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An asymptotic formula related to the sums of divisors
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Meng Zhang (Jinan)

1. Introduction. Let d(n) be the number of divisors of n, and k a pos-
itive integer. For X > 1, consider the sums of divisors of the form

(1.1) T (k, s;X) :=
∑

1≤m1,...,ms≤X
d(mk

1 + · · ·+mk
s).

The earliest result about the asymptotics of such sums was given by Gafurov
[2, 3] who studied the divisors of the quadratic form with s = 2 in (1.1) and
obtained

T (2, 2;X) = A1X
2 logX +A2X

2 +O(X5/3 log9X),

where A1 and A2 are certain constants. The above error term was improved
to O(X3/2+ε) by Yu [13]. In 2000, C. Calderón and M. J. de Velasco [1]
investigated (1.1) with k = 2, s = 3 and established the asymptotic formula

(1.2) T (2, 3;X) =
8ζ(3)

5ζ(4)
X3 logX +O(X3),

where ζ(s) is the Riemann zeta-function. Let γ be the Euler constant, and
write

(1.3) Ci,k,s =

∞∑
q=1

(−2 log q + 2γ)i−1

qs+1

∑
1≤a<q
(a,q)=1

( q∑
r=1

e

(
ark

q

))s
, i = 1, 2,

and

(1.4) Ij,k,s =

∞�

−∞

(1�
0

e(vkλ) dv
)s(s�

0

e(−vλ)(log v)j−1 dv
)
dλ, j = 1, 2.
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In 2012, Guo and Zhai [4] improved (1.2) to

T (2, 3;X) =
8ζ(3)

5ζ(4)
X3 logX + (C1,3I2,3 + C2,3I1,3)X

3 +O(X8/3+ε),

where

(1.5) Ci,s = Ci,2,s and Ij,s = Ij,2,s, i, j = 1, 2.

The error term above was refined to O(X2 log7X) by Zhao [14] in 2014.
Recently, Hu [7] investigated T (2, 4;X) and obtained the asymptotic formula

(1.6) T (2, 4;X) = 2C1,4I1,4X
4 logX+(C1,4I2,4 +C2,4I1,4)X

4 +O(X7/2+ε),

where Ci,s, Ij,s (i, j = 1, 2) are defined in (1.5).
In this paper, we consider T (k, s;X) for general k ≥ 2, and establish

asymptotic formulas for (1.1). We state our main results separately for k = 2
and k ≥ 3.

Theorem 1.1. Let T (k, s;X) be as defined in (1.1), and let Ci,s, Ij,s
(i, j = 1, 2) be as defined in (1.5). Then for k = 2 and s ≥ 3,

T (2, s;X) = 2C1,sI1,sX
s logX + (C1,sI2,s + C2,sI1,s)X

s

+Os(X
(s+1)/2 logs+4X +Xs−2 logX),

where the singular series Ci,s (i = 1, 2) are absolutely convergent and satisfy
Ci,s � 1.

Note that 2C1,3I1,3 = 8ζ(3)/(5ζ(4)) and the error term for s = 3 in
Theorem 1.1 is O(X2 log7X) which implies the result of Zhao [14]. For
s = 4, the error term in Theorem 1.1 is O(X5/2 log8X), which is better
than the result in (1.6).

Theorem 1.2. Let T (k, s;X) be as defined in (1.1). Then for k ≥ 3 and
s > min{2k−1, k2 + k − 2},
T (k, s;X) = kC1,k,sI1,k,sX

s logX+(C1,k,sI2,k,s+C2,k,sI1,k,s)X
s+O(Xs−θ+ε)

for every ε > 0, where

θ =


k

(
1

2k−1
− 1

s

)
when 3 ≤ k ≤ 6 and s > 2k−1,

s− k2 − k + 2

2sk − 2s
when k ≥ 7 and s > k2 + k − 2,

and Ci,k,s, Ij,k,s (i, j = 1, 2) are defined in (1.3) and (1.4), respectively.
Moreover, the singular series Ci,k,s (i = 1, 2) are absolutely convergent and
satisfy Ci,k,s � 1.

To prove our theorems we use the circle method. For Theorem 1.1, in-
stead of using the classical circle method, we apply the Hardy–Littlewood–
Kloosterman circle method which avoids decomposing the unit interval into
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the major arcs and the minor arcs. Also, we use Voronoi’s summation for-
mula to deal with the exponential sum related to d(n). Moreover, to obtain
a relatively good error term, we employ the estimates of the quadratic Gauss
sum in [8].

In fact, the proof of Theorem 1.1 depends on the properties of the
quadratic Gauss sum. As these properties are not available for general Gauss
sums, the same method cannot be applied to prove Theorem 1.2. For The-
orem 1.2, we use the classical circle method. We will treat the integral over
the major arcs much as in [4]. For the minor arcs, we will use Weyl’s in-
equality and Hua’s lemma (see [11]) for 3 ≤ k ≤ 6; and for k ≥ 7, we will
apply Wooley’s new estimates of Weyl type for exponential sums together
with the mean value estimates of [12].

Notation. Throughout the paper, X is a large positive integer and γ is
the Euler constant. As usual, e(x) = e2πix and (a, b) = gcd(a, b). The symbol
[X] denotes the integer part of X, and for an odd prime p,

(
a
p

)
denotes

the Legendre symbol. The letter ε denotes positive constants which are
arbitrarily small, but may vary from statement to statement.

2. Proof of Theorem 1.1. To apply Voronoi’s summation formula,
we introduce a smooth weight. Let φ0 ∈ C2[0,∞) be a function compactly
supported on [0, s+ 1] which is identically 1 on [0, s], and let φ1 ∈ C2[0,∞)
be supported on [1/2, s) with φ1(x) = 1 for x ∈ (1, s − 1). For X ≥ 2, we
define

φ(x) =


φ1(x) if x < 1,

1 if 1 ≤ x ≤ sX2,

φ0(x/X
2) if x > sX2.

Then φ is a smooth function supported on [1/2, (s+ 1)X2], and

T (2, s;X) =
∑

1≤m1,...,ms≤X
m2

1+···+m2
s=n

d(n)φ(n).

In order to apply the circle method, we introduce the exponential sums

(2.1) fk(α) =
∑

1≤m≤X
e(mkα), h(α) =

∑
n

d(n)φ(n)e(nα).

Then we have

T (2, s;X) =

1�

0

fs2 (α)h(−α) dα =

τ/(τ+1)�

−1/(τ+1)

fs2 (α)h(−α) dα,

where τ is a large integer to be chosen later. We will evaluate T (2, s;X) by
dissecting the interval (−1/(τ + 1), τ/(τ + 1)] with Farey’s points of order τ
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(see [9, Chapter 11]). Let a′/q′ < a/q < a′′/q′′ be adjacent points with q′

and q′′ satisfying

τ ≤ q + q′, q + q′′ ≤ q + τ, aq′ ≡ 1 (mod q), aq′′ ≡ −1 (mod q).

Then (
−1

τ + 1
,

τ

τ + 1

]
=
⋃
q≤τ

⋃
0≤a<q
(a,q)=1

(
a

q
− 1

q(q + q′)
,
a

q
+

1

q(q + q′′)

]
.

Hence

T (2, s;X) =
∑
q≤τ

q∑
a=1

(a,q)=1

�

M(q,a)

fs2

(
a

q
+ λ

)
h

(
−a
q
− λ

)
dλ,

where

M(q, a) =

[
− 1

q(q + q′)
,

1

q(q + q′)

]
.

Following the argument in [6, Section 3] (see also [14, (5.1)–(5.2)]), we get

(2.2) T (2, s;X) =∑
q≤τ

�

|λ|≤1/(qτ)

∑
|v|≤τ

σ(v;λ, q)

q∑
a=1

(a,q)=1

fs2

(
a

q
+ λ

)
h

(
−a
q
− λ

)
e

(
−av
q

)
dλ,

where

(2.3) σ(v;λ, q)� 1

1 + |v|
.

To prove Theorem 1.1, we use two propositions which will be proved at
the end of this section. Write

(2.4) Sk(q, a, b) =

q∑
h=1

e

(
ahk + bh

q

)
, Sk(q, a) = Sk(q, a, 0),

and define

(2.5)

F(q; b1, . . . , bs,m) =

q∑
a=1

(a,q)=1

s∏
j=1

S2(q, a, bj)e

(
am

q

)
,

F(q) = F(q; 0, . . . , 0︸ ︷︷ ︸
s

, 0).

Proposition 2.1. Let q be a positive integer and q=q1q2 with (q1, q2)=1,
q1 square-free and q2 square-full. Then

F(q; b1, . . . , bs,m)�s q
(s+1)/2
1 q

(s+2)/2
2 .
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Proposition 2.2. Let X be a sufficiently large real number and τ=[5X].
Suppose that α = a/q + λ with (a, q) = 1, q ≤ τ and |λ| ≤ 1/(qτ). Then for
any v ∈ Z,

q∑
a=1

(a,q)=1

fs2

(
a

q
+ λ

)
h

(
−a
q
− λ
)
e

(
−av
q

)

=

q∑
a=1

(a,q)=1

Ss2(q, a)

qs+1
J (λ, q)e

(
−av
q

)
+∆(q, λ),

where

(2.6) J (λ, q) = νs(λ)ϑ(−λ, q)

with

(2.7)
ν(λ) =

X�

0

e(x2λ) dx,

ϑ(λ, q) =
�
(log x+ 2γ − 2 log q)e(xλ)φ(x) dx,

and ∆(q, λ) satisfies

(2.8)
∑
q≤τ

�

|λ|≤1/(qτ)

|∆(q, λ)| dλ�s X
(s+1)/2 logs+3X.

Proof of Theorem 1.1. Let X ≥ 2, τ = [5X] and α = a/q + λ be a real
number with (a, q) = 1, q ≤ τ and |λ| ≤ 1/(qτ). It follows from Proposi-
tion 2.2 and (2.2) that

T (2, s;X) =
∑
q≤τ

�

|λ|≤1/(qτ)

∑
|v|≤τ

σ(v;λ, q)

q∑
a=1

(a,q)=1

Ss2(q, a)

qs+1
J (λ, q)e

(
−av
q

)
dλ

+
∑
q≤τ

�

|λ|≤1/(qτ)

∑
|v|≤τ

σ(v;λ, q)∆(q, λ) dλ.

Thus by (2.3) and (2.8), we have

(2.9) T (2, s;X) =∑
q≤τ

q∑
a=1

(a,q)=1

�

λ∈M(q,a)

Ss2(q, a)

qs+1
J (λ, q) dλ+Os(X

(s+1)/2 logs+4X).
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Applying the technique used in [6, Section 3], we get

∑
q≤τ

q∑
a=1

(a,q)=1

�

λ∈M(q,a)\[− 1
2qτ

, 1
2qτ

]

Ss2(q, a)

qs+1
J (λ, q) dλ

=
∑
q≤τ

�

1
2qτ
≤|λ|≤ 1

qτ

∑
|v|≤τ

σ(v;λ, q)
F(q;

s︷ ︸︸ ︷
0, . . . , 0,−v)

qs+1
J (λ, q) dλ,

where F(q; 0, . . . , 0,m) is defined in (2.5). By Proposition 2.1 and (2.3), the
expression on the right is

(2.10) �s

∑
|v|≤τ

1

1 + |v|
∑
q≤τ

�

1
2qτ
≤|λ|≤ 1

qτ

q
(s+1)/2
1 q

(s+2)/2
2

qs+1
|J (λ, q)| dλ.

For ν(λ) and ϑ(λ, q) defined in (2.7), integration by parts shows that

(2.11) ν(λ)� X√
1 +X2|λ|

and ϑ(λ, q)� X2(log q + logX)

1 +X2|λ|
.

This together with (2.6) gives

(2.12) J (λ, q)� Xs+2(logX)(1 +X2|λ|)−(s+2)/2.

Inserting (2.12) into (2.10), we get

(2.13)
∑
q≤τ

q∑
a=1

(a,q)=1

�

λ∈M(q,a)\[− 1
2qτ

, 1
2qτ

]

Ss2(q, a)

qs+1
J (λ, q) dλ

�s

∑
|v|≤τ

1

1 + |v|
∑
q≤τ

�

1
2qτ
≤|λ|≤ 1

qτ

q
(s+1)/2
1 q

(s+2)/2
2 Xs+2(logX)

qs+1(1 +X2|λ|)(s+2)/2
dλ

�s X
(s+1)/2 log3X.

Let F(q) be defined in (2.5). Then by Proposition 2.1 and (2.12),

(2.14)
∑
q≤τ

q∑
a=1

(a,q)=1

�

|λ|>1/(2qτ)

Ss2(q, a)

qs+1
J (λ, q) dλ

�
∑
q≤τ

|F(q)|
qs+1

�

|λ|>1/(2qτ)

|J (λ, q)| dλ

�s X
(s+1)/2 log2X.
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Back to (2.9), we deduce from (2.13) and (2.14) that

(2.15) T (2, s;X)

=
∑
q≤τ

q∑
a=1

(a,q)=1

�

|λ|≤1/(2qτ)

Ss2(q, a)

qs+1
J (λ, q) dλ+Os(X

(s+1)/2 logs+4X)

=
∑
q≤τ

F(q)

qs+1

�

|λ|≤1/(2qτ)

J (λ, q) dλ+Os(X
(s+1)/2 logs+4X)

=
∑
q≤τ

F(q)

qs+1

∞�

−∞
J (λ, q) dλ+Os(X

(s+1)/2 logs+4X).

Define

J̃ (λ, q) =
(X�

0

e(x2λ) dx
)s �

(log x+ 2γ − 2 log q)e(−xλ)φ0(x/X
2) dx.

By changing variables, J̃ (λ, q) can be written as

J̃ (λ, q) = 2Xs+2(logX)G1(X2λ)(2.16)

+Xs+2
(
G2(X2λ) + (2γ − 2 log q)G1(X2λ)

)
,

where

G1(λ) =
(1�
0

e(x2λ) dx
)s �

e(−xλ)φ0(x) dx,

G2(λ) =
(1�
0

e(x2λ) dx
)s �

(log x)e(−xλ)φ0(x) dx.

Note that |J (λ, q) − J̃ (λ, q)| � Xs(logX)(1 + X2|λ|)−s/2. By Proposi-
tion 2.1,

(2.17)
∑
q≤τ

F(q)

qs+1

∞�

−∞
(J (λ, q)− J̃ (λ, q)) dλ�s X

s−2 logX.

Therefore by (2.15)–(2.17),

T (2, s;X) =
∑
q≤τ

F(q)

qs+1

∞�

−∞
J̃ (λ, q))dλ+Os(X

(s+1)/2 logs+4X +Xs−2 logX)

= 2
∑
q≤τ

F(q)

qs+1
Xs(logX)I1,s +

∑
q≤τ

F(q)

qs+1
XsI2,s

+
∑
q≤τ

F(q)(2γ − 2 log q)

qs+1
XsI1,s +Os(X

(s+1)/2 logs+4X +Xs−2 logX),
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where

I1,s =

∞�

−∞
G1(λ) dλ+O(1) and I2,s =

∞�

−∞
G2(λ) dλ+O(1)

with Ij,s (j = 1, 2) defined in (1.5). Moreover, it is easy to see that∑
q≤τ

F(q)

qs+1
= C1,s +Os(X

(1−s)/2 logX),

∑
q≤τ

F(q)(2γ − 2 log q)

qs+1
= C2,s +Os(X

(1−s)/2 log2X),

where Ci,s (i = 1, 2) are defined in (1.5). Therefore, for s ≥ 3, we obtain

T (2, s;X) = 2C1,sI1,sX
s logX + (C1,sI2,s + C2,sI1,s)X

s

+Os(X
(s+1)/2 logs+4X +Xs−2 logX).

This finishes the proof of Theorem 1.1.

Now we turn to the proofs of Propositions 2.1 and 2.2. To prove Propo-
sition 2.1, we need two lemmas which are related to the Gauss sum. The
following lemma can be found in [8].

Lemma 2.3.

(1) If (2, a) = 1, then |S2(2r, a, b)| ≤ 21+r/2.

(2) If (2a, q) = 1, then

S2(q, a, b) = e

(
−4ab2

q

)(
a

q

)
S2(q, 1);

moreover, |S2(q, 1)| = q1/2.

Lemma 2.4. Let s be a positive integer. Then∣∣∣∣ p∑
a=1

(a,p)=1

(
a

p

)s
e

(
a

p

)∣∣∣∣ ≤ p1/2.
Proof. If s is odd and (a, p) = 1, then

(
a
p

)s
=
(
a
p

)
. Hence the desired

inequality follows from [14, Lemma 3.4]. If s is even and (a, p) = 1, then the
sum on the left hand side is equal to µ(p), and the desired result follows,
because |µ(p)| = 1.

Proof of Proposition 2.1. Following the proof of [14, Lemma 3.5], we
find that F(q; b1, . . . , bs,m) is multiplicative in q, that is, for q = q1q2 with
(q1, q2) = 1,

(2.18) F(q1q2; b1, . . . , bs,m) = F(q1; b1, . . . , bs,m)F(q2; b1, . . . , bs,m).
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To prove Proposition 2.1, we only need to deal with F(pr; b1, . . . , bs,m)
(r ≥ 1). By Lemma 2.3, we get

(2.19)
|F(2r; b1, . . . , bs,m)| ≤ 2s−1+(s+2)r/2,

F(pr; b1, . . . , bs,m)| ≤ p(s+2)r/2 (p > 2).

In particular, if r = 1 and p > 2, we change variables and deduce from
Lemma 2.3(2) that

F(p; b1, . . . , bs,m) = Ss2(p, 1)

p∑
a=1

(a,p)=1

e

(
−4a(b21 + · · ·+ b2s − 4m)

p

)(
a

p

)s

= Ss2(p, 1)

(
−1

p

)s(b21 + · · ·+ b2s − 4m

p

)s p∑
c=1

(c,p)=1

e

(
c

p

)(
c

p

)s
.

Then by Lemmas 2.4 and 2.3(2), we get

(2.20) F(p; b1, . . . , bs,m) ≤ p(s+1)/2.

Assume that q = q1q2 with (q1, q2) = 1, q1 square-free and q2 square-full.
By (2.18)–(2.20), we get

F(q1; b1, . . . , bs,m)�s q
(s+1)/2
1 and F(q2; b1, . . . , bs,m)� q

(s+2)/2
2 .

This completes the proof of Proposition 2.1.

Now we turn to the proof of Proposition 2.2. The following lemma pro-
vides an asymptotic formula for f2(α) which is [11, Theorem 4.1] with k = 2
(see also [14, Lemma 4.1]).

Lemma 2.5. Let X be a sufficiently large real number and τ = [5X].
Suppose that α = a/q + λ with (a, q) = 1, q ≤ τ and |λ| ≤ 1/(qτ). Then

f2(α) =
S2(q, a)

q

X�

0

e(x2λ) dx+
∑

−3q/2<b≤3q/2

S2(q, a, b)D(b, q, λ),

where Sk(q, a, b), Sk(q, a) are defined in (2.4), and

(2.21)
∑

−3q/2<b≤3q/2

|D(b, q, λ)| � log(q + 2).

To estimate h(α), we employ Voronoi’s summation formula to get the
following result:

Lemma 2.6. Let α be defined as in Proposition 2.2. Then

h(α) = q−1
�
(log x+ 2γ − 2 log q)e(xλ)φ(x) dx+

∑
|n|6=0

e

(
−an
q

)
H(n, q, λ),
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where

(2.22)
∑
|n|6=0

|H(n, q, λ)| = Os(q log2(q + 2) + |λ|2q3/2X7/2).

Proof. The proof is similar to that of [14, Lemma 4.2]. The only differ-
ence is that we replace the smooth weight function ω(x) in [14] by φ(x) here,
which results in the dependence on s of the O-term in (2.22). We omit the
details.

Proof of Proposition 2.2. Let F(q, b1, . . . , bs,m) be as in (2.5). Applying
Lemmas 2.5 and 2.6, we get

q∑
a=1

(a,q)=1

f s2 (α)h(−α)e

(
−av
q

)
=

q∑
a=1

(a,q)=1

Ss2(q, a)

qs+1
J (λ, q)e

(
−av
q

)
+∆(q, λ),

where J (λ, q) is defined in (2.6) and

∆(q, λ) =
s∑
i=0

Ri +
s−1∑
k=0

Ek

with

Ri =
s!

i!(s− i)!
νi(λ)

qi

∑
−3q/2<b1,...,bs−i≤3q/2

∑
|n|6=0

(s−i∏
j=1

D(bj , q, λ)
)
H(n, q,−λ)

×F(q; b1, . . . , bs−i, 0, . . . , 0︸ ︷︷ ︸
i

, n− v)

and

Ek =
s!

k!(s− k)!

ϑ(−λ, q)νk(λ)

qk+1

∑
−3q/2<b1,...,bs−k≤3q/2

(s−k∏
j=1

D(bj , q, λ)
)

×F(q; b1, . . . , bs−k, 0, . . . , 0︸ ︷︷ ︸
k

,−v).

In the following, we will only deal with integrals involving R0, Rs, E0 and
Es−1. The treatment of other terms related to Rs (1 ≤ i ≤ s − 1) and Ek
(1 ≤ k ≤ s − 2) is similar. By Proposition 2.1 together with (2.11), (2.21)
and (2.22), we get

R0 �s q
(s+3)/2
1 q

(s+4)/2
2 logs+2X + |λ|2q(s+4)/2

1 q
(s+5)/2
2 X7/2 logsX,

Rs �s q
(3−s)/2
1 q

(4−s)/2
2

Xs log2X

(1 +X2|λ|)s/2
+ |λ|2q(4−s)/21 q

(5−s)/2
2

X7/2+s

(1 +X2|λ|)s/2
,
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E0 �s q
(s−1)/2
1 q

s/2
2

X2 logs+1X

1 +X2|λ|
,

Es−1 �s q
(1−s)/2
1 q

(2−s)/2
2

Xs+1 log2X

(1 +X2|λ|)(s+1)/2
.

Thus ∑
q≤τ

�

|λ|≤1/(qτ)

|R0| dλ�s X
(s+1)/2 logs+3X,

∑
q≤τ

�

|λ|≤1/(qτ)

(|Rs|+ |E1|+ |Es−1|) dλ�s X
(s+1)/2 logs+2X.

Similarly, we have∑
q≤τ

�

|λ|≤1/(qτ)

(s−1∑
i=1

|Ri|+
s−2∑
k=1

|Ek|
)
dλ�s X

(s+1)/2 logs+3X.

This finishes the proof of Proposition 2.2.

3. Proof of Theorem 1.2. To prove Theorem 1.2 we use the classical
circle method. Let fk(α) be as in (2.1), and write

g(α) =
∑

1≤n≤sXk

d(n)e(nα)

with X ≥ 2 and k ≥ 3. Then for any Q > 0, (1.1) can be written as

T (k, s;X) =

1�

0

f sk(α)g(−α) dα =

1+1/Q�

1/Q

fsk(α)g(−α) dα.

By Dirichlet’s lemma on rational approximations, each α ∈ [1/Q, 1 + 1/Q]
can be written in the form

α =
a

q
+ λ, |λ| ≤ 1

qQ
,

for some integers a, q with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. We set

(3.1) P = 1
8X

k/s and Q = 2Xk(s−1)/s.

Define the major arcs M and the minor arcs m as follows:

(3.2) M = M(P,Q) =
⋃
q≤P

⋃
1≤a≤q
(a,q)=1

M(q, a), m =

[
1

Q
, 1 +

1

Q

]
\M,

where M(q, a) = [a/q − 1/(qQ), a/q + 1/(qQ)]. Then

T (k, s;X) =
{ �

M

+
�

m

}
fsk(α)g(−α) dα.

For the integral over the major arcs, we have the following:
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Proposition 3.1. Let the major arcs M(P,Q) be as defined in (3.2)
with P , Q defined in (3.1). Then for k ≥ 3 and s > k,
�

M

fsk(α)g(−α) dα

= kC1,k,sI1,k,sX
s logX + (C1,k,sI2,k,s + C2,k,sI1,k,s)X

s +O(Xs−δ+ε),

where δ = 1−k/s and Ci,k,s, Ij,k,s (i, j = 1, 2) are defined in (1.3) and (1.4),
respectively. Moreover, Ci,k,s are absolutely convergent and satisfy Ci,k,s�1.

For the minor arcs, we have

Proposition 3.2. Let the minor arcs m be as defined in (3.2). Then for
k ≥ 3 and s > min{2k−1, k2 + k − 2}, and every ε > 0,�

m

fsk(α)g(−α) dα = O(Xs−θ+ε),

where

θ =


k

(
1

2k−1
− 1

s

)
when 3 ≤ k ≤ 7 and s > 2k−1,

s− k2 − k + 2

2sk − 2s
when k ≥ 8 and s > k2 + k − 2.

Proof of Theorem 1.2. Theorem 1.2 is an immediate consequence of
Propositions 3.1 and 3.2.

Our task now is to prove Propositions 3.1 and 3.2. To prove Proposi-
tion 3.1, we need some lemmas. The following lemma can be found in [11].

Lemma 3.3. Let Sk(a, b, q) and Sk(q, a) be as defined in (2.4). If (a, b, q)
= 1, then

Sk(a, b, q) = O(q1−1/k+ε).

Moreover, if (a, q) = 1, then

Sk(q, a) = O(q1−1/k).

Lemmas 3.4 and 3.5 give estimates of the exponential sums over the
major arcs.

Lemma 3.4. Let the major arcs M(P,Q) be as defined in (3.2) with P , Q
defined in (3.1). Then for α = a/q + λ ∈M,

fk

(
a

q
+ λ

)
=
Sk(q, a)

q
X

1�

0

e(vkXkλ) dv +O(q1−1/k+ε).

Lemma 3.5. Let the major arcs M(P,Q) be as defined in (3.2) with P , Q
defined in (3.1). Then for α = a/q + λ ∈M,

g

(
−a
q
− λ
)

= J +O(q1/2Xk+εQ−1 + q2/3Xk/3),
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where

J =
kXk logX

q

s�

0

e(−Xkvλ) dv +
Xk

q

s�

0

e(−Xkvλ) log v dv

+
−2 log q + 2γ

q
Xk

s�

0

e(−Xkvz) dv.

The proofs of Lemmas 3.4 and 3.5 are similar to those of [4, Lemmas 4.1
and 5.1]. In fact, the proofs in [4] require the conditions PQ ≤ Xk and
Q > Xk−1+ε. One can verify that P,Q defined in (3.1) meet this require-
ment. To prove Lemma 3.4, we follow the argument of [4, Section 4] step by
step, replacing [4, Lemma 3.4] by Lemma 3.3. For Lemma 3.5, we employ
the estimate in [5] of the sum of the divisors over an arithmetic progression
(see also [4, Sections 6 and 7.1]), and the proof is almost the same as in [4]
except for replacing S2(−α; 3X2) in [4, Section 7.2] by g(−α) here. We omit
the details.

Lemma 3.6 (see [10, Lemma 8.10]). Suppose that for some k ≥ 1 and
∆ > 0, we have |f (k)(x)| ≥ ∆ for any x ∈ [a, b]. Then

b�

a

e(f(x)) dx = O(∆−1/k).

Proof of Proposition 3.1. Let α ∈ M(P,Q) with P,Q defined in (3.1).
By (3.2), we have

(3.3)
�

M

fsk(α)g(−α) dα =
∑

1≤q≤P

∑
1≤a≤q
(a,q)=1

1/(qQ)�

−1/(qQ)

f sk

(
a

q
+ λ

)
g

(
−a
q
− λ

)
dλ.

Using Lemmas 3.4 and 3.5, we obtain

fsk(α)g(−α) =
kSsk(q, a)Xs+k logX

qs+1

(1�
0

e(vkXkλ) dv
)s(s�

0

e(−Xkvλ) dv
)

+
Ssk(q, a)Xs+k

qs+1

(1�
0

e(vkXkλ) dv
)s(s�

0

e(−Xkvλ) log v dv
)

+
Ssk(q, a)Xs+k(−2 log q + 2γ)

qs+1

(1�
0

e(vkXkλ) dv
)s

×
(s�
0

e(−Xkvλ) dv
)

+O(Xs+k−1+εq−s/k +Xk/3+s+εq2/3−s/k +Xs+k+εq1/2−s/kQ−1).
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Define

Hj(z) =
(1�
0

e(vkz) dv
)s(s�

0

e(−vz)(log v)j−1 dv
)
, j = 1, 2.

Changing the variable z = Xkλ, we get

(3.4)

1/(qQ)�

−1/(qQ)

fsk(α)g(−α) dα

=
kSsk(q, a)Xs logX

qs+1

Xk/(qQ)�

−Xk/(qQ)

H1(z) dz

+
Ssk(q, a)Xs

qs+1

Xk/(qQ)�

−Xk/(qQ)

H2(z) dz

+
Ssk(q, a)Xs(−2 log q + 2γ)

qs+1

Xk/(qQ)�

−Xk/(qQ)

H1(z) dz

+O(Xs+k−1+εq−s/k−1Q−1 +Xk/3+s+εq−1/3−s/kQ−1

+Xs+k+εq−1/2−s/kQ−2).

We first deal with the integrals
	Xk/(qQ)

−Xk/(qQ)
Hi(z) dz (i = 1, 2) in (3.4). By

Lemma 3.6, we have

H1(z) = O

(
1

|z|s/k+1

)
and H2(z) = O

(
log |z|
|z|s/k+1

)
.

Then for any U > 2,
�

|z|>U

H1(z) dz = O(U−s/k) and
�

|z|>U

H1(z) dz = O(U−s/k logU).

Thus the infinite integrals
	∞
−∞Hj(z) dz (j = 1, 2) converge for s > k. Taking

U = Xk/(qQ), one can easily check that U > 2 for q ≤ P and P,Q defined
in (3.1). Then we obtain

Xk/(qQ)�

−Xk/(qQ)

H1(z) dz =

∞�

−∞
H1(z) dz +O

((
qQ

Xk

)s/k)
,

Xk/(qQ)�

−Xk/(qQ)

H2(z) dz =

∞�

−∞
H2(z) dz +O

((
qQ

Xk

)s/k
logX

)
.
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Inserting the above two estimates into (3.4), by Lemma 3.3, we get

1/(qQ)�

−1/(qQ)

fsk(α)g(−α) dα =
kSsk(q, a)Xs logX

qs+1

∞�

−∞
H1(z) dz(3.5)

+
Ssk(q, a)Xs

qs+1

∞�

−∞
H2(z) dz

+
Ssk(q, a)Xs(−2 log q + 2γ)

qs+1

∞�

−∞
H1(z) dz

+O(Qs/kq−1Xε +Xs+k−1+εq−s/k−1Q−1

+Xk/3+s+εq−1/3−s/kQ−1 +Xs+k+εq−1/2−s/kQ−2)

=: T1 + T2 + T3 +O-term.

For s > k, the contribution of the O-term to (3.3) is

�
∑

1≤q≤P

∑
1≤a≤q
(a,q)=1

(Qs/kq−1Xε +Xs+k−1+εq−s/k−1Q−1(3.6)

+Xk/3+s+εq−1/3−s/kQ−1 +Xs+k+εq−1/2−s/kQ−2)

� PQs/kXε +Q−1Xs+k−1+ε +Xk/3+s+εQ−1 max{1, P 5/3−s/k}
+Xs+k+εQ−2 min{1, P 3/2−s/k}

� Xs−(1−k/s)+ε.

Then back to (3.3), for s > k, we obtain
�

M

f sk(α)g(−α) dα =
∑

1≤q≤P

∑
1≤a≤q
(a,q)=1

(T1 + T2 + T3) +O(Xs−(1−k/s)+ε)

=

∞∑
q=1

∑
1≤a≤q
(a,q)=1

(T1 + T2 + T3) +O(Xs−(1−k/s)+ε)

= kC1,k,sI1,k,sX
s logX + (C1,k,sI2,k,s + C2,k,sI1,k,s)X

s

+O(Xs−(1−k/s)+ε),

where Ci,k,s, Ij,k,s (i, j = 1, 2) are defined in (1.3) and (1.4). This proves
Proposition 3.1.

Now we turn to the proof of Proposition 3.2. We distinguish two cases:
3 ≤ k ≤ 6 and k ≥ 7. For 3 ≤ k ≤ 6, we need the following two lemmas,
which are Lemmas 2.4 and 2.5 in [11].
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Lemma 3.7. Suppose that (a, q) = 1 and |α− a/q| ≤ q−2. Then

fk(α)� X1+ε(q−1 +X−1 + qX−k)1/2
k−1

.

Lemma 3.8. Fix k ≥ 1. Then

1�

0

|fk(α)|2k dα� X2k−k+ε.

Proof of Proposition 3.2 for 3 ≤ k ≤ 6. By Cauchy’s inequality,
�

m

f sk(α)g(−α) dα� max
α∈m
|fk(α)|s−2k−1

( �
m

|fk(α)|2k dα
)1/2( �

m

|g(−α)|2 dα
)1/2

� max
α∈m
|fk(α)|s−2k−1

( �
m

|fk(α)|2k dα
)1/2( ∑

1≤m≤sXk

d(n)
)1/2

.

Note that

(3.7)
∑

1≤m≤t
d(n)� t log t.

By Lemma 3.7, for α ∈ m we obtain

(3.8) fk(α)� X1+ε(P−1 +X−1 +QX−k)1/2
k−1

.

Applying Lemma 3.8, one can deduce that

�

m

|fk(α)|2k dα�
1�

0

|fk(α)|2k dα� X2k−k+ε.

This together with (3.7) and (3.8) gives, for s > 2k−1,�

m

fsk(α)g(−α) dα� Xs+ε(P−1 +X−1 +QX−k)s/2
k−1−1

� Xs−k(1/2k−1−1/s)+ε.

This finishes the proof of Proposition 3.2 for 3 ≤ k ≤ 6.

For k ≥ 7, we use the following lemmas which are Theorem 1.5 and
Corollary 10.2 in [12].

Lemma 3.9. Let k ≥ 2 be an integer. Suppose that (a, q) = 1, |α−a/q| ≤
q−2 and q ≤ Xk. Then

fk(α)� X1+ε(q−1 +X−1 + qX−k)
1

2k(k−1) .

Lemma 3.10. For s ≥ k2 + k − 2,

1�

0

|fk(α)|2s dα� X2s−k+ε.
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Proof of Proposition 3.2 for k ≥ 7. By Cauchy’s inequality,
�

m

fsk(α)g(−α) dα� max
α∈m
|fk(α)|s−(k2+k−2)

( �
m

|fk(α)|2k2+2k−4 dα
)1/2

×
( �
m

|g(−α)|2 dα
)1/2

� max
α∈m
|fk(α)|s−(k2+k−2)

( �
m

|fk(α)|2k2+2k−4 dα
)1/2

×
( ∑
1≤m≤sXk

d(n)
)1/2

.

Then it follows from Lemmas 3.9 and 3.10 that

(3.9) fk(α)� X1+ε(P−1 +X−1 +QX−k)
1

2k(k−1)

for α ∈ m, and

(3.10)
�

m

|fk(α)|2k2+2k−4 dα�
1�

0

|fk(α)|2k2+2k−4 dα� X2k2+k−4+ε.

By (3.7), (3.9) and (3.10) we obtain, for s > k2 + k − 2,
�

m

fsk(α)g(−α)dα� Xs+ε(P−1 +X−1 +QX−k)
s−(k2+k−2)

2k(k−1)

� X
s− s−(k2+k−2)

2s(k−1)
+ε
.

This completes the proof of Proposition 3.2.
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