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1. Introduction. Throughout the paper, let G be an additively written
abelian group and F(G) be the free abelian (multiplicative) monoid with
basis G. The elements of F(G) are called sequences over G. We write a
sequence S ∈ F(G) in the form

S = g1 · . . . · gs =
∏
g∈G

gvg(S),

where s ∈ N0 (the set of non-negative integers), g1, . . . , gs ∈G and vg(S)∈N0.
We call vg(S) the multiplicity of g in S, and |S| = s =

∑
g∈G vg(S) ∈ N0

the length of S. The unit element in F(G) is the empty sequence. Denote by
supp(S) = {g ∈ G : vg(S) > 0} the support of S, and by h(S) = max{vg(S) :
g ∈ G} the height of S.

A sequence S1 is called a subsequence of S if S1 |S in F(G) (i.e. vg(S1)
≤ vg(S) for all g ∈ G), and a proper subsequence of S if S1 is a non-empty
subsequence of S with S1 6= S. If S1 is a subsequence of S, we use S(S1)

−1

to denote the subsequence obtained by deleting the terms of S1 from S
(equivalently, S = (S(S1)

−1) · S1).
For a sequence S defined above, we denote by

σ(S) =

s∑
i=1

gi =
∑
g∈G

vg(S)g ∈ G

the sum of S, and by∑
(S) =

{∑
i∈I

gi : ∅ 6= I ⊂ [1, s]
}
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the set of subsums of S, where for real numbers a and b, [a, b] = {x ∈ Z :
a ≤ x ≤ b}. Sometimes we also use

∑
0(S) =

∑
(S) ∪ {0} for convenience.

A sequence S is called

• zero-sum if σ(S) = 0,
• minimal zero-sum if σ(S) = 0 and σ(T ) 6= 0 for every proper subse-

quence T |S,
• zero-sum free if 0 6∈

∑
(S).

In zero-sum theory, one of the main objects of study is the (minimal)
zero-sum sequences. On the one hand, researchers investigate several impor-
tant invariants such as the Davenport constant D(G) (the maximal possible
length of a minimal zero-sum sequence in G) and the EGZ constant E(G)
(the minimal positive integer t such that every sequence S of length t must
have a zero-sum subsequence of length |G|). On the other hand, people
are interested in determining the structure of minimal zero-sum sequences,
which is the main goal of this paper.

When G is not cyclic, the best known result regarding the structure of
minimal zero-sum sequences is due to C. Reiher [8], who determined the
structure of such sequences of maximal length 2p− 1 in Zp ⊕Zp, where p is
a prime.

When G is cyclic, there are several important results on this topic. To
state them, we need the following notion introduced by Chapman, Freeze
and Smith [1].

Definition 1.1. Let G be a cyclic group of order n, and S a sequence
over G of the form

S = (n1g) · . . . · (nsg), where s ∈ N0 and n1, . . . , ns ∈ [1, n].

We denote the g-norm of S by

‖S‖g =
n1 + · · ·+ ns

n
,

and the index of S by

Ind(S) = min{‖S‖g : g is any generator of G}.
Clearly, S is zero-sum if and only if Ind(S) ∈ N0. If Ind(S) = 1, then

S = (n1g) · . . . · (nsg) for some generator g and n1, . . . , ns ∈ [1, n] with∑s
i=1 ni = n, so clearly S is a minimal zero-sum sequence and its structure

is clear (as n1, . . . , ns form a partition of n). Several authors have attempted
to show that the converse is true under some conditions (i.e. with some
restriction, a minimal zero-sum sequence has index 1). Gao [2] showed that
any minimal zero-sum sequence of length roughly greater than 2n/3 has
index 1. Later, Yuan [12] and Savchev and Chen [9] independently extended
the above result to the case of minimal zero-sum sequences of length greater
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than n/2 + 1. It was conjectured that if gcd(n, 6) = 1, then every minimal
zero-sum sequence of length 4 has index 1; some relevant results can be
found in [5, 6, 10] for example.

In contrast to the above results, it has been known that for each k
in [5, n/2 + 1], there is a minimal zero-sum sequence S of length k with
Ind(S) ≥ 2, and that the same is true for k = 4 and gcd(n, 6) 6= 1. When
Ind(S) ≥ 2, the structure of S is not yet understood (if we only know
the index of S). In order to characterize explicitly the structure of such
a sequence, we need to overcome many difficulties. Next we introduce a
concept which will be helpful in that investigation.

Definition 1.2. Let S be a minimal zero-sum sequence over G. An
element g in S is called splittable if there exist x, y ∈ G such that x+ y = g
and Sg−1xy is a minimal zero-sum sequence as well; otherwise, g is called
unsplittable. The sequence S is called splittable if at least one element of S
is splittable; otherwise, it is unsplittable.

By applying the splitting operation repeatedly to any minimal zero-sum
sequence S, we eventually obtain an unsplittable minimal zero-sum sequence
S′ and the index will not decrease (i.e. Ind(S) ≤ Ind(S′)). In this way, we
can try to understand the structure of minimal zero-sum sequences through
characterizing that of unsplittable minimal zero-sum sequences. Recently
several new results in this direction have been obtained. Xia and Yuan [11]
obtained the structure of unsplittable minimal zero-sum sequences of length
bn/2c + 1, where for x ∈ R, bxc denotes the maximal integer less than or
equal to x. Peng and Sun [7] took one step forward to describe unsplittable
minimal zero-sum sequences of length (n − 1)/2 when n > 155 is a prime.
Most recently, Yuan and Li [13] determined the structure of unsplittable
minimal zero-sum sequences of length ≥ bn/3c + 8 when n > 20585 is an
odd positive integer with least prime divisor greater than 13.

In the present paper, we continue these investigations; we improve the
last mentioned result significantly by removing the constraint on |G| = n,
and by sharpening the lower bound for |S| from bn/3c+ 8 to bn/3c+ 3. Our
main result is as follows, and it is best possible.

Theorem 1.3. Let n ≥ 9 be an odd integer and G an abelian group of
order n. If there exists an unsplittable minimal zero-sum sequence S over G
of length |S| ≥ bn/3c+ 3, then G is cyclic, and either S = gn, or

S = g(n−r)/2−1−tr ·
(
n+ r

2
g

)2(t+1)

·
((

n− r
2

+ 1

)
g

)
,

where g is a generator of G and r, t ∈ N0 with r odd and 3 ≤ r ≤ (n− r)/2−
1− tr. Moreover, Ind(S) = 2 in the latter case.
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If supp(S) contains only one element g, then since |G| = n is odd and
|S| ≥ bn/3c+3, we conclude that G is generated by g and S = gn. Hence, in
what follows, we may always assume that S is a minimal zero-sum sequence
consisting of at least two distinct elements, and show that S must have the
second form described in the theorem.

The paper is organized as follows. In Section 2, some basic lemmas are
given. We divide the proof of the main theorem into two steps. The first
step is handled in Section 3, where it is shown that if S is not of the form
described in the main theorem, then it must contain a suitable subsequence
with large subsum set. Then in Section 4, we make the second step by
proving that the existence of the above mentioned subsequence leads to a
contradiction. In the final section, we make some comments regarding our
main result and present an example to show that it is best possible.

2. Some basic lemmas. In this section, some basic lemmas are given;
they will be frequently used in this paper.

Lemma 2.1 ([3]). Let G be an abelian group of order n ≥ 3. If S is a
zero-sum free sequence over G of length

|S| ≥ 6n+ 28

19
,

then S contains an element g ∈ G with multiplicity

vg(S) ≥ 6|S| − n+ 1

17
.

Lemma 2.2 ([4, Theorem 5.3.1]). Let S be a zero-sum free sequence over
an abelian group, and let S1, . . . , Sk be disjoint subsequences of S. Then
|
∑

(S)| ≥
∑k

i=1 |
∑

(Si)|.
Lemma 2.3 ([12]). Let S be a minimal zero-sum sequence over an abelian

group G. If a, ta ∈ supp(S) with t ∈ [2, ord(a) − 1] and ta is unsplittable
in S, then t ≥ va(S) + 2. In particular, if S is unsplittable, then for any
a ∈ G \ {0}, a and 2a cannot occur in S simultaneously.

The above lemma is slightly different from the one in [12], but the same
proof works.

Lemma 2.4 ([11, Lemma 2.14]). Let S be a minimal zero-sum sequence
over an abelian group G. Then a ∈ supp(S) is unsplittable in S if and only if∑

(Sa−1) = G \ {0}. Moreover, S is unsplittable if and only if
∑

(Sa−1) =
G \ {0} for every a ∈ supp(S). In particular, if S is unsplittable, then
G = 〈supp(S)〉.

Lemma 2.5 ([11, Lemma 2.15]). Let S be a minimal zero-sum sequence
over an abelian group, and suppose S consists of two distinct elements. Then
S is splittable.



Minimal zero-sum sequences 135

We remark that in [11], the above two lemmas were stated only for
cyclic groups, but the same proofs remain valid for all abelian groups. In
particular, in Lemma 2.4, if S is unsplittable, then G ⊂

∑
(S) ⊂ 〈supp(S)〉,

so G = 〈supp(S)〉. The following lemma is an easy observation.

Lemma 2.6. Let S be a minimal zero-sum or zero-sum free sequence
over an abelian group, and T a proper subsequence of S. Let a be a term of
ST−1. Then σ(T ) + a 6∈

∑
(T ).

Lemma 2.7 (Replacement Lemma). Let S be a minimal zero-sum se-
quence over an abelian group G, and T a proper subsequence of S. Let T ′

be another sequence over G such that
∑

(T ′) =
∑

(T ) and σ(T ′) = σ(T ).
Then:

• S′ = (ST−1) · T ′ is a minimal zero-sum sequence.
• If a ∈ supp(ST−1) is unsplittable in S, then it is so in S′. In par-

ticular, if S is unsplittable and supp(T ′) ⊂ supp(ST−1), then S′ is
unsplittable.

Proof. Since σ(S′) = σ(ST−1) + σ(T ′) = σ(ST−1) + σ(T ) = σ(S), S′ is
a zero-sum sequence. Let a ∈ supp(ST−1). Then by the assumption,∑

(S′a−1) =
∑

(ST−1a−1) ∪
∑

(T ′) ∪ (
∑

(ST−1a−1) +
∑

(T ′))

=
∑

(ST−1a−1) ∪
∑

(T ) ∪ (
∑

(ST−1a−1) +
∑

(T ))

=
∑

(Sa−1) ⊂ G \ {0}.

Thus 0 6∈
∑

(S′a−1) and S′a−1 is zero-sum free, which implies that S′ is
minimal zero-sum.

Moreover, if a ∈ supp(ST−1) is unsplittable in S, then
∑

(S′a−1) =∑
(Sa−1) = G \ {0} by Lemma 2.4. Hence a is unsplittable in S′.

Remark. From the proof, we can see that replacing T by T ′ in any
sequence S containing T does not change the subsum set of S and the sum
of S either, which will be very useful in what follows.

Lemma 2.8. Let S = albc be a minimal zero-sum sequence over an
abelian group G of odd order, and b, c 6= a. Then b and c are splittable.

Proof. Assume that (say) b is unsplittable. By Lemma 2.4,
∑

(alc) =
G\{0}, so G ⊆ 〈a〉∪(c+〈a〉). Since |G| is odd, if G 6= 〈a〉, then G contains at
least three cosets of 〈a〉, giving a contradiction. Thus, G is cyclic generated
by a. Let b = ka and c = ta with k, t ∈ [2, n − 1]. Since S is a minimal
zero-sum sequence, t+ l ≤ n− 1. Since b is unsplittable, (n− 1)a ∈

∑
(alc),

which implies that t+ l = n− 1, so k+ l+ t < 2n− 1, forcing k+ l+ t = n.
Thus b = (n− l − t)a = a, a contradiction.
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Lemma 2.9. Let S = aαbβ with α, β ∈ N be a zero-sum free sequence
over an abelian group G, and let t be the minimal positive integer such that
tb ∈ {−αa, (−α+ 1)a, . . . , αa}.

(1) If β < t, then
∑

0(S) =
⋃β
i=0(ib+{0, a, . . . , αa}), which is a disjoint

union. In this case, |
∑

(S)| = (α+ 1)(β + 1)− 1.
(2) If β ≥ t − 1, let tb = ka with k ∈ [−α, α] and β − (t − 1) = tq + r

with r ∈ [0, t− 1]. Then k > 0 if β ≥ t, and

∑
0(S) =

r−1⋃
i=0

(ib+ {0, a, . . . , (α+ kq + k)a})

∪
t−1⋃
i=r

(ib+ {0, a, . . . , (α+ kq)a}),

which is a disjoint union. In this case, |
∑

(S)| = t(α + 1) +
(β − t+ 1)k − 1.

Proof. First, since |G|b = 0 ∈ {−αa, (−α+ 1)a, . . . , αa}, such a t exists.

(1) Clearly,
∑

0(S) =
⋃β
i=0(ib + {0, a, . . . , αa}). To show the union is

disjoint, assume (ib + {0, a, . . . , αa}) ∩ (jb + {0, a, . . . , αa}) 6= ∅ for some
distinct i, j ∈ [0, β]. Then ib + p0a = jb + p1a for some p0, p1 ∈ [0, α]. We
may assume i > j. Then (i− j)b = (p1 − p0)a ∈ {−αa, (−α+ 1)a, . . . , αa},
contradicting the definition of t.

(2) If t = 1, then b = ka, q = β and r = 0. Since S is zero-sum free,
0 < k ≤ α. It is easy to show that

∑
0(S) = {0, a, . . . , (α+kβ)a}, as claimed.

Next, suppose that t ≥ 2. It is easy to see that 0 < k ≤ α if β ≥ t, for
otherwise a−kbt is a zero-sum subsequence of S.

We now use induction on β. The base step when β = t−1 has been proved
in (1). Next, suppose that the result holds for β = m, and let β = m + 1.
Write m − (t − 1) = tq + r. Clearly, (m + 1) − (t − 1) = tq + (r + 1) when
r < t− 1, and (m+ 1)− (t− 1) = t(q + 1) + 0 otherwise.

As S = aαbm+1 is zero-sum free, so is aαbm. Thus by the induction
hypothesis,

∑
0(a

αbm) =
r−1⋃
i=0

(ib+ {0, a, . . . , (α+ kq + k)a})

∪
t−1⋃
i=r

(ib+ {0, a, . . . , (α+ kq)a}),

where the union is disjoint. Note that∑
0(a

αbm+1) =
∑

0(a
αbm) ∪ (b+

∑
0(a

αbm)),
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and the latter summand is

b+
∑

0(a
αbm)

=
r⋃
i=1

(ib+ {0, a, . . . , (α+ kq + k)a}) ∪
t⋃

i=r+1

(ib+ {0, a, . . . , (α+ kq)a})

=
r⋃
i=1

(ib+ {0, a, . . . , (α+ kq + k)a}) ∪
t−1⋃
i=r+1

(ib+ {0, a, . . . , (α+ kq)a})

∪ {ka, . . . , (α+ kq + k)a}.
If r = 0, then∑
0(a

αbm+1) =
t−1⋃
i=0

(ib+ {0, a, . . . , (α+ kq)a}) ∪ {ka, . . . , (α+ kq + k)a}

=
t−1⋃
i=1

(ib+ {0, a, . . . , (α+ kq)a}) ∪ {0, . . . , (α+ kq + k)a}.

It remains to show that {(α+ kq + 1)a, . . . , (α+ kq + k)a} is disjoint from⋃t−1
i=1(ib + {0, a, . . . , (α + kq)a}). If not, then there are i ∈ [1, t − 1], p0 ∈

[0, α+kq] and p1 ∈ [0, k−1] such that ib+p0a = (α+kq+k−p1)a, that is,
ib = (α+kq+k−p1−p0)a. By the definition of t, α+kq+k−p1−p0 > α, and
thus 0 ≤ p0 +p1 < kq+k ≤ α+kq. Hence, (α+kq+k)a = ib+ (p0 +p1)a ∈∑

0(a
αbm). Since S is zero-sum free, σ(S) = σ(aαbm+1) = (α + kq + k)a 6∈∑

0(a
αbm) by Lemma 2.6. So we have a contradiction, and thus the union

is disjoint.

If r > 0, then∑
0(a

αbm+1)

=
r−1⋃
i=0

(ib+ {0, a, . . . , (α+ kq + k)a}) ∪
t−1⋃
i=r

(ib+ {0, a, . . . , (α+ kq)a})

∪ (rb+ {0, . . . , (α+ kq + k)a})

=

r⋃
i=0

(ib+ {0, a, . . . , (α+ kq + k)a}) ∪
t−1⋃
i=r+1

(ib+ {0, a, . . . , (α+ kq)a}).

The same argument as above shows that the union is disjoint.

In both cases, the value of |
∑

(S)| can be obtained by a direct calcula-
tion.

3. The first step. We first explain why S must be in the form described
in the main theorem.
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Proposition 3.1. Let G be an abelian group of odd order n, and S = alU
be an unsplittable minimal zero-sum sequence where U is the subsequence of
S consisting of all terms different from a. Suppose that U is not empty,
and for any x, y ∈ G (possibly x = y) with xy |U , there is some γ ∈ [1, l]
such that x+ y = γa. Then G is cyclic and generated by a, and there exist
r, t ∈ N0 with r odd and 3 ≤ r ≤ l such that l = (n− r)/2− 1− tr and

U =

(
n+ r

2
a

)2(t+1)

·
((

n− r
2

+ 1

)
a

)
.

Proof. Since S is an unsplittable minimal zero-sum sequence, by Lem-
ma 2.5, U must contain at least two distinct elements and by Lemma 2.8,
|U | ≥ 3.

We first prove G = 〈a〉. Take any three terms x, y, z in U (this is possible
because |U | ≥ 3). Then by the assumption on U the sums x+ y, y + z and
x+ z are in 〈a〉, so 2x, 2y, 2z ∈ 〈a〉. Since |G| is odd, we obtain x, y, z ∈ 〈a〉,
which implies supp(S) ⊂ 〈a〉. Now by Lemma 2.4, G = 〈supp(S)〉 = 〈a〉.

We can now assume that U = (t1a) · · · (tka) with 2 ≤ t1 ≤ · · · ≤ tk < n.
Since S is minimal zero-sum, tk < n − l. Since S is unsplittable, by Lem-
ma 2.3, t1 ≥ l+ 2. By the assumption on U , we have n < ti + tj ≤ n+ l for
all distinct i, j ∈ [1, k].

Consider a new sequence S′ = S(tka)−1 · a((tk − 1)a), obtained from S
by replacing tka with two terms a and (tk−1)a. Since S is unsplittable, S′ is
not minimal zero-sum, so it can be decomposed into two disjoint zero-sum
subsequences. Let V be the one containing (tk − 1)a. It is clear that V does
not contain a: otherwise, we can replace a and (tk − 1)a by tka and obtain
a proper zero-sum subsequence of S, which contradicts S being minimal
zero-sum.

Now, let V = (ti1a) · · · (tiva) · ((tk−1)a) where 1 ≤ i1 < · · · < iv ≤ k−1.
We next prove two claims.

Claim 1. t2 = tk.

Since S is unsplittable, U contains at least two distinct elements, so
t2 = tk implies that U contains exactly two distinct elements.

Assume to the contrary that t2 < tk. Note that n < t1 + t2 ≤ ti1 + tk−1,
so v ≥ 2. Let γ ∈ [1, l] with ti1 + ti2 = n+ γ. Then

σ(V ) = (ti1 + ti2)a+

v∑
j=3

(tija) + (tk − 1)a

= γa+

v∑
j=3

(tija) + (tk − 1)a = (γ − 1)a+

v∑
j=3

(tija) + tka.
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Thus aγ−1 · (ti3a) · · · (tiva) · (tka) is a zero-sum sequence; moreover, it is a
proper subsequence of S, giving a contradiction.

Claim 2. t1 + t2 = n+ 1.

Assume that t1 + t2 > n + 1. Note that n < t1 + t2 − 1 ≤ ti1 + tk − 1,
hence v ≥ 2. Let γ ∈ [1, l] with ti1 + ti2 = n+ γ. Then the same calculation
as before shows that σ(V ) = (γ−1)a+

∑v
j=3(tija)+ tka. Again, we can find

a proper zero-sum subsequence of S, yielding a contradiction.

We can now prove the proposition. Let r ∈ [1, l] with 2t2 = n+r. Clearly,
r is odd and r ≥ 3 as S is unsplittable. It follows from the above two claims
that

U =

(
n+ r

2
a

)k−1
·
((

n− r
2

+ 1

)
a

)
.

Note that ∑(
al−1

(
n+ r

2
a

)3)
=
∑(

al−1+r
(
n+ r

2
a

))
,

σ

(
al−1

(
n+ r

2
a

)3)
= σ

(
al−1+r

(
n+ r

2
a

))
.

By Lemma 2.7, we can perform the replacement operation on S and obtain a
longer sequence with r more copies of a and 2 fewer copies of n+r

2 a. Repeat
the same operation until the resulting sequence contains less than three
copies of n+r2 a (do nothing if S only contains less than three copies of n+r2 a).
Let the resulting sequence be

aα ·
(
n+ r

2
a

)β
·
((

n− r
2

+ 1

)
a

)
.

If k − 1 is odd, then β = 1. Since
(
n−r
2 + 1

)
a is unchanged through any

replacement operation,
(
n−r
2 + 1

)
a remains unsplittable by Lemma 2.7. But

this is impossible by Lemma 2.8. Therefore, k− 1 must be even, say k− 1 =
2(t+ 1). In this case, β = 2 and α = l+ tr. Thus α+ 2n+r2 +

(
n−r
2 + 1

)
≡ 0

(mod n), so α = n−r
2 − 1, that is, l = n−r

2 − 1− tr, as desired.

Next we give two lemmas which describe the structure of some simple
sequences with small subsum sets.

Lemma 3.2. Let G be an abelian group of odd order, S an unsplittable
minimal zero-sum sequence over G, and T = albc a proper subsequence of S
such that l ≥ 1 and a, b, c are distinct. Suppose that |

∑
(T )| < 3|T |−4. Then

b, c ∈ 〈a〉 and b+c ∈ {a, . . . , la}. Morevoer, if we set b = ta and c = ka with
1 ≤ t ≤ k < ord(a), then k ≤ t+ l and ord(a) < t+ k ≤ 2k ≤ ord(a) + l.
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Proof. For convenience, we consider
∑

0(T ) instead of
∑

(T ), so the given
condition can be restated as |

∑
0(T )| < 3|T | − 3 = 3l + 3. It is clear that∑

0(T ) = {0, b, c, b+ c}+ {0, a, 2a, . . . , la} = A0 ∪Ab ∪Ac ∪Ab+c,

where Ax = x+{0, a, . . . , la} for x ∈ {0, b, c, b+c}. Since S is an unsplittable
minimal zero-sum sequence, A0 ∩ Ab = ∅, A0 ∩ Ac = ∅, Ab+c ∩ Ab = ∅ and
Ab+c ∩Ac = ∅.

If Ab ∩Ac = ∅ or A0 ∩Ab+c = ∅, then |
∑

0(T )| ≥ 3l+ 3, a contradiction.
Hence, Ab∩Ac 6= ∅ and A0∩Ab+c 6= ∅, implying that b−c ∈ {−la, (−l+1)a,
. . . , la} and b + c ∈ {a, . . . , la}. It follows that b, c ∈ 〈a〉. Moreover, if we
set b = ta and c = ka with 1 ≤ t ≤ k < ord(a), then k ≤ t + l and
ord(a) < t+ k < ord(a) + l. Thus∑

0(T ) = {0, a, . . . , (l + t+ k − ord(a))a} ∪ {ta, . . . , (k + l)a},

and so |
∑

0(T )| = l+ t+k− ord(a) + 1 +k+ l− t+ 1 = 2l+ 2k+ 2− ord(a).
This together with |

∑
0(T )| < 3l + 3 implies that 2k ≤ ord(a) + l.

Lemma 3.3. Let G be an abelian group of odd order, S an unsplittable
minimal zero-sum sequence over G, and T = alb2c a proper subsequence of
S such that l ≥ 3 and a, b, c are distinct. Suppose that 2b = γa for some
γ ∈ [3, l] and |

∑
(T )| < 3|T | − 4. Then b, c ∈ 〈a〉 and b+ c ∈ {a, . . . , la}. If

we set b = ta and c = ka with 1 ≤ t, k < ord(a), then t− l ≤ k ≤ t+ l and
ord(a) < t+ k ≤ 2 max{t, k} ≤ ord(a) + l.

Proof. As before, we consider
∑

0(T ) instead of
∑

(T ), so the given con-
dition can be restated as |

∑
0(T )| < 3|T | − 3 = 3l + 6. With the same

notation as in the proof of Lemma 3.2, we obtain∑
0(T ) = A0 ∪Ab ∪A2b ∪Ac ∪Ab+c ∪A2b+c.

Since S is an unsplittable minimal zero-sum sequence, we have Ax ∩Ay = ∅
if x − y ∈ {±b,±c}. Since 2b = γa for some γ ∈ [3, l], we have A0 ∪ A2b =
{0, a, . . . , (l + γ)a}.

We first show that A2b+c∩A0 = ∅: if not, then 2b+c = βa with β ∈ [1, l],
hence c = (β − γ)a ∈ {−la, . . . , la}, a contradiction.

Next, we show that A2b+c ∩ Ab 6= ∅: if not, then
∑

0(T ) includes three
pairwise disjoint parts: A0 ∪A2b, Ab and A2b+c, and thus |

∑
0(T )| ≥ l+ γ+

1 + 2(l + 1) ≥ 3l + 6, a contradiction.

Thus, we may assume that 2b + c ∈ b + {−la, . . . , la}, so b + c ∈
{−la, . . . , la}. Since S is minimal zero-sum, b+ c 6∈ {−la, . . . ,−a, 0}. Hence
b+ c ∈ {a, . . . , la}.

Since 2b ∈ 〈a〉 and |G| is odd, we have b ∈ 〈a〉. Since b+ c ∈ 〈a〉 from the
above paragraph, we infer that c ∈ 〈a〉. We have thus proven the first part
of the lemma.
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Let b = ta and c = ka with 1 ≤ t, k < ord(a). Since S is unsplittable
minimal zero-sum, l + 2 ≤ t, k < ord(a) − l. We have shown that 2t =
ord(a) +γ and t+k = ord(a) +α with α, γ ∈ [1, l]. So, t−k = 2t− (t+k) =
γ − α ∈ [−l, l], that is, t− l ≤ k ≤ t+ l.

It remains to show that ord(a) < 2 max{t, k} ≤ ord(a)+ l. By the above,
it suffices to consider the case t < k and to prove that 2k < ord(a) + l. Now

A0 ∪A2b ∪Ab+c = {0, a, . . . , (l + α)a},
Ab ∪Ac ∪A2b+c = {ta, (t+ 1)a, . . . , (t+ α+ l)a}.

Note that l + α = l + (k + t − ord(a)) = (l + k − ord(a)) + t < t. Hence
|
∑

0(T )| = 2(α + l + 1) = 2k + 2t + 2l − 2ord(a) + 2. This together with
|
∑

0(T )| < 3l + 6 implies that 2k ≤ (ord(a) + l) + (ord(a) + 3 − 2t) =
(ord(a) + l)− (γ − 3) ≤ ord(a) + l.

The next two theorems form the first step of the proof of our main
theorem.

Theorem 3.4. Let G be an abelian group of odd order n, and S an
unsplittable minimal zero-sum sequence over G with h(S) ≥ 2 and |supp(S)|
≥ 2. Then one of the following holds:

(i) G is a cyclic group and

S = g(n−r)/2−1−tr ·
(
n+ r

2
g

)2(t+1)

·
((

n− r
2

+ 1

)
g

)
,

where g is a generator of G and r, t ∈ N0 with r odd and 3 ≤ r ≤
(n− r)/2− 1− tr.

(ii) There are distinct a, b ∈ supp(S) with va(S) ≥ 2 and a subse-
quence T |S such that va(T ) = va(S) − 1, vb(T ) = vb(S) − 1 and
|
∑

(T )| ≥ 3|T |−4. Moreover, if there are distinct elements in S with
multiplicities greater than 1, we may choose b such that vb(S) ≥ 2.

Proof. Since h(S) ≥ 2, we can choose a ∈ supp(S) such that va(S) ≥ 2,
and let la = va(S)−1. Once we have determined the desired b ∈ supp(S), we
always set lb = vb(S)− 1 and U = Sa−va(S)b−vb(S). By Lemma 2.5, supp(S)
contains at least three distinct elements, and thus U is always non-empty.

First, assume Sa−va(S) is square free. By Lemma 2.8, |Sa−va(S)| ≥ 3. If
there are distinct x, y ∈ supp(S) \ {a} such that |

∑
(alaxy)| ≥ 3(la + 2)− 4,

then we may choose any b ∈ supp(S)\{a, x, y}, set T = alaxy, and (ii) holds.
If |
∑

(alaxy)| < 3(la + 2)− 4 for any distinct x, y ∈ supp(S) \ {a}, then by
Lemma 3.2, x + y ∈ {a, . . . , laa} for any such x, y. Hence, Proposition 3.1
yields (i).

Next assume Sa−va(S) is not square free. Choose b ∈ supp(S) \ {a}
with vb(S) ≥ 2. Let tb be the minimal positive integer such that tbb ∈
{−laa, . . . , laa}. Since S is unsplittable minimal zero-sum, by Lemma 2.3
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we have b /∈ {−laa, . . . , laa}, so tb ≥ 2. Let tbb = γa for some γ ∈ [−la, la].
We consider several cases.

Case 1: lb = 1. Suppose there is some x ∈ supp(S) \ {a, b} such that
|
∑

(alabx)| ≥ 3(la + 2)− 4. Then as before, T = alabx is as desired.

Suppose |
∑

(alabx)| < 3la + 2 for any x ∈ supp(S) \ {a, b}. Then x ∈ 〈a〉
for any x ∈ supp(S) \ {a, b} and b ∈ 〈a〉 by Lemma 3.2. Hence G = 〈a〉.
Write b = ta and S = ala+1(ta)2 · (k1a) · · · (ksa) with t ∈ [1, n − 1] and
1 ≤ k1 ≤ · · · ≤ ks < n. Applying Lemma 3.2 to ala(ta)(ksa), we obtain
2 max{t, ks} ≤ la + n. Hence any two terms in t, t, k1, . . . , ks have sum ≤
2 max{t, ks} ≤ la + n.

If t < k1, we can apply Lemma 3.2 to ala(ta)(k1a) and obtain t+ k1 > n
and k1 ≤ t+ la. We assert that 2t > n: otherwise, 2t ≤ n < t+ k1 ≤ 2t+ la,
and thus alab2 contains a zero-sum subsequence, which is impossible. Hence
any two terms in t, t, k1, . . . , ks must have sum ≥ 2t > n.

If k1 < t < k2, again we obtain t + k1 > n. Hence, any two terms in
t, t, k1, . . . , ks have sum ≥ k1 + t > n.

If k2 < t, apply Lemma 3.2 to ala(ta)(k1a) and ala(ta)(k2a), which gives
t+ k1 > n and t ≤ k2 + la. We assert that k1 + k2 > n: otherwise, k1 + k2 ≤
n < t + k1 ≤ k1 + k2 + la, which is impossible. Hence any two terms in
t, t, k1, . . . , ks must have sum ≥ k1 + k2 > n.

We have shown that any two terms in b2U have sum in {a, . . . , laa}. It
follows from Proposition 3.1 that (i) holds.

From now on, we always assume that lb ≥ 2. Also, we may assume that
la ≥ 2, for otherwise, by switching the roles of a and b, we are back in Case 1.

Case 2: 2 ≤ lb < tb. By Lemma 2.9, |
∑

(alablb)| = (la + 1)(lb + 1)− 1 =
lalb + la + lb ≥ 3(la + lb)− 4.

Case 3: lb ≥ tb = 2. Since lb ≥ tb, by Lemma 2.9 we have 2b = γa with
γ ∈ [1, la]. Since |G| is odd and S is unsplittable, γ is odd and γ ≥ 3 by
Lemma 2.3. Note that∑

(alab3) =
∑

(ala+γb) and σ(alab3) = σ(ala+γb).

We can replace alab3 by ala+γb and obtain a longer sequence with γ more
a’s and two fewer b’s. Repeat this until the sequence contains only three
or two copies of b depending on whether lb is even or odd (do nothing if
lb ≤ 2). Note that at least one a, at least one b and all elements of U are
not involved in the replacing operation, hence the new sequence is also an
unsplittable minimal zero-sum sequence.

Subcase 3.1: lb is odd . The resulting sequence is S′ = ar
′+1b2U where

r′ = la+γ(lb−1)/2 and U is defined at the beginning of the proof. Applying
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Case 1 to S′, we see that either |
∑

(ar
′
bx)| ≥ 3|ar′bx| − 4 for some x in U ,

or any two terms in b2U have sum in {a, . . . , r′a}.
In the former case,

∑
(alablb) =

∑
(ar

′
b), and thus

|
∑

(alablbx)| = |
∑

(ar
′
bx)| ≥ 3|ar′bx| − 4 ≥ 3|alablbx| − 4.

This is just (ii) with T = alablbx.

In the latter case, applying Proposition 3.1 to S′ shows that U contains
only one term a− b. Thus S has the desired form, and (i) follows.

Subcase 3.2: lb is even. The resulting sequence is S′ = ar
′+1b3U where

r′ = la + γ(lb − 2)/2 and U is defined at the beginning of the proof.

Suppose there is some x in U such that |
∑

(ar
′
b2x)| ≥ 3|ar′b2x| − 4.

Then |
∑

(alablbx)| = |
∑

(ar
′
b2x)| ≥ 3|ar′b2x| − 4 ≥ 3|alablbx| − 4, and thus

(ii) holds with T = alablbx.

Suppose |
∑

(ar
′
b2x)| < 3|ar′b2x| − 4 for any x |U . Then G = 〈a〉 by

Lemma 3.3. Write b = ta and S′ = ar
′+1(ta)3 ·(k1a) · · · (ksa) with 2t = n+γ

and 1 ≤ k1 ≤ · · · ≤ ks < n. By choosing x = ksa, we see that any two terms
in t, t, t, k1, . . . , ks have sum ≤ 2 max{t, ks} ≤ n+ r′.

If t < k2, by considering x = k1a, any two terms in t, t, t, k1, . . . , ks have
sum ≥ min{2t, t+ k1} > n.

If t > k2, we can choose x = k1a and then x = k2a. We assert that
k1 + k2 > n, for otherwise k1 + k2 ≤ n < k1 + t ≤ k1 + k2 + r′, which is
impossible. Hence any two terms in t, t, t, k1, . . . , ks have sum ≥ k1 +k2 > n.

Now any two terms in b3U have sum in {a, . . . , r′a}. Proposition 3.1
implies that S′ contains an even number of copies of b = ta, a contradiction.

Case 4: lb ≥ tb ≥ 3. Since S is minimal zero-sum, γ > 0. By Lemma 2.3,
γ 6= 1. If γ = 2, then tbb = 2a. Hence we can exchange the roles of a and b
and apply the result of Case 3. If γ ≥ 3, then by Lemma 2.9,

|
∑

(alablb)| = tb(la + 1) + γ(lb − tb + 1)− 1

= (la + 1)(lb + 1)− (la + 1− γ)(lb + 1− tb)− 1

≥ (la + 1)(lb + 1)− (la + 1− 3)(lb + 1− 3)− 1

= 3(la + lb)− 4.

Hence we can take T = alablb .

Using a similar (but longer) argument, we can obtain the following
stronger result. A detailed proof is in the Appendix.

Theorem 3.5. Let G be an abelian group of order n with gcd(n, 6) = 1,
and S an unsplittable minimal zero-sum sequence over G with h(S) ≥ 2 and
|supp(S)| ≥ 2. Then one of the following holds:
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(i) G is a cyclic group and

S = g(n−r)/2−1−tr ·
(
n+ r

2
g

)2(t+1)

·
((

n− r
2

+ 1

)
g

)
,

where g is a generator of G and r, t ∈ N0 with r odd and 3 ≤ r ≤
(n− r)/2− 1− tr.

(ii) There are distinct a, b ∈ supp(S) with va(S) ≥ 2 and a subse-
quence T |S such that va(T ) = va(S) − 1, vb(T ) = vb(S) − 1 and
|
∑

(T )| ≥ 3|T | − 3. Moreover, if there are distinct elements in S
with multiplicities greater than 1, then we may choose b such that
vb(S) ≥ 2.

4. The second step. To prove our main theorem, it suffices to show
that no subsequence T (as described in statement (ii) of either Theorem 3.4
or Theorem 3.5) exists under the assumption that |S| ≥ bn/3c+ 3. We first
state two lemmas.

Lemma 4.1 ([9]). Let S = Tg be a zero-sum free sequence over an abelian
group with T non-empty. Suppose that |

∑
(S)| = |

∑
(T )|+ 1. Then

(1)
∑

(T ) = {g, 2g, . . . , sg} ∪H, where s ∈ [1, ord(g) − 2] and H is the
union of several (possibly none) 〈g〉 cosets.

(2) σ(T ) = sg.

Lemma 4.2. Let S = Tg be a zero-sum free sequence over an abelian
group of odd order, where T is not empty. Suppose that |

∑
(S)| = |

∑
(T )|+2.

Then one of the following holds:

(1)
∑

(T ) = {g, 2g, . . . , sg} ∪ {kg, . . . , (k + t)g} ∪ H, where t, s ≥ 0,
s + 2 ≤ k ≤ k + t ≤ ord(g) − 2 and H is the union of several
(possibly none) 〈g〉 cosets. In this case σ(T ) ∈ {sg, (k + t)g}.

(2)
∑

(T ) = {g, 2g, . . . , sg} ∪ (c + {0, g, . . . , sg}) ∪ H, where 0 ≤ s ≤
ord(g) − 2, c 6∈ 〈g〉 and H is the union of several (possibly none)
〈g〉 cosets. In this case σ(T ) = c+ sg.

Proof. For convenience, we consider
∑

0(T ) instead of
∑

(T ). Now
|
∑

0(S)| = |
∑

(S)| + 1 = |
∑

(T )| + 2 + 1 = |
∑

0(T )| + 2 and
∑

0(S) =∑
0(T ) + {0, g}. It is easy to see that

∑
0(T ) is the union of two arith-

metical progressions with the same difference g and several (possibly none)
〈g〉 cosets. Since S is zero-sum free, −g 6∈

∑
0(T ), and thus 〈g〉 6⊂

∑
0(T ).

Since 0 ∈
∑

0(T ) and −g 6∈
∑

0(T ), 0 occurs as the first term in one of the
two arithmetical progressions, that is, one of the progressions is {0, g, . . . , sg}
with 0 ≤ s ≤ ord(g)− 2.

Suppose first that the other arithmetical progression is included in 〈g〉,
say {kg, . . . , (k+t)g} with 0 ≤ k ≤ k+t ≤ ord(g)−1. Since the two progres-
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sions cannot be joined to be an arithmetical progression, and −g 6∈
∑

0(T ),
we infer s+ 2 ≤ k ≤ k+ t ≤ ord(g)− 2. By Lemma 2.6, σ(T ) + g 6∈

∑
0(T ),

and thus σ(T ) + g ∈ {sg + g, (k + t)g + g}, that is, σ(T ) ∈ {sg, (k + t)g}.
Statement (1) follows.

Now suppose that the other arithmetical progression is not in 〈g〉, say
c+{0, . . . , tg} with 0 ≤ t ≤ ord(g)−1 and c 6∈ 〈g〉. Since c+{0, . . . , tg} is not
a full coset, t ≤ ord(g)−2. As above, it is easy to see that σ(T ) ∈ {sg, c+tg}.

If σ(T ) = sg, then sg − c = σ(T ) − c ∈
∑

0(T ). Since the group is of
odd order, sg − c 6∈ 〈g〉 ∪ (c + 〈g〉), and thus sg − c ∈ H. By the definition
of H, −c + 〈g〉 ⊂

∑
0(T ). Thus c + 〈g〉 = σ(T ) − (−c + 〈g〉) ⊂

∑
0(T ),

a contradiction. Therefore σ(T ) = c+ tg.

Finally, we prove s = t. Since tg = σ(T ) − c ∈
∑

0(T ), we have t ≤ s.
Since c+(t−s)g = σ(T )−sg ∈

∑
0(T ), either t−s ≥ 0 or ord(g)+ t−s ≤ t.

The latter is impossible because ord(g)− s > 0. Thus t = s.

We now finish the proof of the main theorem, which is restated as follows.

Theorem 4.3. Let n ≥ 9 be an odd integer, and G an abelian group
of order n. Let S be an unsplittable minimal zero-sum sequence over G of
length |S| ≥ bn/3c+ 3. Then G is cyclic, and either S = gn or

S = g(n−r)/2−1−tr ·
(
n+ r

2
g

)2(t+1)

·
((

n− r
2

+ 1

)
g

)
,

where g is a generator of G and r, t ∈ N0 with r odd and 3 ≤ r ≤ (n− r)/2−
1− tr. Moreover, Ind(S) = 2 in the latter case.

Proof. If supp(S) contains only one element g, then G is generated by g
and S = gn. Therefore we only need to consider the case when |supp(S)| ≥ 2.
By Lemma 2.1, h(S) ≥ h(Sx−1) ≥ (6(|S| − 1) − n + 1)/17 > 1, where x is
any term in S.

By Theorems 3.4 and 3.5, either S has the desired form or there exists
a subsequence T with the properties stated in those theorems. We need to
prove that the existence of such a T is impossible.

Assume that such a T exists. Then we can choose distinct a, b ∈ supp(S)
with va(S) ≥ 2 and a subsequence U |S such that va(U) = va(S) − 1,
vb(U) = vb(S) − 1 and |

∑
(U)| ≥ 3|U | − δ, where δ = 4 if 3 |n, and δ = 3

otherwise. Moreover, we may choose U to be the one with greatest possible
length and write S = UV ab. We state some facts:

• {a, b} ∩ supp(V ) = ∅.
• |
∑

(Ug)| ≤ |
∑

(U)|+ 2 for all g ∈ supp(V ).
• |U | ≥ 2.
• a ∈

∑
(U) \ {σ(U)} and b ∈

∑
(U) \ {σ(U)} if S contains at least two

distinct elements with multiplicities greater than 1.
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• |V | ≥ 2 (for otherwise, n − 3 ≥ |
∑

(U)| ≥ 3|U | − δ ≥ 3(|S| − 2) −
δ ≥ 3bn/3c + 3 − δ ≥ n − 2 if |V | = 0, yielding a contradiction,
and n − 6 = n − 1 − |

∑
(abV ) \ {σ(abV )}| ≥ |

∑
(U)| ≥ 3|U | − δ ≥

3(|S|− 3)− δ ≥ 3bn/3c− δ ≥ n− 5 if |V | = 1, yielding a contradiction
again).

We divide the proof into two cases.

Case 1: There is g ∈ supp(V ) such that |
∑

(Ug)| = |
∑

(U)| + 1. By
Lemma 4.1,

∑
(U) has the form {g, 2g, . . . , sg}∪H, where s ∈ [1, ord(g)−2]

and H + 〈g〉 = H. Moreover, σ(U) = sg.
We first show that a ∈ 〈g〉: if not, a + 〈g〉 ⊂

∑
(U) \ {σ(U)}, and thus

−a ∈ −a + 〈g〉 = σ(U) − (a + 〈g〉) ⊂
∑

(U), which is impossible since S is
minimal zero-sum.

Suppose s = 1. Since a ∈
∑

(U) \ {σ(U)}, we have a 6∈ 〈g〉, a contradic-
tion. Hence we may assume s ≥ 2.

Suppose there is h ∈ supp(V ) with h 6= g. First note that h + sg 6∈∑
(U) by Lemma 2.6. If h 6∈ 〈g〉, we have (h + 〈g〉) ∩

∑
(U) = ∅. Then

{h + sg, h + (s − 1)g, h + (s − 2)g} ⊂
∑

(Uh) \
∑

(U), a contradiction. If
h ∈ 〈g〉, we have {h+sg, h+(s−1)g, h+(s−2)g} ⊂

∑
(Uh)\

∑
(U) or h = 2g,

which contradicts the definition of U or Lemma 2.3. Hence supp(V ) = {g}.
Now, b = 0 − σ(U) − σ(V ) − a ∈ 〈g〉, s + |V | ≤ ord(g) − 2 and∑

(UV ) = {g, 2g, . . . , (s+ |V |)g} ∪H. Since a is unsplittable in S, we have
G \ {0} =

∑
(UV b) = {g, 2g, . . . , (s + |V |)g} ∪ {b, . . . , b + (s + |V |)g} ∪H,

and thus b+ (s+ |V |)g = −g, which implies a = 0− σ(U)− σ(V )− b = g,
a contradiction.

Case 2: For all x ∈ supp(V ), |
∑

(Ux)| = |
∑

(U)|+2. Clearly, |
∑

(U)| =
3|U |−δ, for otherwise we can add any term of V to U and obtain a longer sub-
sequence U . Choose g ∈ supp(V ) such that vg(V ) = h(V ). By Lemma 4.2,∑

(U) has two possible structures:

Subcase 2.1:
∑

(U) = {g, 2g, . . . , sg} ∪ (c + {0, g, . . . , sg}) ∪ H, where
0 ≤ s ≤ ord(g) − 2, c 6∈ 〈g〉 and H is the union of several (possibly none)
〈g〉 cosets. Moreover, in this case σ(U) = c+ sg.

We remark that if h ∈ supp(V ) ∩ 〈g〉, then h = g, for otherwise

{(s+ 1)g, sg + h, (s+ 1)g + h, c+ (s+ 1)g, c+ sg + h, c+ (s+ 1)g + h}
is a subset of

∑
(Ugh) \

∑
(U), which contradicts the choice of U .

We claim that vx(S) ≤ ord(x)−2 for any x ∈ supp(S). Since S is minimal
zero-sum, vx(S) ≤ ord(x)−1. If vx(S) = ord(x)−1, then |S|−(ord(x)−1) ≥
bn/3c−ord(x)+4 ≥ n/ord(x)+1 (here we have used the fact that n is odd).
Thus Sx−vx(S) contains a proper subsequence T such that σ(T ) ∈ 〈x〉, and
so σ(T )xvx(S) contains a zero-sum subsequence, which implies that Txvx(S)

contains a zero-sum subsequence, a contradiction. This proves the claim.
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We now tackle the simplest case supp(V ) = {g}. It is easy to see that∑
(UV ) = {g, 2g, . . . , (s+ |V |)g} ∪ {c, c+ g, . . . , c+ (s+ |V |)g} ∪H,

s+|V | ≤ ord(g)−1, σ(UV ) = c+(s+|V |)g and |
∑

(UV )| = 3|U |+2|V |−δ =
3(|S| − 2)− |V | − δ ≥ 3bn/3c − |V |+ 3− δ.

If H 6= G \ ({0, c} + 〈g〉), then |
∑

(UV )| ≤ n − |〈g〉| − 1. Thus by the
claim above, n ≥ 3bn/3c + |〈g〉| − |V | + 4 − δ ≥ 3bn/3c + 6 − δ, which is
impossible. Therefore we may assume H = G \ ({0, c}+ 〈g〉).

Since S is minimal zero-sum, {−a,−b, 0} 6∈
∑

(UV ), and thusG\
∑

(UV )
contains at least three elements, which implies s + |V | ≤ ord(g) − 2. Since
σ(UV )+a 6∈

∑
(UV ) and σ(UV )+b 6∈

∑
(UV ), we have a, b ∈ {0,−c}+〈g〉.

Since a+b = −σ(UV ) ∈ −c+〈g〉, a or b is in 〈g〉 and the other one is in−c+〈g〉.
We let a∈ 〈g〉 and b∈−c+ 〈g〉. Since S is unsplittable,

∑
(UV b) =G \ {0}.

Then c+(s+|V |)g+b = −g, otherwise−g = (ord(g)− 1)g 6∈
∑

(UV b). Thus
a = −σ(UV )− b = −(c+ (s+ |V |)g + b) = g ∈ supp(V ), a contradiction.

Now, we only need to consider the case when V contains at least two
distinct elements. By the remark above, there exists s ∈ supp(V ) \ 〈g〉. We
divide the proof into three subcases according to the value of s.

Subcase 2.1.1: s ≥ 2. First, suppose that there is h ∈ supp(V ) such
that h 6∈ (−c + 〈g〉) ∪ 〈g〉, which implies c + sg + h 6∈ (c + 〈g〉) ∪ 〈g〉. By
Lemma 2.6, c+ sg+h = σ(U) +h 6∈

∑
(U). Thus (c+h+ 〈g〉)∩

∑
(U) = ∅,

which implies {c+h, c+g+h, c+2g+h} ⊂
∑

(Uh)\
∑

(U), a contradiction.

Next, suppose that there is h ∈ supp(V ) such that h ∈ −c + 〈g〉. Note
that −c + 〈g〉 ⊂

∑
(U), for otherwise (−c + 〈g〉) ∩

∑
(U) = ∅, and thus

{h, h + g, h + 2g} ⊂
∑

(Uh) \
∑

(U), which is impossible. Now let t1 be
the minimal positive integer such that −t1c + 〈g〉 6⊂

∑
(U), and t2 be the

minimal positive integer such that −t2c ∈ 〈g〉. Since −c+ 〈g〉 ⊂
∑

(U) and∑
(U) does not contain the full coset c + 〈g〉 = −(t2 − 1)c + 〈g〉, such a t1

exists and 2 ≤ t1 ≤ t2 − 1. By the definition of t1, we have −t1c + 〈g〉 =
−(t1 − 1)c+ 〈g〉+ h ⊂

∑
(Uh).

If t1 < t2 − 1, then (−t1c + 〈g〉) ∩
∑

(U) = ∅. Thus −t1c + 〈g〉 ⊂∑
(Uh)\

∑
(U), which implies |

∑
(Uh)|−|

∑
(U)| ≥ |〈g〉| ≥ 3, a contradiction.

If t1 = t2−1, then c+〈g〉 = −(t1c)+〈g〉 ⊂
∑

(Uh), and thus {c+(s+1)g,
. . . , c + (ord(g) − 1)g} ⊂

∑
(Uh) \

∑
(U). Since σ(Uh) = c + sg + h ∈ 〈g〉

is another element in
∑

(Uh) \
∑

(U), we must have s + 1 = ord(g) − 1
to ensure that |

∑
(Uh)| ≤ |

∑
(U)| + 2. Then s = ord(g) − 2 and σ(Uh) =

(ord(g) − 1)g = −g, which implies σ(Uhg) = −g + g = 0, a contradiction
with S being minimal zero-sum.

Subcase 2.1.2: s = 1. Note that |〈g〉| is not a multiple of 3, for other-
wise 3 |n, |

∑
(U)| = 3+ |H| ≡ 0 (mod 3) and thus |

∑
(U)| 6= 3|U |−4. Hence

|〈g〉| ≥ 5.
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Choose h ∈ supp(V ) \ 〈g〉.
We claim that ({g, c, c+ g}+ 〈g, h〉)∩

∑
(U) = {g, c, c+ g} and H is the

union of some 〈g, h〉 cosets. Indeed, let d + 〈g〉 ⊂
∑

(U); then d + h + 〈g〉
⊂
∑

(U), as otherwise |
∑

(Uh)\
∑

(U)| ≥ |(d+h+〈g〉)\
∑

(U)| ≥ |〈g〉|−2 ≥ 3,
a contradiction. This proves the claim.

By the claim, |〈g, h〉| is not a multiple of 3, since otherwise 3 |n, but
|
∑

(U)| 6= 3|U | − 4. Hence the order of h+ 〈g〉 in G/〈g〉 is at least 5.

Suppose that h 6∈ c + 〈g〉. Then {h, g + h} ⊂
∑

(Uh) \
∑

(U). By
Lemma 2.6, c + g + h = σ(U) + h is another element in

∑
(Uh) \

∑
(U).

Thus
∑

(Uh) \
∑

(U) contains at least three elements, a contradiction.

Suppose now h ∈ c+ 〈g〉. Since {c+ h, c+ h+ g} ⊂
∑

(Uh) \
∑

(U), we
must have {h, g + h} ⊂

∑
(U) to ensure that |

∑
(Uh) \

∑
(U)| ≤ 2. Thus

h = c, so supp(V ) = {g, c}.
If vc(V ) ≥ 2, then vg(V ) = h(V ) ≥ 2. We have

{2g, 3g, c+ 2g, c+ 3g, 2c, 2c+ g, 2c+ 2g, 2c+ 3g, 3c, 3c+ g, 3c+ 2g, 3c+ 3g}
⊂
∑

(Ug2c2) \
∑

(U),

and thus |
∑

(Ug2c2) \
∑

(U)| ≥ 12, a contradiction.

If vc(V ) = 1, then there are at least two 〈g〉 cosets outside
∑

(UV ), and
thus n ≥ |

∑
(UV )|+ 2ord(g) + 1 ≥ |

∑
(U)|+ |

∑
(V )|+ 2(vg(S) + 2) + 1 ≥

3|U | − δ + |V |+ 2(|V | − 1 + 2) + 1 ≥ 3bn/3c+ 6− δ, which is impossible.

Subcase 2.1.3: s = 0. Choose h ∈ supp(V )\〈g〉. By the same argument
as in Subcase 2.1.2, we have ord(g) = |〈g〉| ≥ 5, the order of h+ 〈g〉 in G/〈g〉
is at least 5, ({0, c}+ 〈g, h〉)∩

∑
(U) = {c} and H is the union of some 〈g, h〉

cosets.

If h 6∈ {c − g, c, c + g,−c + g}, then it is easy to check that {g, h,
h+ g, c+ g, c+ h, c+ h+ g} ⊂

∑
(Uhg) \

∑
(U), a contradiction. If h = c,

then
∑

(Uh) \
∑

(U) = {2c}, which contradicts the assumption of Case 2.
Therefore we may assume that supp(V ) ⊂ {c − g, c + g,−c + g, g} by the
arbitrariness of h.

We claim that only one of c− g, c+ g, −c+ g occurs in V , with multi-
plicity 1.

Indeed, if c−g occurs in V with multiplicity ≥ 2, then vg(V ) = h(V ) ≥ 2
and∑

(U(c− g)2g2) \
∑

(U) ⊃
{g, 2g, c− g, c+ g, c+ 2g, 2c− 2g, 2c− g, 2c, 2c+ g, 3c− 2g, 3c− g, 3c},

which implies |
∑

(U(c− g)2g2) \
∑

(U)| ≥ 12, a contradiction.

If c+ g or −c+ g occurs in V with multiplicity ≥ 2, a similar calculation
leads to a contradiction.
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If c−g and −c+g occur in V simultaneously, then (c−g)+(−c+g) = 0,
a contradiction.

If c− g and c+ g occur in V simultaneously, then

{c− g, c+ g, 2c− g, 2c, 2c+ g, 3c} ⊂
∑

(U(c− g)(c+ g)) \
∑

(U),

a contradiction.
If −c+ g and c+ g occur in V simultaneously, then

{−c+ g, g, 2g, c+ g, c+ 2g, 2c+ g} ⊂
∑

(U(−c+ g)(c+ g)) \
∑

(U)

also yields a contradiction, proving the claim.
Now we have V = hg|V |−1 with h ∈ {c− g, c+ g,−c+ g}. However, the

same calculation as used at the end of Subcase 2.1.2 leads to a contradiction.

Subcase 2.2:
∑

(U) = {g, 2g, . . . , sg} ∪ {kg, . . . , (k + t)g} ∪ H, where
s ≥ 0, s+2 ≤ k ≤ k+ t ≤ ord(g)−2 and H is the union of several (possibly
none) 〈g〉 cosets. Moreover, in this case σ(U) ∈ {sg, (k + t)g} ⊂ 〈g〉.

First we show that supp(abV ) ⊂ 〈g〉 and s + t ≥ 1. If a 6∈ 〈g〉, then
a + 〈g〉 ⊂

∑
(U) because a ∈

∑
(U) \ {σ(U)}. Hence −a ∈ (−a + 〈g〉) =

σ(U)− (a+ 〈g〉) ⊂
∑

(U), a contradiction. Therefore a ∈ 〈g〉.
If s+t = 0, then

∑
(U)∩〈g〉 = {kg} = {σ(U)}. Since a ∈

∑
(U)\{σ(U)},

we have a 6∈ 〈g〉, a contradiction. Therefore s+ t ≥ 1.
If there is x ∈ supp(V )\〈g〉, then (x+〈g〉)∩

∑
(U) = ∅ because σ(U)+x

6∈
∑

(U). Hence {x, . . . , x+ sg, x+ kg, . . . , x+ (k + t)g} ⊂
∑

(Ux) \
∑

(U),
which implies |

∑
(Ux)\

∑
(U)| ≥ s+1+t+1 ≥ 3, a contradiction. Therefore

supp(V ) ⊂ 〈g〉. Finally, b = −σ(U)− σ(V )− a ∈ 〈g〉.
Next we show that if supp(V ) 6= {g}, then k ≥ s + 3. Choose h ∈

supp(V )\{g}, write h = lg with l ∈ [2, ord(g)−2], and suppose that k = s+2.
Since S is unsplittable, l ≥ 3. Clearly

∑
(Ug) = {g, 2g, . . . , (k+ t+1)g}∪H.

If l ≥ 4, then∑
(Ugh) \

∑
(Ug) ⊃

{(k + t+ 1)g + h, (k + t)g + h, (k + t− 1)g + h, (k + t− 2)g + h},
which implies |

∑
(Ugh)| ≥ |

∑
(Ug)| + 4 = |

∑
(U)| + 6, a contradiction.

Therefore l = 3 and h = 3g.
By the arbitrariness of h, we have supp(V ) = {g, 3g}. By Lemma 2.3,

h(V ) = vg(V ) = 1 and thus V = g · (3g). Then
∑

(UV ) = {g, 2g, . . . , (k+ t+
4)g} ∪H. Since

∑
(UV a) = G \ {0}, (k+ t+ 4)g + a = (ord(g)− 1)g = −g.

Similarly, (k+t+4)g+b = (ord(g)−1)g = −g. Hence a = b, a contradiction.
We divide the proof of this subcase into two situations according to the

value of σ(U).

Subcase 2.2.1: σ(U) = sg. In this subcase, s ≥ 1.
We show that kg + (k + t)g = sg. Let x ∈ {kg, . . . , (k + t)g}. Then

sg−x = σ(U)−x ∈
∑

(U). It is easy to see that σ(U)−x 6∈ {g, 2g, . . . , sg}.
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Thus σ(U) − x ∈ {kg, . . . , (k + t)g}. Therefore sg − {kg, . . . , (k + t)g} ⊂
{kg, . . . , (k + t)g}, which implies sg − kg = (k + t)g.

We first consider the case when |supp(V )| = 1, that is, V = g|V |. Clearly∑
(UV ) = {g, . . . , (s+ |V |)g} ∪ {kg, . . . , (k + t+ |V |)g} ∪H.

If s+ |V | ≥ k− 1, then
∑

(UV ) = {g, . . . , (k+ t+ |V |)g}∪H. Since S is
unsplittable,

∑
(UV a) = G\{0} and thus (k+ t+ |V |)g+a = (ord(g)−1)g.

Similarly, (k + t+ |V |)g + b = (ord(g)− 1)g. Thus a = b, a contradiction.

If s + |V | < k − 1, then by Lemma 2.6, σ(UV ) + a 6∈
∑

(UV ) and
thus σ(UV ) + a = (s + |V |)g + a ∈ {(s + |V | + 1)g, . . . , (k − 1)g} ∪
{(k+ t+ |V |+ 1)g, . . . , (ord(g)− 1)g} (the last subset may be empty). Since
S is unsplittable,

∑
(UV a) = G \ {0}. We have (s + |V |)g + a = (k − 1)g

or (ord(g) − 1)g, for otherwise (s + |V |)g + a + g 6∈
∑

(UV a). Similarly
(s+ |V |)g+b = (k−1)g or (ord(g)−1)g. Since a 6= b, one of them, say a, sat-
isfies (s+|V |)g+a = (ord(g)−1)g. Hence b = −(σ(UV )+a) = g ∈ supp(V ),
a contradiction.

Next we suppose that there is h ∈ supp(V ) \ {g}. Write h = lg with l ∈
[2, ord(g)− 2]. Note that l ≥ 3 as S is unsplittable. Since σ(U) +h 6∈

∑
(U),

sg+h = (s+ l)g ∈ {(s+1)g, . . . , (k−1)g}∪{(k+ t+1)g, . . . , (ord(g)−1)g},
that is, s+ l ∈ [s+ 1, k − 1] ∪ [k + t+ 1, ord(g)− 1].

If s = 1 and t = 0, then from the beginning of this Subcase 2.2.1, we have
2kg = g. Since a ∈

∑
(U)\{σ(U)} and a ∈ 〈g〉, we get a = kg. Hence 2a = g,

a contradiction. Therefore s = 1 and t = 0 cannot occur simultaneously.

If s+ l ∈ [s+ 1, k− 1]∪ [k+ t+ 3, ord(g)− 1], then {(s+ l)g, (s+ l− 1)g}
⊂
∑

(Uh) \
∑

(U) when s = 1, and {(s + l)g, (s + l − 1)g, (s + l − 2)g} ⊂∑
(Uh) \

∑
(U) when s ≥ 2. By the choice of U , only the former case

can occur, that is, s = 1. Again |
∑

(Uh) \
∑

(U)| = 2 yields {kg + h, . . . ,
(k+ t)g+h} ⊂

∑
(U). Hence {kg+h, . . . , (k+ t)g+h} ⊂ {g, . . . , sg}, which

implies t+ 1 ≤ s = 1. Hence t = 0, a contradiction.

If s + l = k + t + 2, then {(s + l)g, (s + l − 1)g} ⊂
∑

(Uh) \
∑

(U).
Since |

∑
(Uh)\

∑
(U)| = 2, we have {h, g+h, . . . , sg+h}\

∑
(U) = {(s+ l)g,

(s+l−1)g} and {kg+h, . . . , (k+t)g+h} ⊂
∑

(U). Thus {h, g+h, . . . , sg+h} ⊂
{kg, . . . , (k + t + 2)g} and {kg + h, . . . , (k + t)g + h} ⊂ {g, . . . , sg}, which
implies s + 1 ≤ t + 3 and t + 1 ≤ s, that is, s − 1 ≤ t + 1 ≤ s. Since
{kg + h, . . . , (k + t)g + h} ⊂ {g, . . . , sg}, (k + t)g + h equals sg or (s− 1)g.
Together with the assumption sg + h = (k + t + 2)g of this paragraph, we
have 2h = 2g or 2h = g, a contradiction.

If s + l = k + t + 1 and t = 0, then recall that s = 1 and t = 0 cannot
occur simultaneously, hence s > 1. Then {(s+ l)g, (s+ l−2)g, (s+ l−3)g} ⊂∑

(Uh)\
∑

(U) when s ≥ 3, and {(s+l)g, (s+l−2)g} ⊂
∑

(Uh)\
∑

(U) when
s = 2. We only need to consider the latter case. Since |

∑
(Uh) \

∑
(U)| = 2,

we have kg + h ∈
∑

(U). Hence kg + h = g or 2g. Together with (s+ l)g =
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(k + t + 1)g, that is, 2g + h = kg + g, we deduce that 2h = 0 or 2h = g,
a contradiction.

If s + l = k + t + 1 and t > 0, then since (s + l)g ∈
∑

(Uh) \ {σ(U)},
we get |{kg + h, . . . , (k + t)g + h} \

∑
(U)| ≤ 1. By the paragraph before

Subcase 2.2.1, k ≥ s + 3, that is, there are at least two holes between sg
and kg. Thus {kg + h, . . . , (k + t)g + h} ⊂ {(k − 1)g, . . . , (k + t + 1)g}
or {kg + h, . . . , (k + t)g + h} ⊂ {g, . . . , (s + 1)g}. The former inclusion
implies h = −g, 0, g, which is impossible. So we only consider the latter,
which implies t + 1 ≤ s + 1. Since |{h, g + h, . . . , sg + h} \

∑
(U)| ≤ 2, we

have {h, g + h, . . . , sg + h} ⊂ {(k − 1)g, . . . , (k + t + 1)g}, which implies
s+1 ≤ t+2. Thus s ≤ t+1 ≤ s+1. Recall that {kg+h, . . . , (k+ t)g+h} ⊂
{g, . . . , (s + 1)g}. Hence (k + t)g + h = sg or (k + t)g + h = (s + 1)g.
Together with sg + h = (k + t+ 1)g, we have 2h = g or 2h = 2g, a contra-
diction.

Subcase 2.2.2: σ(U) = (k + t)g. We show that s = t ≥ 1. Indeed,
σ(U)−{kg, . . . , (k+ t− 1)g} ⊂

∑
(U) \ {(k+ t)g} and σ(U)−{g, . . . , sg} ⊂∑

(U) \ {(k + t)g}, hence σ(U) − {kg, . . . , (k + t − 1)g} ⊂ {g, . . . , sg} and
σ(U) − {g, . . . , sg} ⊂ {kg, . . . , (k + t − 1)g}, which implies s = t. Since
s+ t ≥ 1, we get s = t ≥ 1.

We first consider the case when |supp(V )| = 1, that is, V = g|V |. Clearly,∑
(UV ) = {g, . . . , (t+ |V |)g} ∪ {kg, . . . , (k + t+ |V |)g} ∪H.

If t+ |V | ≥ k − 1, then the proof is the same as the corresponding case
in Subcase 2.2.1.

If t+ |V | < k−1 and k+ t+ |V | < ord(g)−1, then since (k+ t+ |V |)g+a
6∈
∑

(UV ) and
∑

(UV a) = G \ {0}, we have (k+ t+ |V |)g+ a = (k− 1)g or
(ord(g)−1)g, for otherwise (k+t+|V |)g+a+g 6∈

∑
(UV a). In the same way

we get (k+t+|V |)g+b = (k−1)g or (ord(g)−1)g. Thus a or b, say a, satisfies
(k+ t+ |V |)g+ a = (ord(g)− 1)g. Hence b = −(σ(UV ) + a) = g ∈ supp(V ),
a contradiction.

If t+ |V | < k−1 and k+ t+ |V | = ord(g)−1, then note that in this case
vg(S) ≥ |V | ≥ 2, thus b occurs in U . Now σ(UV a) = −g + a 6∈

∑
(UV ) and

a ∈
∑

(UV ), thus a = kg. Similarly, b = kg. Hence a = b, a contradiction.

Next we suppose that there is h ∈ supp(V ) \ {g}. Write h = lg with l ∈
[2, ord(g)− 2]. Note that l ≥ 3 as S is unsplittable. Since σ(U) +h 6∈

∑
(U),

we have (k+ t)g+ h = (k+ t+ l)g ∈ {(t+ 1)g, . . . , (k− 1)g}∪ {(k+ t+ 1)g,
. . . , (ord(g) − 1)g}, that is, k + t + l ∈ [ord(g) + t + 1, ord(g) + k − 1] ∪
[k + t+ 1, ord(g)− 1].

If k + t + l ∈ [k + t + 1, ord(g) − 1] ∪ [ord(g) + t + 3, ord(g) + k − 1],
then {(k + t + l)g, (k + t + l − 1)g} ⊂

∑
(Uh) \

∑
(U) when t = 1, and

{(k+ t+ l)g, (k+ t+ l− 1)g, (k+ t+ l− 2)g} ⊂
∑

(Uh) \
∑

(U) when t ≥ 2.
By the choice of U , only the former case can occur, that is, t = 1. Hence
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{h, g+h} ⊂
∑

(U), which implies h = kg. Now a ∈
∑

(U) \ {(k+ 1)g}, thus
a = g or a = kg = h, a contradiction.

If k + t + l = ord(g) + t + 2, then {(k + t + l)g, (k + t + l − 1)g} ⊂∑
(Uh) \

∑
(U), and thus {h, h + g, . . . , h + tg} ⊂

∑
(U). Then {h, h + g,

. . . , h + tg} ⊂ {kg, (k + 1)g, . . . , (k + t)g}, that is, h = kg. Together with
(k + t)g + h = (t+ 2)g, we obtain 2h = 2g, that is, h = g, a contradiction.

If k + t+ l = ord(g) + t+ 1, then k + l = ord(g) + 1. Since (k + t)g + h
∈
∑

(Uh) \
∑

(U), we have |{h, h + g, . . . , h + tg} \
∑

(U)| ≤ 1. By the
paragraph before Subcase 2.2.1, k ≥ s + 3. Thus {h, h + g, . . . , tg + h} ⊂
{(k−1)g, . . . , (k+t+1)g}, which implies h = (k−1)g, h = kg or h = (k+1)g.
Together with (k + t)g + h = (t + 1)g, we get 2h = 0, 2h = g or 2h = 2g,
a contradiction.

This completes the main part of the proof.

Next we calculate the index of S. Since the only unsplittable minimal
zero-sum sequence with index 1 has the form gn (for some generator g), we
have Ind(S) ≥ 2 in the latter form. Note that ‖S‖h = 2 with 2h = g. Hence,
Ind(S) ≤ 2 and thus Ind(S) = 2.

5. Discussion. In this section, we make some remarks on our main
result, and explain why the lower bound for the length of the sequence S in
Theorem 1.3 is best possible.

1. Let D(G) be the maximal length that a minimal zero-sum sequence
over G can attain. Clearly, a minimal zero-sum sequence of length D(G)
must be unsplittable by definition. By our main theorem, among all abelian
groups of odd orders, only cyclic groups can have unsplittable minimal zero-
sum sequences of length ≥ b|G|/3c+ 3. Hence, D(G) ≤ b|G|/3c+ 2 for any
non-cyclic abelian group G of odd order.

2. In the main theorem, the restriction that r is odd and 3 ≤ r ≤
(n− r)/2 − 1 − tr does not ensure that |S| ≥ bn/3c + 3. For example,
we may take n = (2m + 1)2 + 2, r = 2m + 1 and t = m − 1 for some
m ≥ 1. It is clear that r ≥ 3 is odd and (n− r)/2 − 1 − tr = r. But
|S| = (n− r)/2 − 1 − tr + 2(t + 1) + 1 = 2m + 2 =

√
n− 2 + 1, which is

much smaller than bn/3c+ 3 when n is large.

However, this restriction guarantees that S is unsplittable. Let m =
(n− r)/2−1−tr. If t ≥ 1, we can replace am−1b3 by am−1+rb. This operation
does not affect unsplittability: the original sequence is unsplittable if and
only if so is the sequence after replacement. Hence, we need only consider
the case t = 0, and a brute force calculation gives the conclusion.

3. The following example shows that the lower bound bn/3c+ 3 for |S|
is best possible to ensure that S has the structure described in the main
theorem.
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Example 5.1. Let G be a cyclic group of odd order n ≥ 31, and set
S = gm−3 ·((n−m+1)g)3 ·(mg)2 where g is a generator of G and m = bn/3c.
Then S is an unsplittable minimal zero-sum sequence of length bn/3c + 2
and Ind(S) = 3.

6. Appendix: The proof of Theorem 3.5. In this appendix, it is
always assumed that G is an abelian group of order n with gcd(n, 6) = 1.

Lemma 6.1. Let S be an unsplittable minimal zero-sum sequence over G,
and T = albc a proper subsequence of S with 1 ≤ l < va(S) and a, b, c
pairwise distinct. Suppose that |

∑
(T )| < 3|T | − 3. Then b, c ∈ 〈a〉. If we

let b = ta and c = ka with 1 ≤ t ≤ k < ord(a), then k ≤ t + l and
ord(a) < t+ k ≤ 2k ≤ ord(a) + l + 1.

Proof. For convenience, we consider
∑

0(T ) instead of
∑

(T ), so the con-
dition is |

∑
0(T )| < 3|T | − 2 = 3l + 4. It is clear that∑

0(T ) = {0, b, c, b+ c}+ {0, a, 2a, . . . , la} = A0 ∪Ab ∪Ac ∪Ab+c,

where Ax = x+{0, a, . . . , la} for x ∈ {0, b, c, b+c}. Since S is an unsplittable
minimal zero-sum sequence, we know that A0 ∩ Ab = ∅, A0 ∩ Ac = ∅,
Ab+c ∩Ab = ∅ and Ab+c ∩Ac = ∅.

First suppose that Ab∩Ac = ∅. By Lemma 2.6, b+ c+ la 6∈ A0∪Ab∪Ac.
Now

∑
0(T ) ⊃ A0∪Ab∪Ac∪{b+c+la}. Thus |

∑
0(T )| ≥ 3(l+1)+1 = 3l+4,

a contradiction.

Next suppose that A0∩Ab+c = ∅. Thus
∑

0(T ) consists of three pairwise
disjoint parts: A0, Ab+c, Ab∪Ac. Hence, |Ab∪Ac| = |

∑
0(T )|−|A0|−|Ab+c| ≤

3l + 3− (l + 1)− (l + 1) = l + 1, which implies Ab = Ac. Since b 6= c, Ab is
a coset of 〈a〉. Hence, ord(a) ≤ l + 1 ≤ va(S), a contradiction.

Finally, suppose that Ab ∩ Ac 6= ∅ and A0 ∩ Ab+c 6= ∅, which implies
b − c ∈ {−la, (−l + 1)a, . . . , la} and b + c ∈ {a, . . . , la}. It follows that
b, c ∈ 〈a〉. Moreover, if we let b = ta and c = ka with 1 ≤ t ≤ k < ord(a),
then k ≤ t+ l and ord(a) < t+ k < ord(a) + l. We now have∑

0(T ) = {0, a, . . . (l + t+ k − ord(a))a} ∪ {ta, . . . , (k + l)a},

and thus |
∑

0(T )| = l+ t+k−ord(a)+1+k+ l− t+1 = 2l+2k+2−ord(a).
Since |

∑
0(T )| < 3l + 4, it follows that 2k ≤ ord(a) + l + 1.

Lemma 6.2. Let S be an unsplittable minimal zero-sum sequence over G,
and T = alb2c a proper subsequence of S with 2 ≤ l < va(S), vb(S) ≥ 3
and a, b, c pairwise distinct. Suppose that 3b 6= 2a and |

∑
(T )| < 3|T | − 3.

Then b, c ∈ 〈a〉. If we let b = ta and c = ka with 1 ≤ t, k < ord(a), then
t− l ≤ k ≤ t+ l and ord(a) < t+ k, 2t, 2 max{t, k} ≤ ord(a) + l + 1.
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Proof. As before, we consider
∑

0(T ) instead of
∑

(T ), so the condition
is |
∑

0(T )| < 3|T | − 2 = 3l + 7. With the same notation we have∑
0(T ) = A0 ∪Ab ∪A2b ∪Ac ∪Ab+c ∪A2b+c.

Since S is an unsplittable minimal zero-sum sequence, we know Ax∩Ay = ∅
if x− y ∈ {±b,±c}.

We now prove that b, c ∈ 〈a〉.
If b 6∈ 〈a〉 and c ∈ 〈a〉, then the six sets are pairwise disjoint, and thus

|
∑

0(T )| = 6(l + 1) > 3l + 7, a contradiction.

If b ∈ 〈a〉 and c 6∈ 〈a〉, then
∑

0(T ) contains five pairwise disjoint parts:
A0, Ab, Ac, Ac+b and {2b+ c+ la}, and thus |

∑
0(T )| ≥ 4(l+1)+1 ≥ 3l+7,

a contradiction.

If b 6∈ 〈a〉, c 6∈ 〈a〉 and b − c 6∈ 〈a〉, then {0, b, 2b, c, b + c} intersects at
least four cosets of 〈a〉. Note that 2b+ c+ la is another element in

∑
0(T ).

Hence |
∑

0(T )| ≥ 3l + 7, a contradiction.

If b 6∈ 〈a〉, c 6∈ 〈a〉 and b − c ∈ 〈a〉, then |
∑

0(T )| ≥ |A0| + |Ab ∪ Ac| +
|A2b| + |A2b+c|. Since ord(a) ≥ va(S) + 1 ≥ l + 2 and b 6= c, we have
|Ab ∪Ac| ≥ l+ 2. Hence |

∑
0(T )| ≥ 4l+ 5 ≥ 3l+ 7, a contradiction. Having

considered all possible cases, we conclude that b, c ∈ 〈a〉.
From now on, let b = ta and c = ka with 1 ≤ t, k < ord(a). Since S is

unsplittable, we have t, k ∈ [va(S) + 2, ord(a)− l−1] ⊂ [l+ 3, ord(a)− l−1].

We divide the remainder of the proof into several cases according to
whether b+ c, 2b ∈ {a, 2a, . . . , la} or not.

Case 1: b + c 6∈ {a, 2a, . . . , (l + 1)a} and 2b 6∈ {a, 2a, . . . , (l + 1)a}. In
this case, Ax ∩Ay = ∅ if x− y ∈ {±(b+ c),±2b}.

Note that
∑

0(T ) contains three pairwise disjoint parts: A0∪A2b+c, Ab∪
Ac and Ab+c. It is clear that |A0∪A2b+c| ≥ l+ 2 and |Ab∪Ac| ≥ l+ 2. Since
|
∑

0(T )| ≤ 3l + 6 and |Ab+c| = l + 1, it follows that |A0 ∪ A2b+c| ≤ l + 3,
|Ab ∪ Ac| ≤ l + 3 and |A0 ∪ A2b+c| + |Ab ∪ Ac| ≤ 2l + 5. Thus 2b + c = βa
and b− c = θa with (β, θ) = (1,±1), (1,±2), (2,±1). Hence 3b = (β + θ)a =
−a, 0, a, 2a, 3a, which are all impossible. Therefore, this case cannot occur.

Case 2: b+ c 6∈ {a, 2a, . . . , (l+1)a} and 2b = γa ∈ {3a, . . . , (l+1)a}. In
this case, Ax ∩Ay = ∅ if x− y = ±(b+ c).

We show that Ab ∩ Ac 6= ∅ (or equivalently A2b ∩ Ab+c 6= ∅): other-
wise,

∑
0(T ) contains four pairwise disjoint parts: A0 ∪ A2b, Ab, Ab+c and

{2b+ c+ la}, hence, |
∑

0(T )| ≥ (l + γ + 1) + (l + 1) + (l + 1) + 1 ≥ 3l + 7,
a contradiction.

Thus, we can assume that k − t ∈ [−l, l]. Then b + c = 2b + (c − b) =
(γ+k− t)a. Recall that b+ c 6∈ {−la, (−l+a)a, . . . , (l+1)a}. It follows that
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k− t > 0 and γ+k− t > l+ 1, that is, k > t and t+k−ord(a) ≥ l+ 2. Now

A0 ∪A2b ∪Ab+c = {0, a, . . . , (k + t− ord(a) + l)a},
Ab ∪Ac ∪A2b+c = {ta, (t+ 1)a, . . . , (t+ k + t− ord(a) + l)a}.

Note that k + t − ord(a) + l = t + (k + l − ord(a)) < t, so |
∑

0(T )| =
2(k+ t− ord(a) + l+ 1) ≥ 2(l+ 2 + l+ 1) = 4l+ 6 > 3l+ 7, a contradiction.

Case 3: b + c = αa ∈ {a, 2a, . . . , (l + 1)a} and 2b 6∈ {a, 2a, . . . ,
(l + 1)a}. In this case, Ax ∩Ay = ∅ if x− y = ±2b.

We first show that A2b+c ∩ A0 = ∅. Indeed, otherwise 2b + c = βa
with β ∈ [1, l]; thus b = (2b + c) − (b + c) = (β − α)a ∈ {−la, . . . , la},
a contradiction. Hence, we can infer that A0∪Ab+c is disjoint from Ab∪A2b+c.

Next we prove that Ab∩Ac 6= ∅ (or equivalently A2b∩Ab+c 6= ∅). Indeed,
otherwise

∑
0(T ) consists of three pairwise disjoint parts: A0 ∪ Ab+c, Ab ∪

A2b+c and Ac∪A2b. It follows that l+1 ≤ |Ac∪A2b| = |
∑

0(T )|−|A0∪Ab+c|
− |Ab ∪ A2b+c| ≤ 3l + 6 − 2(l + α + 1) = l + 4 − 2α, and thus α = 1 and
|Ac∪A2b| = l+1, l+2. The equatlity α = 1 gives b+c = a, while |Ac∪A2b| =
l + 1, l + 2 gives 2b − c = −a, 0, a. Hence 3b = (2b − c) + (b + c) = 0, a, 2a,
impossible.

From the above we may assume t−k ∈ [−l, l]. Then 2b = (b+c)+(b−c) =
(α + t− k)a. Recall that 2b 6∈ {−la, . . . , (l + 1)a}. It follows that t− k > 0
and α+ t− k > l + 1, that is, t > k and 2t− ord(a) ≥ l + 2. Now

A0 ∪Ab+c ∪A2b = {0, a, . . . , (2t− ord(a) + l)a},
Ac ∪Ab ∪Ac+2b = {ka, . . . , (k + 2t− ord(a) + l)a}.

If 2t−ord(a)+l < k, then |
∑

0(T )| = 2(2t−ord(a)+l+1) ≥ 2(l+2+l+1) >
3l + 7, a contradiction. If 2t− ord(a) + l ≥ k, then∑

0(T ) = {0, a, . . . , (k + 2t− ord(a) + l)a}.
Now 3l + 6 ≥ |

∑
0(T )| = k + 2t − ord(a) + l + 1 ≥ l + 3 + l + 2 + l + 1 =

3l + 6. Hence k = l + 3 and 2t − ord(a) = l + 2. From va(S) > l and
vb(S) ≥ 3, we know that there are at least one a and one b outside T , so
k + 2t− ord(a) + l ≤ ord(a)− 2. Hence 3l ≤ ord(a)− 7. Now ord(a) + 1 ≤
t + k = (ord(a) + l + 2)/2 + l + 3 = (ord(a) + 3l + 8)/2 ≤ (2ord(a) + 1)/2,
a contradiction.

Case 4: b+c=αa ∈ {a, 2a, . . . , (l+1)a} and 2b = γa ∈ {3a, . . . , (l+1)a}.
In this case, t − k = (2t − ord(a)) − (t + k − ord(a)) = γ − α ∈ [−l, l]. We
only need to consider the case t < k and to prove that 2k ≤ ord(a) + l + 1.
Now we have

A0 ∪A2b ∪Ab+c = {0, a, . . . , (t+ k − ord(a) + l)a},
Ab ∪Ac ∪A2b+c = {ta, . . . , (2t+ k − ord(a) + l)a}.
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Note that t + k − ord(a) + l = t + (k + l − ord(a)) < t. Hence |
∑

0(T )| =
2(t + k − ord(a) + l + 1). Together with |

∑
0(T )| ≤ 3l + 6, we get 2k ≤

ord(a) + l + 1− (2t− ord(a)− 3) ≤ ord(a) + l + 1.

We are now in a position to prove Theorem 3.5.

Theorem 6.3. Let S be an unsplittable minimal zero-sum sequence over
G with h(S) ≥ 2 and |supp(S)| ≥ 2. Then one of the following holds:

(i) G is a cyclic group and

S = g(n−r)/2−1−tr ·
(
n+ r

2
g

)2(t+1)

·
((

n− r
2

+ 1

)
g

)
,

where g is a generator of G and r, t ∈ N0 with r odd and 3 ≤ r ≤
(n− r)/2− 1− tr.

(ii) There are distinct a, b ∈ supp(S) with va(S) ≥ 2 and a subse-
quence T |S such that va(T ) = va(S) − 1, vb(T ) = vb(S) − 1 and
|
∑

(T )| ≥ 3|T |−3. Moreover, if there are distinct elements in S with
multiplicities greater than 1, we may choose b such that vb(S) ≥ 2.

Proof. We choose a ∈ supp(S) such that va(S) ≥ 2 and let la = va(S)−1.
Once we have determined the desired b ∈ supp(S), we always set lb =
vb(S) − 1 and U = Sa−va(S)b−vb(S). By Lemma 2.5, supp(S) contains at
least three distinct elements, and thus U is always non-empty.

When Sa−va(S) is square free, the proof is exactly the same as that of
Theorem 3.4, except that here we use Lemma 6.1 instead of Lemma 3.2.

Now suppose Sa−va(S) is not square free. Choose b ∈ supp(S) \ {a}
with vb(S) ≥ 2. Let tb be the minimal positive integer such that tbb is
in {−laa, . . . , laa}. Since S is unsplittable minimal zero-sum, we have
b 6∈ {−laa, . . . , laa}, and thus tb ≥ 2. Let tbb = γa for some γ ∈ [−la, la].

The proof for lb = 1 is the same as that in Theorem 3.4. Therefore,
we assume lb ≥ 2. Moreover, we may assume la ≥ 2, for otherwise we can
exchange the roles of a and b. We divide the remainder of the proof into
several cases.

Case 1: tb = 2. Since lb ≥ tb = 2, by Lemma 2.9 we get γ > 0. Since
S is unsplittable and a 6= b, we have γ ≥ 3. Also, 3b 6= 2a: otherwise,
b+ (γ − 2)a = b+ 2b− 3b = 0. Now we can replace alab3 by ala+γb if lb ≥ 3
and obtain a longer unsplittable minimal zero-sum sequence. Repeat this
process until the resulting sequence contains only three or two copies of b,
depending on whether lb is even or odd (do nothing if lb ≤ 2).

Subcase 1.1: lb is odd . The resulting sequence is S′ = ar
′+1b2U where

r′ = la+γ(lb−1)/2 and U is defined at the beginning of the proof. Now we go
back to the case when lb = 1. By Lemma 6.1 either |

∑
(ar

′
bx)| ≥ 3|ar′bx|−3

for some x in U , or any two terms in b2U have sum in {a, . . . , (r′ + 1)a}.
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In the former case,
∑

(alablb) =
∑

(ar
′
b), and thus

|
∑

(alablbx)| = |
∑

(ar
′
bx)| ≥ 3|ar′bx| − 3 ≥ 3|alablbx| − 3.

This is exactly (ii) with T = alablbx.
In the latter case, applying Proposition 3.1 to S′, we conclude that U

contains only one term a− b. Thus S has the desired form, and (i) follows.

Subcase 1.2: lb is even. The resulting sequence is S′ = ar
′+1b3U where

r′ = la + γ(lb − 2)/2 and U is defined at the beginning of the proof.
Suppose there is x ∈ U such that |

∑
(ar

′
b2x)| ≥ 3|ar′b2x| − 3. Then

|
∑

(alablbx)| = |
∑

(ar
′
b2x)| ≥ 3|ar′b2x| − 3 ≥ 3|alablbx| − 3,

and thus (ii) holds with T = alablbx.
Suppose that |

∑
(ar

′
b2x)| < 3|ar′b2x| − 3 for any x |U . Then G = 〈a〉 by

Lemma 6.2. Write b = ta and S′ = ar
′+1(ta)3 ·(k1a) · · · (ksa) with 2t = n+γ

and 1 ≤ k1 ≤ · · · ≤ ks < n. By choosing x = ksa, any two terms in
t, t, t, k1, . . . , ks have sum ≤ 2 max{t, ks} ≤ n+ r′ + 1.

If t < k2, by considering x = k1a, any two terms in t, t, t, k1, . . . , ks have
sum ≥ min{2t, t+ k1} > n.

If t > k2, we can choose x = k1a and then x = k2a. We assert that
k1 + k2 > n: otherwise, k1 + k2 ≤ n < k1 + t ≤ k1 + k2 + r′, which is
impossible. Hence any two terms in t, t, t, k1, . . . , ks have sum ≥ k1 +k2 > n.

Thus any two terms in b3U must have sum in {a, . . . , (r′ + 1)a}. Propo-
sition 3.1 implies that S′ contains an even number of copies of b = ta,
a contradiction. This completes the proof of Subcase 1.2 and thus that of
Case 1.

From now on, we may always assume that tb ≥ 3. Moreover, we may also
assume that 2a 6∈ {b, 2b, . . . , lbb}.

Case 2: lb = 2. First, if 3b 6= 2a, then the situation is exactly as in
Subcase 1.2, because there is no condition on 2b in Lemma 6.2.

Next suppose that 3b = 2a and la = 2. It is clear that 3a 6= 2b. So we
can exchange the roles of a and b, and use the case discussed in the last
paragraph.

Finally, let 3b = 2a and la ≥ 3. It is clear that∑
(a3b2) = {b, 2b, 3b, 4b, 5b, a, a+ b, a+ 2b, a+ 3b, a+ 4b, a+ 5b},

which implies
∑

(a3b2) =
∑

(ab5). So we can replace a3b2 by ab5 and ob-
tain a longer unsplittable minimal zero-sum sequence S′ = b6ala−1U . Recall
that 2a = 3b. Hence, applying the previous cases to S′, we see that either
|
∑

(b5ala−2x)| ≥ 3|b5ala−2x| − 3 for some x |U , or U consists of only one
term b− a. In the former case,

|
∑

(alab2x)| = |
∑

(b5ala−2x)| ≥ 3|b5ala−2x| − 3 ≥ 3|alab2x| − 3,
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so (ii) holds for T = alab2x. In the latter case, S = b3ala+1(b−a). Note that
2a = 3b and a+ (b− a) = b. Proposition 3.1 implies that (i) holds.

From now on, we assume that lb ≥ 3 and la ≥ 3 as well.

Case 3: 3 ≤ lb < tb. By Lemma 2.9, |
∑

(alablb)| = (la + 1)(lb + 1)− 1 ≥
3(la + lb)− 3, and thus (ii) holds with T = alablb .

Case 4: 3 = tb ≤ lb. Since S is minimal zero-sum, γ > 0. By Lemma 2.3,
γ 6= 1. Since 2a 6∈ {b, . . . , lbb}, we have γ 6= 2. Also, γ 6= 3 as a 6= b. Apply
Lemma 2.9 to obtain

|
∑

(alablb)| = tb(la + 1) + γ(lb − tb + 1)− 1

= (la + 1)(lb + 1)− (la + 1− γ)(lb + 1− tb)− 1

≥ (la + 1)(lb + 1)− (la + 1− 4)(lb + 1− 3)− 1

= 3(la + lb) + lb − 6 ≥ 3(la + lb)− 3.

Hence, we can take T = alablb .

Case 5: 4 ≤ tb ≤ lb. The same argument as in Case 4 shows that γ ≥ 3
and

|
∑

(alablb)| = (la + 1)(lb + 1)− (la + 1− γ)(lb + 1− tb)− 1

≥ (la + 1)(lb + 1)− (la + 1− 3)(lb + 1− 4)− 1

= 3(la + lb) + la − 6 ≥ 3(la + lb)− 3.
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