
ACTA ARITHMETICA

175.3 (2016)

Elliptic curves with maximally disjoint division fields

by

Harris B. Daniels (Amherst, MA),
Jeffrey Hatley (Schenectady, NY) and

James Ricci (Amherst, NY)

1. Introduction. Let E be an elliptic curve defined over Q, let Q̄ be a
fixed algebraic closure of Q, and for each positive integer n let

E[n] = {P ∈ E(Q̄) : [n]P = O}
denote the n-torsion of E. It is a classical result that E[n] is non-canonically
isomorphic to Z/nZ × Z/nZ and the group GQ = Gal(Q̄/Q) acts on E[n]
component-wise. Therefore, we can construct a Galois representation asso-
ciated to the n-torsion of E,

ρ̄E,n : GQ → Aut(E[n]) ' GL2(Z/nZ).

By choosing compatible bases and taking an inverse limit ordered by divis-
ibility, we can construct the full-torsion representation associated to E,

ρE : GQ → GL2(Ẑ) '
∏
p

GL2(Zp),

where the product is taken over all prime numbers.
A natural question is: how large can the image of ρE be inside of GL2(Ẑ)?

More specifically, can ρE be surjective? With these questions in mind, we
give the following definition:

Definition 1.1. An integer n ≥ 2 is said to be exceptional for E if ρ̄E,n
is not surjective.

We can translate questions about the size of Im ρE into a question about
which numbers are exceptional for E and, for an exceptional n, how dras-
tically ρE,n fails to be surjective. It is a standard result that when E is an
elliptic curve with complex multiplication (CM), every integer except for
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possibly 2 is exceptional for E. See [9, Theorem 2.3] for more details. On
the other hand, if E/Q is an elliptic curve that does not have CM, Serre
showed in [7] that the index [GL2(Ẑ) : Im ρE ] is finite. One implication of
this is that for each elliptic curve there are only finitely many exceptional
primes. Additionally, Serre proved the following theorem.

Proposition 1.2 ([7, Proposition 22]). For any elliptic curve E defined
over Q, the image of ρE : GQ → GL2(Ẑ) is contained in a group of index 2

inside GL2(Ẑ).

This theorem implies that ρE can never be surjective, and thus there
exists at least one exceptional number n (not necessarily prime). In the
same paper, Serre gave two examples of elliptic curves whose image has
index exactly 2 inside GL2(Ẑ), showing that this lower bound on the index
of Im ρE is sharp.

Following Lang and Trotter we give the following definition:

Definition 1.3. An elliptic curve E/Q is called a Serre curve if

[GL2(Ẑ) : Im ρE ] = 2.

Furthermore, there is no reason to restrict our attention to Galois rep-
resentations associated to only one elliptic curve. Given a pair of elliptic
curves (E1, E2) defined over Q and a positive integer n, we can consider the
action of GQ on E1[n]× E2[n] to get a new Galois representation

ρ̄(E1,E2),n : GQ → (GL2(Z/nZ))2,

given by ρ̄(E1,E2),n(σ) = (ρ̄E1,n(σ), ρ̄E2,n(σ)). Just as before, we can con-
struct the full-torsion representation associated to the pair (E1, E2),

ρ(E1,E2) : GQ → (GL2(Ẑ))2,

and it is again natural to ask: how big can the image of ρ(E1,E2) be?

Ther is a natural limitation on the size of the image of ρ(E1,E2) in GL2(Ẑ)
coming from the Weil pairing. Given an elliptic curve E/Q, let Q(E[n]) be
the field of definition of the n-torsion points of E. One consequence of the
Weil pairing is that if ζn is a primitive nth root of unity, then Q(ζn) ⊂
Q(E[n]). Therefore, it must be that Q(ζn) ⊂ Q(E1[n]) ∩Q(E2[n]).

The action of an element in the Galois group on an nth root of unity can
be related to its image under ρ̄E,n through the determinant. That is, given
an elliptic curve E/Q, σ ∈ GQ, and an nth root of unity ζn, it must always
be that

(1.1) σ(ζn) = ζ
det(ρ̄E,n(σ))
n .
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Therefore, for each positive integer n, we define

Dn := {(A,B) ∈ (GL2(Z/nZ))2 : detA = detB},
D := {(A,B) ∈ (GL2(Ẑ))2 : detA = detB}.

With these definitions and the observations above we can see that for any
pair of elliptic curves (E1, E2) defined over Q and any positive integer n,
the image of ρ̄(E1,E2),n and ρ(E1,E2) must be contained inside of Dn and D
respectively. Therefore, any result associated with the size of Im ρ(E1,E2)

should be formulated in terms of [D : Im ρ(E1,E2)].

For any two elliptic curves E1 and E2 defined over Q, we have

Im ρ(E1,E2) ⊂ (Im ρE1 × Im ρE2) ∩D.
Since the right-hand side has index at least 4 inside of D (by Proposition
1.2), we give the following definition in the spirit of Definition 1.3:

Definition 1.4. A pair (E1, E2) is called a Serre pair if

[D : Im ρ(E1,E2)] = 4.

In [4], Jones shows that, in some appropriate sense, almost all pairs of
elliptic curves are Serre pairs. The proof uses a multi-dimensional large sieve
but provides no concrete examples of Serre pairs. In [7, Section 6.3], Serre
gives an example (without proof) of a pair of elliptic curves (E,E′) for which
the representation ρ̄(E,E′),p is surjective for every prime p. As Lemma 1.9
below indicates, this is almost enough to conclude that (E,E′) is a Serre
pair, but some extra conditions on ρ̄(E,E′),36 need to be checked.

In fact, there are no explicit examples of Serre pairs with full proof in the
current literature. The main goal of this paper is to rectify this deficiency
by providing infinitely many such examples. The first step toward this goal
is to find an infinite family of Serre curves, since clearly any Serre pair must
be a pair of Serre curves.

Lemma 1.5 ([2, Example 8.2]). Let ` be an odd prime with ` 6= 7. Then
the elliptic curve

E` : y2 + xy = x3 + `

is a Serre curve.

Using this lemma we will be able to construct the first examples of Serre
pairs coming from the main theorem of this paper:

Theorem 1.6. Let `1 and `2 be odd primes not equal to 7 such that
gcd(432`21 + `1, 432`22 + `2) = 1, and for i = 1, 2 let

E`i : y2 + xy = x3 + `i.

Then (E`1 , E`2) is a Serre pair.
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In fact, we obtain the following interesting corollary, showing that there
are indeed many pairs (`1, `2) of primes satisfying the hypotheses of Theo-
rem 1.6.

Corollary 1.7. Let `1 be an odd prime different from 7. Then there
exist infinitely many primes `2 such that (E`1 , E`2) is a Serre pair.

Proof. Let ∆ = 432`21 + `1 and suppose it factors as ∆ = pe11 · · · penn .
By Theorem 1.6, it suffices to show that there exist infinitely many primes
`2 - ∆ such that

432`2 + 1 6≡ 0 mod pi for every i = 1, . . . , n.

First notice that if `1 = 3, then by Dirichlet’s theorem on primes in
arithmetic progressions, there are infinitely many primes `2 different from 3
and 1297 such that `2 6≡ 3 mod 1297.

Otherwise, if `1 6= 3, then 432`1 ≡ −1 is a unit modulo ∆ and since each
pi divides ∆, we have

432`2 + 1 ≡ 0 mod pi ⇒ `2 ≡ `1 mod pi.

Therefore, it suffices to show that there are infinitely many `2 such that
`2 6≡ `1 mod pi for all 1 ≤ i ≤ n. By the Chinese remainder theorem, we can
choose x such that x 6≡ 0, `1 mod pi for each i. An application of Dirichlet’s
theorem on the sequence {x+(p1 · · · pn)k}k∈N then guarantees the existence
of infinitely many primes `2 with the desired property.

Remark 1.8. The quantity 432`2i + `i is the discriminant of the ellip-
tic curve Ei. As we discuss below in Proposition 2.2 and Lemma 2.3, the
hypothesis that gcd(432`21 + `1, 432`22 + `2) = 1 imposes constraints on the
ramification in the division fields associated to our elliptic curves.

In order to prove Theorem 1.6 we will need the following lemma:

Lemma 1.9. Let (E1, E2) be a pair of elliptic curves defined over Q. If

(1) for each prime p ≥ 5, Im ρ̄(E1,E2),p = Dp, and
(2) Im ρ̄(E1,E2),36 = D36,

then (E1, E2) is a Serre pair.

Proof. This follows immediately from [4, Lemma 3.1].

Lemma 1.9 gives us two concrete conditions that we use to verify that
our pairs of elliptic curves are in fact Serre pairs.

1.1. Notation and outline. Throughout the rest of this paper, fix two
odd primes `1 and `2, both different from 7, with gcd(432`21+`1, 432`22+`2)=1.
For i = 1, 2 we will write

Ei : y2 + xy = x3 + `i.
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Then by Lemma 1.5, E1 and E2 are both Serre curves. In particular, as
explained in [2], the map

ρ̄Ei,pn : GQ → GL2(Z/pnZ)

is surjective for every prime p and every integer n ≥ 1.
Our strategy is to use Lemma 1.9 to prove that (E1, E2) is a Serre pair.

Thus, our paper divides naturally into two main sections: a study of ρ̄(E1,E2),p

for all primes p ≥ 5, and a separate study of ρ̄(E1,E2),36. In both cases, we
interpret the conditions of Lemma 1.9 in terms of the Galois theory of the
division fields associated to the Serre curves Ei. Let Ki = Q(Ei[p

n]) denote
the Galois number field obtained by adjoining to Q the coordinates of the
pn-torsion points of Ei. The Weil pairing forces the intersection K1 ∩ K2

to be a non-trivial extension of Q; in particular, the intersection contains
the pn-cyclotomic field Q(ζpn). The main results of this paper state that,
apart from the cyclotomic subextension, the division fields K1 and K2 are
maximally disjoint for all primes p and all integers n ≥ 1. Theorem 1.6 then
follows directly from the conditions found in Lemma 1.9.

2. p-Division fields for p ≥ 5. For the entirety of this section fix a
prime p ≥ 5 and, since `1 6= `2, assume without loss of generality that p 6= `1.
Let Ki = Q(Ei[p]) denote the number field obtained by adjoining to Q the
x- and y-coordinates of all p-torsion points of Ei. Since Ei is a Serre curve,
we have

Gal(Ki/Q) ' GL2(Z/pZ).

As explained in the introduction, the Weil pairing forces the inclusion Q(ζp)
⊂ Ki, where ζp denotes a primitive pth root of unity and Q(ζp) denotes the
p-cyclotomic extension of Q. Let F = K1∩K2 denote the intersection of the
two division fields; then F ⊃ Q(ζp) is strictly larger than Q.

Recall that condition (1) of Lemma 1.9 states the following:

(2.1) Im ρ̄(E1,E2),p = {(A,B) ∈ (GL2(Z/pZ))2 : detA = detB}.
This condition can be interpreted using the Galois-theoretic properties of
the Ki, as we now describe.

First, recall that the determinant of ρ̄Ei,p is the cyclotomic character χp,
which cuts out the cyclotomic extension Q(ζp)/Q via the canonical isomor-

phism χp : Gal(Q(ζp)/Q)
∼−→ (Z/pZ)×.

Now let L = K1K2 denote the compositum of the division fields. Then
Gal(L/Q) is a subgroup of the direct product GL2(Z/pZ) × GL2(Z/pZ).
Since the intersection F is a non-trivial extension of Q, Gal(L/Q) must be
a proper subgroup. The following result is well-known.

Lemma 2.1 (Goursat’s lemma). Let G1 and G2 be groups, and let H be
a subgroup of the direct product G1 × G2 such that the natural projections
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π1 : H → G1 and π2 : H → G2 are surjective. Let N1 denote the kernel
of π2 and N2 denote the kernel of π1. Then regarding Ni as a subgroup
of Gi, the image of H in G1/N1 × G2/N2 is the graph of an isomorphism
G1/N1 ' G2/N2.

Proof. See [6, Lemma 5.2.1].

Write Gi = Gal(Ki/Q), and for the moment let H = Gal(L/Q). Gour-
sat’s lemma shows that H is a certain fibered product of G1 and G2. Further-
more, since G1 ' G2 ' GL2(Z/pZ), we see that H is determined by a normal
subgroup N of GL2(Z/pZ). For example, if H were equal to the entire direct
product GL2(Z/pZ) × GL2(Z/pZ), then we would have N = GL2(Z/pZ),
and the common fixed field F = K1 ∩K2 would be equal to Q.

Goursat’s lemma thus gives the following Galois-theoretic interpretation
of (2.1): since det ρ̄Ei,p = χp cuts out Q(ζp), we have

Im ρ̄(E1,E2),p = Dp ⇔ F = Q(ζp).

So (2.1) is equivalent to the statement that H is the fibered product of
G1 and G2 over Q(ζp), which is equivalent to K1 and K2 being maximally
disjoint. Our goal is to show that F = Q(ζp).

To that end, set H := Gal(L/Q(ζp)). Figure 1 illustrates the associated
field diagram with edges labeled by Galois groups.

Q

Q(ζp)

F

K1 K2

L

(Z/pZ)×

SL2(Z/pZ) SL2(Z/pZ)

Fig. 1. Division fields for p ≥ 5

Now, H is a subgroup of the direct product SL2(Z/pZ)×SL2(Z/pZ), and
we wish to show that H ' (SL2(Z/pZ))2. Since E1 and E2 are Serre curves,
the natural projectionsH → SL2(Z/pZ) are surjective, and Goursat’s lemma
implies that H is determined by a normal subgroup N / SL2(Z/pZ). As in
our previous discussion, we will have F = Q(ζp) precisely if N = SL2(Z/pZ).

Before proving the main result of this section, we collect some lemmas
on the ramification behavior of primes in the Ki. One computes that the
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curve E`i : y2 + xy = x3 + `i has discriminant

∆(E`i) = −`i(432 + `i).

Recall that the only primes of bad reduction for Ei are those dividing ∆(Ei).
The following result states that these are also the only primes other than p
which may ramify in Ki/Q.

Proposition 2.2 (Néron, Ogg, Shafarevich). Let E be an elliptic curve
over Q, and let p be a rational prime. Then the following assertions are
equivalent:

• E has good reduction modulo p.
• p is unramified in Q(E[n])/Q for all integers n ≥ 1 with gcd(n, p) = 1.

Proof. See [8, VII, Theorem 7.1]

By hypothesis we have gcd(∆(E1), ∆(E2)) = 1, so `2 does not ramify
in K1. The next lemma gives a lower bound on the ramification of `1 in K1.

Lemma 2.3. Let e`i denote the ramification index of `i in Ki/Q. Then
e`i ≥ p.

Proof. This is worked out in detail in [5, Section 3.2] using the theory
of Tate curves. For the proof, we drop the i subscripts and write simply
E = Ei and ` = `i. First, note that the discriminant of E is

∆(E) = −`(432 + `).

In particular, the `-adic valuation of ∆(E) is

ν`(∆(E)) =

{
1 if ` 6= 3,

2 if ` = 3,

and E has bad (split multiplicative) reduction at `. Our elliptic curve has
j-invariant jE = 1/∆(E), so in the notation of [5] we have α` = νp(−ν`(jE))
= 0. By [5, Section 3.2, equations (3.4)–(3.7)], we have

e` =

{
(p− 1)p if p = `,

p if p 6= `.

Thus, in either case, e` ≥ p.
We are now prepared to prove the following.

Proposition 2.4. Let N denote the kernel of (either) projection map
H → SL2(Z/pZ). Then N = SL2(Z/pZ), and so Im ρ̄(E1,E2),p = Dp.

Proof. By definition

PSL2(Z/pZ) = SL2(Z/pZ)/{±I},
where I denotes the identity matrix, and the projective special linear group
PSL2(Z/pZ) is a simple group since p ≥ 5 [1, Proposition 5.1.7]. Thus, H is
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determined by a normal subgroup N / SL2(Z/pZ), and the only possibilities
are

N ∈
{
{I}, {±I}, SL2(Z/pZ)

}
.

Recall that F = K1∩K2 and F ⊃ Q(ζp). By Goursat’s lemma and the Galois
correspondence, the index [SL2(Z/pZ) : N ] is equal to the degree [F : Q(ζp)].
Thus F is strictly larger than Q(ζp) if and only if N 6= SL2(Z/pZ).

If N = {I}, then in fact F = K1K2; this is impossible, as `1 ramifies
in K1 but not in K2 by Proposition 2.2 and the fact that `1 - ∆(E2) =
`2(432 + `2).

If N = {±I}, then [K1 : F ] = 2. But by Lemma 2.3, the ramification
index of `1 in K1/Q(ζp) is greater than 2, and `1 is unramified in K2 (and
hence in F ), so this impossible.

Thus, the only possibility which our hypotheses allow is N = SL2(Z/pZ),
as desired.

3. p2-Division fields for p = 2, 3. In this section, we deal with condi-
tion (2) of Lemma 1.9, so given a pair (E1, E2) as before, we now wish to
show that

(3.1) Im ρ̄(E1,E2),36 = D36.

Similar to the setup in Section 2, for i = 1, 2, let Ki,n = Q(Ei[n]) denote
the n-division field of Ei, which is the number field obtained by adjoining
to Q the x- and y- coordinates of the n-torsion points of Ei. Since Ei is a
Serre curve, we have

Gal(Ki,36/Q) ' GL2(Z/36Z).

Once again, the Weil pairing forces an inclusion Q(ζ36) ⊂ Ki,36, where ζ36

is a primitive 36th root of unity. It follows that K1,36 ∩ K2,36 ⊃ Q(ζ36) is
a non-trivial extension of Q. Just as in the p ≥ 5 case, this implies that
the Galois group Gal(L/Q) of the compositum L = K1,36K2,36 is a proper
subgroup of (GL2(Z/36Z))2, determined (via Goursat’s lemma) by a normal
subgroup of GL2(Z/36Z). Condition (3.1) is equivalent to the statement that
K1,36 and K2,36 are maximally disjoint in the sense that

Im ρ̄(E1,E2),36 = D36 ⇔ K1 ∩K2 = Q(ζ36).

For i = 1, 2 Figure 2 illustrates the decomposition of Ki,36 in terms of
smaller division fields. The edges are marked by Galois groups, which are
determined by the fact that Ei is a Serre curve.

Noting that GL2(Z/36Z) ' GL2(Z/4Z) × GL2(Z/9Z), we see that Fig-
ure 2 and Goursat’s lemma imply Ki,4 ∩ Ki,9 = Q. Furthermore, since
Gal(L/Q) is a subgroup of Gal(K1,36/Q) × Gal(K2,36/Q), the same dia-
gram shows that verifying (3.1) is equivalent to verifying the following three
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Q

Ki,4 Ki,9

Ki,36

GL2(Z/4Z) GL2(Z/9Z)

GL2(Z/36Z)

Fig. 2. Decomposition of the 36-division fields for Ei

assertions:

• K1,4 ∩K2,4 = Q(ζ4);
• K1,9 ∩K2,9 = Q(ζ9);
• Ki,4 ∩Kj,9 = Q for i 6= j.

We now handle each case in turn. For the rest of the section, let ∆i =
−`i(432`i + 1) denote the discriminant of Ei. Just as in Section 2, our argu-
ments will depend crucially on our hypothesis that gcd(∆1, ∆2) = 1.

Lemma 3.1. For our pair (E1, E2), we have K1,4 ∩K2,4 = Q(ζ4).

Proof. The subfield structure of 4-division fields of elliptic curves is ex-
plained in detail in [1, Section 5.5]. In particular, every subfield of Ki,4

which properly contains Q(ζ4) also contains Q(ζ4,
√
∆i), as well as all sub-

fields which are quadratic over Q (see Figure 3). Let F = K1,4 ∩ K2,4, so

Q

Q(ζ4) Q(
√
−∆i) Q(

√
∆i)

Q(ζ4,
√
∆i) Ki,2

Ki,4

Fig. 3. A portion of the subfield diagram of Ki,4 from [1, Figure 5.7]
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Q(ζ4) ⊂ F . By the subfield diagram, if [F : Q(ζ4)] > 1 then we must
also have Q(ζ4,

√
∆1) ⊂ F ⊂ K2,4. But then the quadratic field Q(

√
∆1) is

also contained in F ⊂ K2,4. However, the only quadratic subfields of K2,4

are

Q(ζ4), Q(
√
∆2), Q(

√
−∆2).

Since `1 is an odd prime and gcd(∆1, ∆2) = 1, we cannot have equality
between Q(

√
∆1) and any of the aforementioned fields. So we must have

[F : Q(ζ4)] = 1, which proves the lemma.

The argument for 9-division fields is very similar to that of Lemma 3.1.
First we recall a result about the structure of the 3-division fields of elliptic
curves.

Lemma 3.2. Let M = Q(x(Ei[3])) denote the number field obtained
by adjoining to Q the x-coordinates of the 3-torsion points of Ei. Then
Q( 3
√
∆i, ζ3) is the unique subfield of M which has degree 6 over Q. The only

other subfield of Ki,9 which has degree 6 over Q is Q(ζ9).

Proof. The first statement is [1, Proposition 5.4.3]. The second statement
is visible in [1, Figure 5.4].

Lemma 3.3. For our pair (E1, E2), we have K1,9 ∩K2,9 = Q(ζ9).

Proof. The subfield structure of 9-division fields of elliptic curves is also
explained in detail in [1, Section 5.2]. In particular, by [1, Figure 5.4] every
subfield of Ki,9 which properly contains Q(ζ9) also contains Q(ζ3, x(Ei[3]))

Let F = K1,9 ∩K2,9, so Q(ζ9) ⊂ F . If [F : Q(ζ9)] > 1 then we must also
have Q(ζ3, x(E1[3])) ⊂ F ⊂ K2,9. But then Lemma 3.2 implies that

Q( 3
√
∆1, ζ3) = Q( 3

√
∆2, ζ3),

which is impossible since gcd(∆1, ∆2) = 1. Thus [F : Q(ζ9)] = 1, which
proves the lemma.

It remains to consider the possible entanglement between the 4- and
9-division fields of our elliptic curves. By symmetry it suffices to show the
following.

Lemma 3.4. For our pair (E1, E2), we have K1,4 ∩K2,9 = Q.

Proof. By [1, Figure 5.4], every subextension of K2,9 which is Galois over
Q contains Q(ζ3) as the unique subextension which is quadratic over Q.
Therefore, if F = K1,4 ∩ K2,9 satisfies [F : Q] > 1, then Q(ζ3) ⊂ F . But
also F ⊂ K1,4, and as shown in Figure 3, the only quadratic subextensions
of K1,4 are

Q(ζ4), Q(
√
−∆1), Q(

√
∆1).
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One checks that if `1 = 3 then ∆1 = 3 · 1297; otherwise, `1 > 3 and
ν`1(∆1) = 1, so in any case none of these extensions is equal to Q(ζ3).
It follows that [F : Q] = 1, proving the lemma.

We summarize the results of this section.

Proposition 3.5. For our chosen pair (E1, E2) of elliptic curves, we
have

Im ρ̄(E1,E2),36 = D36.

Proof. This follows immediately from Lemmas 3.1, 3.3, and 3.4.

Proof of Theorem 1.6. The theorem follows immediately from Lemma
1.9 and Propositions 2.4 and 3.5.

4. Serre k-tuples. Given a k-tuple (E1, . . . , Ek) of elliptic curves, one
can generalize the above construction in the obvious way to obtain a repre-
sentation

ρ(E1,...,Ek) : GQ → (GL2(Ẑ))k,

whose image is contained in

D(k) := {(A1, . . . , Ak) ∈ (GL2(Ẑ))k : detA1 = · · · = detAk}.
Unsurprisingly, one has

[D(k) : Im ρ(E1,...,Ek)] ≥ 2k.

Definition 4.1. For any integer k ≥ 1, a k-tuple (E1, . . . , Ek) of elliptic
curves is called a Serre k-tuple if [D(k) : Im ρ(E1,...,Ek)] = 2k.

In [4, Theorem 4.3], it is shown that almost all k-tuples of elliptic curves
are Serre k-tuples. Theorem 1.6 easily generalizes to the case k ≥ 2.

Theorem 4.2. Let `1, . . . , `k be odd primes not equal to 7 such that
gcd(432`2i + `i, 432`2j + `j) = 1 for each pair 1 ≤ i < j ≤ k. For each
1 ≤ i ≤ k let

E`i : y2 + xy = x3 + `i.

Then (E`1 , . . . , E`k) is a Serre k-tuple.

Proof. Just as in the k = 2 case, showing that (E`1 , . . . , E`k) is a Serre
k-tuple is equivalent to showing that the E`i have maximally disjoint divi-
sion fields [3, Corollary 6.7]. Since the discriminants of each elliptic curve
in the k-tuple are pairwise relatively prime, Theorem 1.6 shows that the di-
vision fields for E`1 , . . . , E`k are pairwise maximally disjoint, and the result
follows.

Remark 4.3. The argument in Corollary 1.7, applied inductively, shows
that Theorem 4.2 produces infinitely many examples of Serre k-tuples.
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5. Final remarks. Throughout this paper, we have relied on the elliptic
curves

Ei := y2 + xy = x3 + `i

to prove Theorem 1.6. However, a careful reading of our arguments reveals
that only the following facts about the Ei were used:

• Ei is a Serre curve, and
• ∆i = `i(432`i + 1)

It is clearly necessary for the Ei to be Serre curves, while precise knowledge
of the discriminant of Ei allowed us to compare the ramification of `i in
various division fields. While Theorem 1.6 provides infinitely many explicit
examples of Serre k-tuples, the arguments in this paper actually prove the
following more general statement.

Theorem 5.1. Let E1, . . . , Ek be elliptic curves with respective discrim-
inants ∆1, . . . ,∆k. Suppose that each Ei is a Serre curve, and that for
i = 1, . . . , k there exist odd primes `i > 3 such that

• v`i(∆i) ≡ 1 mod 2;
• Ei has split multiplicative reduction at `i; and
• v`i(∆j) = 0 for i 6= j.

Then (E1, . . . , Ek) is a Serre k-tuple.
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