to Baruah and Sarmah [3]. Moreover, Xia [19] also conjec-
tured that for n > 0,

(1.7) cps(In +7) =0 (mod 27),
(1.8) cPe(27n 4 16) = 0 (mod 243).

Very recently, Hirschhorn [7] established the generating functions for c¢g(3n),

cpe(3n + 1) and c¢g(3n + 2) and proved and (1.7).

In this paper, utilizing the generating function for c¢g(3n + 1) given by
Hirschhorn [7], we prove several congruences modulo powers of 3 for c¢g(n).
In particular, we establish . The main results of this paper can be stated
as follows.

THEOREM 1.1. Forn >0,
(1.9) ch6(27Tn 4+ 7) = 3cp(3n + 1) (mod 3%),
(1.10) cge(81n +61) = 0 (mod 3%),
(1.11) c6(27n + 16) = 0 (mod 3°),
(1.12) co6(81n + 61) = 3cg(9n + 7) (mod 3°),
(1.13) cp6(729n + 547) = 0 (mod 3°),
(1.14) cp6(243n + 142) = 0 (mod 3°),
(1.15) c6(729n + 547) = 3cge(81n + 61) (mod 3°),
(1.16) ch6(6561n + 4921) = 0 (mod 3°),

(1.17) c¢6(2187n + 1276) = 0 (mod 37),

(1.18) (6561 + 4921) = 3cgg(729n 4 547) (mod 37),
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(1.19) cp6(19683n + 11482) = 0 (mod 37),
(1.20) ch6(59049n + 44287) = 0 (mod 37).

To end this section, we present the following conjecture:

CONJECTURE 1.2. For any integer j > 8, there exist positive integers a
and k such that for all n > 0,

(1.21) cp6(3¥n 4+ a) =0 (mod 3%).

2. Preliminaries. Recall that the Ramanugjan theta function f(a,b) is
defined by

(21) f(a,b) — Z an(n+l)/2bn(n—1)/2,

n=—oo

where |ab| < 1. The Jacobi triple product identity can be restated as

(2.2) f(a,b) = (—a;ab)so(—b; ab) oo (ab; ab) o,

where

(2.3) (a;q)o0 == ﬁ(l — aq").

One special case of is defined br;—o

24)  f(-9):=f(-¢,—¢*) = i (—=1)"q D72 = (g5 )oo-

In this paper, for any positive integer n, we use f, to denote f(—q™), that
is,
o0

fo=(@%0")0 =[] (1 = ™).

k=1

From Corollaries (i) and (ii) on p. 49 of Berndt’s book [4], we have

fs fis f&fofs6
2.5 = 12 :
25 27 720E M fshahs
15 fefd | [
2.6 J2 _ ity
(26) f1 f3fis 1 fo
Replacing ¢ by —q in (2.5)) and ([2.6) and using the fact that
f3
(4 —Q)oo = 2

T Af
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we get

ﬁ _ fi o f3f18
27 fo fis 2 fofo'
(2.8) fifs _ fshofls _ fofse

f2 fE 13 f35 f18
Replacing g by ¢% in (2.7) yields

fﬁ — fis 9q2 28736 f6f36
i f36 fizfis”

The following identities were proved by Hirschhorn, Garvan and Borwein [§]:

(2.9)

(2.10) a@—<>+m?
(2.11) i = fsa(@®) — 3afs,
where

(2.12) a(q) == Z g tmnn?

Hirschhorn et al. [§] proved that

00 P2 el
(2.13) a(q) :1+6;(1_q3“ - 1_q3n1),
which implies
(2.14) a(q) =1 (mod 3) and a®(g) =1 (mod 9).
By the binomial theorem, for any positive integer k,
(2.15) f’k = g’kil (mod 3%).

3. Proof of Theorem (1.1} Recently, Hirschhorn [7] proved (there is a
typo in his paper):

oo

(3.1) Zc¢6(3n+ )g"

n=0
5 £6 12
=o{ fs (0 r s )
RTINS <2 6 378 13 1458 18)
iy \ 20 (0) 37800 (0) s + 1458"
9 r2 12
— ﬁ%f}z (36qa (q )J;:”’ + 1944¢%a®(q )J;?{‘>}'
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Identity (3.1)) yields

(32) > cs(3n+1)g"
n=0

_ f25f:§) 5 ff)?lefﬁ 6 f2
=18 18437476 1701
ja @ By @)+ qff% “@
12
+1215¢ %?‘*J{G a®(q) 4 1863¢ flgj}Q a®(q) (mod 37).
By (2.19),
5r9 5 222 r9 5 222
69 e e g )
ffafd  fufa FRRLR S _Nhla 0 5
B W T L e f PR M)
5 r18 5 3 £18
(35) e fchQf 1y (mod 9)
f38fafd  fufa f3308 _ fifa S35
S - T A A T
12 £2 3 rl2 3 £2
(37) ;124-]‘;62 — flf%37f£.12 = fl ?6.](.12 (IHOd 27)
Combining f yields
(38) > cs(3n+1)g"
n=0
222
= 18fff4 a*(q )+18"}f4 %gffz a®(q) + 1701qff22f1f a*(g)
+1215¢ f}f‘* f;;f a®(q) + 1863¢ flﬁféaf’(q) (mod 37).
By , it is easy to check that
(3.9) 72 = %™ (@) + 213 f§a™ (¢%)
+9¢° f32 f3a(¢%) + 81¢° f§ f§a" (¢”) (mod 3°),
(310)  JP = [P0 (e%) + 24057 f5a™ (")

+ 812 £ f§a™ (¢*) + 81> £3° £§ 7°<q3> <mod 35>-

Substituting (2.5 , ., - - and mto and ex—

tracting the terms of the form ¢ then d1v1d1ng by q> and replacmg @
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by ¢, we get
= s f3f3he o8 s f3fe 77
(3.11) §c¢6(9n+7)q =283 I (q)+4-3 7 (q)
+ 36 fj"fjﬁj:;g a™(q) (mod 37).
In view of (2.14) and (2.15)), we can write as
_ - g™ = 3f2f3f12 a™(q) -4 - 5f3f6 o7
(3.12) §c¢6(9n+ Jq" =28 B AT 0) +4- 8752 (g)
6 J3/3 12 7
+ 3% Tilo (mod 3).
Based on ,
(3.13) 7 (0) = a7 (q") + 302 a(g?) (mod 9
and
(3.14)
78\ — 78,3 8 77 2f9 476 3f9 A" (3
a®(q)=a (q)+63qga (¢%) +54q (¢3)+27q (¢°) (mod 81).
3 3

If we substitute (2.9), (3.13) and (3.14) into (3.12)) and extract the terms of
the form ¢3"*7 (5 € {0,1}), then divide by ¢/ and replace ¢* by ¢, we obtain

o0

(3.15) > egs(2Tn+T7)q"
n=0
3f1f4 f6 a8 5f1f2 a7 6 f3f12
=283 e () +4-3 7 (q) + 3% 5
6 f1f4f6f3 e 5 [if3f o7 m 7
+ 3% o (q) +4-3°q I (q) (mod 3")
and
(3.16) ) cgs(27n + 16)q”
n=0
s [ fafs 13 a7 o f3fifs 6 IPF3 13 476
=79 faf12 (@) +3 faf12 3 fi @
+2.36qf1];{5f122a76(q) (rnod 37)'
6

Congruence (|1.11]) follows from (3.16)).



Congruences for generalized Frobenius partitions 297

In view of (2.14), (2.15) and (3.15),
o0
(3.17) ) c¢e(2Tn+7)q"

n=0
3f1f4 3f6 a8 5 f2 6 77 6 f§1f122
=28-3 T ff12 (q) +4- Sf1 Ta (q)—i—3q7f6
36 f1f4 f6f27 +4. 35 f3f3f12 77(q) (mod 37)‘
f2 f12 fe
By (E19). @T5) and G2,
00 9
(3.18) D egs(3n+1)g" =9 f§53f32 (mod 27).
n=0 fl f4

Congruence (/1.9 follows from (|2 14|) (|2 15|) (3. 17|) and -

Substltutlng , , , and 1nt0 and ex-

tracting the terms of the form q ”+ , then d1v1d1ng by ¢ and replacing 7
by ¢ yields

o)

n — 6f2f3f9f12 6f3f6 77
(3.19) nz:%cqbﬁ(SanrGl)q 2-3 T +3 ;2 (q)

4f2f3f12 78 7
+16-3 ilo (¢) (mod 3"),

which yields ([1.10} Congruenc - follows from and (| -

If we substltute 3.13) and (3.14) into and extract the terms
of the form ¢3"+7 (] IS {0, 1}), then lelde by qJ and replace ¢® by ¢, we
obtain

(3.20) ) cos(243n + 61)q"
n=0
s [1f3fafE | w6 1S3 77 JJi o7
K Jaf12 3 12 (@) +16-3 Jaf12 (@)
+ 36qf1f;f12a77(q) (mod 37)
6
and
- n _ 6f1f3f4f6 7
(3.21) ;c¢6(243n+ 142)¢" = 3 o (mod 37).
Congruence follows from .
By (19) and (Z19)
(3‘22) f1f3f4f6 f1f2 77( ) (mod 3)

fofie — f
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Thanks to (2-14), 2.15), (3-20) and (3:22),

(3.23) 7;)C¢6(243n +61)¢" =16 - 3* f’f}ﬁf a™(q)
+ 36qm (mod 37).
fe

Substituting (2.8)), ([2-11) and (3.14) into (3.23) and extracting the terms of

the form ¢®"*2, then dividing by ¢° and replacing ¢* by ¢ yields

(3.24) > cs(729n + 547)g" = 4 321252 f3f3 o a™(q) (mod 37).
= fafs

Congruence (1.13)) follows from (3.24)); and ([1.15)) follows from (3.19) and
(13.24)).

In view of | and ( -,
(3.25) Z (7290 4 547)q" = 4.- 3° foﬁf?z (mod 37).
n=0
If we substitute (2.9) into (3.25)), we get
> f3 o fis
3.26 cpe(729n + 547)¢" = 4 - 35232118
32) S enl ) i
35 2f3ff36 (mod 37)
18
which yields (1.17). Congruence ([3.26]) also implies that
(3.27) > cs(2187n + 547)q" = 4+ 3° f}f]‘ji S (mod 37).
n=0

Substituting (2.8) and ( mto and extracting the terms of the
form ¢®"+2, then d1v1d1ng by ¢* and replacmg ¢ by ¢ yields

> 1313 f12 7
(3.28) > ce(6561n + 4921)¢" = 3522522 (mod 37).
n—=0 46

Congruence follows from and congruence follows from
and . Replacing n by 3n + 1 in and utilizing , we
get . Replacing n by 9n 46 in and employing , we obtain
. This completes the proof of Theorem "
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