On uniform approximation to real numbers

by
Yann Bugeaud (Strasbourg) and Johannes Schleischitz (Wien)

1. Introduction. Throughout the present paper, the height $H(P)$ of a complex polynomial $P(X)$ is the maximum of the moduli of its coefficients, and the height $H(\alpha)$ of an algebraic number α is the height of its minimal polynomial over \mathbb{Z}. For an integer $n \geq 1$, the exponents of Diophantine approximation $w_{n}, w_{n}^{*}, \widehat{w}_{n}$, and \widehat{w}_{n}^{*} measure the quality of approximation to real numbers by algebraic numbers of degree at most n. They are defined as follows.

Let ξ be a real number. We denote by $w_{n}(\xi)$ the supremum of the real numbers w for which

$$
0<|P(\xi)| \leq H(P)^{-w}
$$

has infinitely many solutions in polynomials P in $\mathbb{Z}[X]$ of degree at most n, and by $\widehat{w}_{n}(\xi)$ the supremum of the real numbers w for which the system

$$
0<|P(\xi)| \leq H^{-w}, \quad H(P) \leq H
$$

has a solution P in $\mathbb{Z}[X]$ of degree at most n, for all large values of H.
Likewise, we denote by $w_{n}^{*}(\xi)$ the supremum of the real numbers w for which

$$
0<|\xi-\alpha| \leq H(\alpha)^{-w-1}
$$

has infinitely many solutions in algebraic numbers α of degree at most n, and by $\widehat{w}_{n}^{*}(\xi)$ the supremum of the real numbers w for which the system

$$
0<|\xi-\alpha| \leq H(\alpha)^{-1} H^{-w}, \quad H(\alpha) \leq H
$$

is satisfied by an algebraic number α of degree at most n, for all large values of H.

[^0]It is easy to check that every real number ξ satisfies

$$
w_{1}(\xi)=w_{1}^{*}(\xi) \quad \text { and } \quad \widehat{w}_{1}(\xi)=\widehat{w}_{1}^{*}(\xi)
$$

Furthermore, if n is a positive integer and ξ a real number which is not algebraic of degree at most n, then Dirichlet's Theorem implies that

$$
\begin{equation*}
w_{n}(\xi) \geq \widehat{w}_{n}(\xi) \geq n \tag{1.1}
\end{equation*}
$$

By combining (1.1) with the Schmidt Subspace Theorem, we can deduce that, for all positive integers d, n, every real algebraic number ξ of degree d satisfies

$$
w_{n}(\xi)=\widehat{w}_{n}(\xi)=w_{n}^{*}(\xi)=\widehat{w}_{n}^{*}(\xi)=\min \{n, d-1\}
$$

see [6, Theorem 2.4]. Thus, we may restrict our attention to transcendental real numbers and, in what follows, ξ will always denote such a number. Furthermore, in the sense of Lebesgue measure, almost all real numbers ξ satisfy

$$
w_{n}(\xi)=\widehat{w}_{n}(\xi)=w_{n}^{*}(\xi)=\widehat{w}_{n}^{*}(\xi)=n \quad \text { for } n \geq 1
$$

The survey [5] gathers the known results on the exponents $w_{n}^{*}, \widehat{w}_{n}^{*}, w_{n}, \widehat{w}_{n}$, along with some open questions; see also [4, 22].

A central open problem, often referred to as the Wirsing conjecture [23, 4], asks whether every transcendental real number ξ satisfies $w_{n}^{*}(\xi) \geq n$ for every integer $n \geq 2$. It has been solved by Davenport and Schmidt [7] for $n=2$ (see also [13]), but remains wide open for $n \geq 3$. In this direction, Bernik and Tsishchanka [3] established that

$$
\begin{equation*}
w_{n}^{*}(\xi) \geq \frac{n+\sqrt{n^{2}+16 n-8}}{4} \tag{1.2}
\end{equation*}
$$

for every integer $n \geq 3$ and every transcendental real number ξ. The lower bound (1.2) was subsequently slightly refined by Tsishchanka [21]; see [4] for additional references.

Among the known relations between the exponents $w_{n}^{*}, \widehat{w}_{n}^{*}, w_{n}, \widehat{w}_{n}$, let us mention that Schmidt and Summerer [19, (15.4')] used their deep, new theory of parametric geometry of numbers to show that

$$
\begin{equation*}
w_{n}(\xi) \geq(n-1) \frac{\widehat{w}_{n}(\xi)^{2}-\widehat{w}_{n}(\xi)}{1+(n-2) \widehat{w}_{n}(\xi)} \tag{1.3}
\end{equation*}
$$

for $n \geq 2$ and every transcendental real number ξ. This extends an earlier result of Jarník [10] which deals with the case $n=2$. For $n=3$ Schmidt and Summerer [20] established the better bound

$$
\begin{equation*}
w_{3}(\xi) \geq \frac{\widehat{w}_{3}(\xi) \cdot\left(\sqrt{4 \widehat{w}_{3}(\xi)-3}-1\right)}{2} \tag{1.4}
\end{equation*}
$$

In 1969, Davenport and Schmidt [8] proved that every transcendental real number ξ satisfies

$$
\begin{equation*}
1 \leq \widehat{w}_{n}^{*}(\xi) \leq \widehat{w}_{n}(\xi) \leq 2 n-1, \tag{1.5}
\end{equation*}
$$

for every integer $n \geq 1$ (the case $n=1$ is due to Khintchine [11]). The stronger inequality

$$
\begin{equation*}
\widehat{w}_{2}(\xi) \leq \frac{3+\sqrt{5}}{2} \tag{1.6}
\end{equation*}
$$

was proved by Arbour and Roy [2]; it can also be obtained by a direct combination of another result of 8 with a transference theorem of Jarník [9, which remained forgotten until 2004. The first inequality in (1.5) is sharp for every $n \geq 1$; see [6, Proposition 2.1]. Inequality (1.6) is also sharp: Roy [14, (15) proved the existence of transcendental real numbers ξ for which $\widehat{w}_{2}(\xi)=(3+\sqrt{5}) / 2$ and called them extremal numbers. We also point out the relations

$$
\begin{equation*}
w_{n}^{*}(\xi) \leq w_{n}(\xi) \leq w_{n}^{*}(\xi)+n-1, \quad \widehat{w}_{n}^{*}(\xi) \leq \widehat{w}_{n}(\xi) \leq \widehat{w}_{n}^{*}(\xi)+n-1, \tag{1.7}
\end{equation*}
$$

valid for every integer $n \geq 1$ and every transcendental real number ξ; see [4, Lemma A.8] or [5, Theorem 2.3.1].

In view of the lower bound

$$
\begin{equation*}
w_{n}^{*}(\xi) \geq \frac{\widehat{w}_{n}(\xi)}{\widehat{w}_{n}(\xi)-n+1}, \tag{1.8}
\end{equation*}
$$

established in [6] and valid for every integer $n \geq 2$ and every real transcendental number ξ, any counterexample ξ to the Wirsing conjecture must satisfy $\widehat{w}_{n}(\xi)>n$ for some integer $n \geq 3$. It is unclear whether transcendental real numbers with the latter property do exist. The main purpose of the present paper is to obtain new upper bounds for $\widehat{w}_{n}(\xi)$ and, in particular, to improve the last inequality of (1.5) for every integer $n \geq 3$.
2. Main results. Our main result is the following improvement of the upper bound (1.5) of Davenport and Schmidt [8].

Theorem 2.1. Let $n \geq 2$ be an integer and ξ a real transcendental number. Then

$$
\begin{equation*}
\widehat{w}_{n}(\xi) \leq n-1 / 2+\sqrt{n^{2}-2 n+5 / 4} . \tag{2.1}
\end{equation*}
$$

For $n=3$ we have the stronger estimate

$$
\begin{equation*}
\widehat{w}_{3}(\xi) \leq 3+\sqrt{2}=4.4142 \ldots \tag{2.2}
\end{equation*}
$$

For $n=2$, Theorem 2.1 provides an alternative proof of 1.6). This inequality is best possible, as already mentioned in the Introduction.

For $n \geq 3$, Theorem 2.1 gives the first improvement on (1.5). This is, admittedly, a small improvement, since for $n \geq 4$ the right hand side of (2.1)
can be written as $2 n-3 / 2+\varepsilon_{n}$, where ε_{n} is positive and $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$. There is no reason to believe that our bound is best possible for $n \geq 3$.

Theorem 2.1 follows from the next two statements combined with the lower bounds (1.3) and (1.4) of $w_{n}(\xi)$ in terms of $\widehat{w}_{n}(\xi)$ obtained by Schmidt and Summerer [19, 20].

Theorem 2.2. Let $m \geq n \geq 2$ be integers and ξ a transcendental real number. Then (at least) one of the two assertions

$$
\begin{equation*}
w_{n-1}(\xi)=w_{n}(\xi)=w_{n+1}(\xi)=\cdots=w_{m}(\xi) \tag{2.3}
\end{equation*}
$$

or

$$
\begin{equation*}
\widehat{w}_{n}(\xi) \leq m+(n-1) \frac{\widehat{w}_{n}(\xi)}{w_{m}(\xi)} \tag{2.4}
\end{equation*}
$$

holds. In other words, the inequality $w_{n-1}(\xi)<w_{m}(\xi)$ implies (2.4).
We remark that $w_{m}(\xi)$ may be infinite in Theorem 2.2, and this is also the case in Theorems 2.3 and 2.4. By (1.5), inequality (2.4) always holds for $m \geq 2 n-1$, thus Theorem 2.2 is of interest only for $n \leq m \leq 2 n-2$.

For the proof of our main result (Theorem 2.1) we only need the case $m=n$ of Theorem 2.2. We believe that, in this case, inequality (2.4) holds even when $w_{n-1}(\xi)=w_{n}(\xi)$. Actually, this is true if $\widehat{w}_{n}(\xi)=\widehat{w}_{n}^{*}(\xi)$; see Theorem 2.4.

Theorem 2.3. Let m, n be positive integers and ξ be a transcendental real number. Then

$$
\min \left\{w_{m}(\xi), \widehat{w}_{n}(\xi)\right\} \leq m+n-1
$$

Taking $m=n$ in Theorem 2.3 gives (1.5), but our proof differs from that of Davenport and Schmidt. The choice $m=1$ in Theorem 2.3 yields the main claim of [17, Theorem 5.1], which asserts that every real number ξ with $w_{1}(\xi) \geq n$ satisfies $\widehat{w}_{j}(\xi)=j$ for $1 \leq j \leq n$. Theorem 2.3 provides new information for $2 \leq m \leq n-1$.

A slight modification of the proof of Theorem 2.2 gives the next result.
Theorem 2.4. Let m, n be positive integers and ξ a transcendental real number. Assume that either $m \geq n$ or

$$
\begin{equation*}
w_{m}(\xi)>\min \left\{n+m-1, w_{n}^{*}(\xi)\right\} . \tag{2.5}
\end{equation*}
$$

Then

$$
\begin{equation*}
\widehat{w}_{n}^{*}(\xi) \leq \min \left\{m+(n-1) \frac{\widehat{w}_{n}^{*}(\xi)}{w_{m}(\xi)}, w_{m}(\xi)\right\} . \tag{2.6}
\end{equation*}
$$

In particular, for any integer $n \geq 1$ and any transcendental real number ξ,

$$
\widehat{w}_{n}^{*}(\xi) \leq n+(n-1) \frac{\widehat{w}_{n}^{*}(\xi)}{w_{n}(\xi)}
$$

By (1.5), inequality (2.6) always holds for $m \geq 2 n-1$, thus Theorem 2.4 is of interest only for $1 \leq m \leq 2 n-2$.

Let $m \geq 2$ be an integer. According to LeVeque [12], a real number ξ is a U_{m}-number if $w_{m}(\xi)$ is infinite and $w_{m-1}(\xi)$ is finite. Furthermore, the U_{1}-numbers are precisely the Liouville numbers, that is, the real numbers for which the inequalities $0<|\xi-p / q|<q^{-w}$ have infinitely many rational solutions p / q for every real number w. A T-number is a real number ξ such that $w_{n}(\xi)$ is finite for every integer n and $\limsup _{n \rightarrow \infty} w_{n}(\xi) / n=\infty$. LeVeque [12] proved the existence of U_{m}-numbers for every positive integer m. Schmidt [18] was the first to confirm that T-numbers do exist. Additional results on $U_{m^{-}}$and T-numbers and on Mahler's classification of real numbers are given in [4]. The next statement is an easy consequence of our theorems.

Corollary 2.5. Let m be a positive integer. Every U_{m}-number ξ satisfies $\widehat{w}_{m}(\xi)=m$ and the inequalities $\widehat{w}_{n}^{*}(\xi) \leq m$ and $\widehat{w}_{n}(\xi) \leq m+n-1$ for every integer $n \geq 1$. Moreover, every T-number ξ satisfies $\liminf _{n \rightarrow \infty} \widehat{w}_{n}(\xi) / n$ $=1$.

Proof. Let m be a positive integer and ξ a U_{m}-number. We have already mentioned that $\widehat{w}_{1}(\xi)=1$. For $m \geq 2$, we have $w_{m-1}(\xi)<w_{m}(\xi)$ and we derive from Theorem 2.2 that $\widehat{w}_{m}(\xi)=m$. The bound for $\widehat{w}_{n}^{*}(\xi)$ follows from (2.6) as we check the conditions are satisfied in both cases $m \geq n$ and $n<m$ from the inequalities $\widehat{w}_{n}^{*}(\xi) \leq \widehat{w}_{m}^{*}(\xi) \leq \widehat{w}_{m}(\xi)$. The upper bound $\widehat{w}_{n}(\xi) \leq m+n-1$ is then a consequence of 1.7 .

Let ξ be a T-number. Then, for any positive real number C, there are arbitrarily large integers n such that $w_{n}(\xi)>w_{n-1}(\xi)$ and $w_{n}(\xi) \geq C n$. For such an n, inserting these relations in (2.4) with $m=n$ and using (1.5), we obtain

$$
\widehat{w}_{n}(\xi) \leq n+\frac{(n-1)(2 n-1)}{C n}<n\left(1+\frac{2}{C}\right)
$$

It is then sufficient to let C tend to infinity.
Roy [15] proved that every extremal number ξ satisfies

$$
\begin{equation*}
w_{2}(\xi)=\sqrt{5}+2=4.2361 \ldots=\left(\widehat{w}_{2}(\xi)-1\right) \widehat{w}_{2}(\xi) \tag{2.7}
\end{equation*}
$$

thus providing a non-trivial example that equality can hold in (1.3). Approximation to extremal numbers by algebraic numbers of bounded degree was studied in [1, 16]. We deduce from Theorems 2.4 and 2.3 some additional information.

Corollary 2.6. Every extremal number ξ satisfies

$$
\widehat{w}_{3}^{*}(\xi) \leq 3 \frac{2+\sqrt{5}}{1+\sqrt{5}}=3.9270 \ldots \quad \text { and } \quad \widehat{w}_{3}(\xi) \leq 4
$$

Proof. Let $m=2, n=3$ and ξ be an extremal number. By (2.7) we have $w_{2}(\xi)=2+\sqrt{5}>4=m+n-1$ and the first claim follows from (2.6). Theorem 2.3 implies the second assertion.

We conclude this section with a new relation between the exponents \widehat{w}_{n} and w_{n}^{*}.

Theorem 2.7. For every positive integer n and every transcendental real number ξ, we have

$$
\widehat{w}_{n}(\xi) \leq \frac{2\left(w_{n}^{*}(\xi)+n\right)-1}{3}
$$

and, if $w_{n}(\xi) \leq 2 n-1$,

$$
\begin{equation*}
\widehat{w}_{n}^{*}(\xi) \geq \frac{2 w_{n}^{*}(\xi)^{2}-w_{n}^{*}(\xi)-2 n+1}{2 w_{n}^{*}(\xi)^{2}-n w_{n}^{*}(\xi)-n} \tag{2.8}
\end{equation*}
$$

It follows from the first assertion of Theorem 2.7 that any counterexample ξ to the Wirsing conjecture, that is, any transcendental real number ξ with $w_{n}^{*}(\xi)<n$ for some integer $n \geq 3$, must satisfy $\widehat{w}_{n}(\xi)<(4 n-1) / 3$.

It follows from the second assertion of Theorem 2.7 that if $w_{n}^{*}(\xi)$ is close to $n / 2$ for some integer n and some real transcendental number ξ, then $\widehat{w}_{n}^{*}(\xi)$ is also close to $n / 2$. Note that (1.7) implies that 2.8 holds for any couterexample ξ to the Wirsing conjecture.

Theorem 2.7 can be combined with (1.8) to get a lower bound for $w_{n}^{*}(\xi)$ which is slightly smaller than the one obtained by Bernik and Tsishchanka 3]. However, if we insert $\sqrt{1.3}$ in the proof of Theorem 2.7, then we get

$$
w_{n}^{*}(\xi)
$$

$$
\geq \max \left\{\widehat{w}_{n}(\xi), \frac{\widehat{w}_{n}(\xi)}{\widehat{w}_{n}(\xi)-n+1}, \frac{n-1}{2} \cdot \frac{\widehat{w}_{n}(\xi)^{2}-\widehat{w}_{n}(\xi)}{1+(n-2) \widehat{w}_{n}(\xi)}+\widehat{w}_{n}(\xi)-n+\frac{1}{2}\right\}
$$

From this we derive a very slight improvement of (1.2), which, like (1.2), has the form $w_{n}^{*}(\xi) \geq n / 2+2-\varepsilon_{n}$, where ε_{n} is positive and tends to 0 when n tends to infinity. Note that the best known lower bound, established by Tsishchanka [21], has the form $w_{n}^{*}(\xi) \geq n / 2+3-\varepsilon_{n}^{\prime}$, where ε_{n}^{\prime} is positive and tends to 0 as $n \rightarrow \infty$.
3. Proofs. We first show how Theorem 2.1 follows from Theorems 2.2 and 2.3

Proof of Theorem 2.1. We distinguish two cases.
If $w_{n-1}(\xi)=w_{n}(\xi)$, then Theorem 2.3 with $m=n-1$ implies that either

$$
\widehat{w}_{n}(\xi) \leq w_{n}(\xi)=w_{n-1}(\xi) \leq n-1+n-1=2 n-2
$$

or

$$
\widehat{w}_{n}(\xi) \leq 2 n-2
$$

It then suffices to observe that $2 n-2$ is smaller than the bounds in (2.1) and (2.2).

If $w_{n-1}(\xi)<w_{n}(\xi)$, then we apply Theorem 2.2 with $m=n$ and we get

$$
\widehat{w}_{n}(\xi) \leq n+(n-1) \frac{\widehat{w}_{n}(\xi)}{w_{n}(\xi)}
$$

thus,

$$
\begin{equation*}
\widehat{w}_{n}(\xi) \leq \frac{n w_{n}(\xi)}{w_{n}(\xi)-n+1} \tag{3.1}
\end{equation*}
$$

Rewriting inequality (1.3) as

$$
\begin{equation*}
\widehat{w}_{n}(\xi) \leq \frac{1}{2}\left(1+\frac{n-2}{n-1} w_{n}(\xi)\right)+\sqrt{\frac{1}{4}\left(\frac{n-2}{n-1} w_{n}(\xi)+1\right)^{2}+\frac{w_{n}(\xi)}{n-1}} \tag{3.2}
\end{equation*}
$$

we now have two upper bounds for $\widehat{w}_{n}(\xi)$, one given by a decreasing function and the other by an increasing function of $w_{n}(\xi)$. An easy calculation shows that the right hand sides of (3.1) and (3.2) are equal for

$$
w_{n}(\xi)=\frac{1}{2}\left(\frac{1+2 n \sqrt{n^{2}-2 n+5 / 4}}{n-1}+2 n-1\right)
$$

Inserting this value in (3.1) gives precisely the upper bound (2.1). For (2.2) we proceed similarly using (1.4) instead of (1.3).

For the proofs of Theorems 2.2 and 2.3 we need the following slight variation of [8, Lemma 8].

The notation $a \ggg{ }_{d} b$ means that a exceeds b times a constant depending only on d. When \gg is written without any subscript, it means that the constant is absolute.

Lemma 3.1. Let P, Q be coprime polynomials with integral coefficients and of degrees at most m and n, respectively. Let ξ be a real number such that $\xi P(\xi) Q(\xi) \neq 0$. Then at least one of the two estimates

$$
|P(\xi)| \gg_{m, n, \xi} H(P)^{-n+1} H(Q)^{-m}, \quad|Q(\xi)| \gg_{m, n, \xi} H(P)^{-n} H(Q)^{-m+1}
$$

holds. In particular,

$$
\max \{|P(\xi)|,|Q(\xi)|\} \gg_{m, n, \xi} H(P)^{-n+1} H(Q)^{-m+1} \min \left\{H(P)^{-1}, H(Q)^{-1}\right\}
$$

Proof. We proceed as in the proof of [8, Lemma 8] and we consider the resultant $\operatorname{Res}(P, Q)$ of the polynomials P and Q, written as

$$
\begin{array}{ll}
P(T)=a_{0} T^{s}+a_{1} T^{s-1}+\cdots+a_{s}, & a_{0} \neq 0, s \leq m \\
Q(T)=b_{0} T^{t}+b_{1} T^{t-1}+\cdots+b_{t}, & b_{0} \neq 0, t \leq n
\end{array}
$$

Clearly, $|\operatorname{Res}(P, Q)|$ is at least 1 since P and Q are coprime. Transform the corresponding $(s+t) \times(s+t)$-matrix by adding to the last column the sum,
for $i=1, \ldots, s+t-1$, of the $(s+t-i)$ th column multiplied by ξ^{i}, so that the last column reads

$$
\left(\xi^{t-1} P(\xi), \xi^{t-2} P(\xi), \ldots, P(\xi), \xi^{s-1} Q(\xi), \xi^{s-2} Q(\xi), \ldots, Q(\xi)\right)
$$

This transformation does not affect the value of $\operatorname{Res}(P, Q)$. Observe that by expanding the determinant of the new matrix, we can see that every product in the sum is in absolute value either $<_{s, t, \xi}|P(\xi)| H(P)^{t-1} H(Q)^{s}$ or $<_{s, t, \xi}|Q(\xi)| H(P)^{t} H(Q)^{s-1}$. Since there are only $(s+t)!\leq(m+n)!$ such terms in the sum, we infer that

$$
1 \leq|\operatorname{Res}(P, Q)|<_{m, n, \xi} \max \left\{|P(\xi)| H(P)^{n-1} H(Q)^{m},|Q(\xi)| H(P)^{n} H(Q)^{m-1}\right\}
$$

The lemma follows.
Proof of Theorem 2.2. It is inspired by the proof of [6, Proposition 2.1]. Let $m \geq n \geq 2$ be integers. Let ξ be a transcendental real number. Assume first that $w_{m}(\xi)<\infty$. We will show that if 2.3 is not satisfied, that is, if we assume

$$
\begin{equation*}
w_{n-1}(\xi)<w_{m}(\xi) \tag{3.3}
\end{equation*}
$$

then (2.4) must hold. Let $\epsilon>0$ be a fixed small real number. By the definition of $w_{m}(\xi)$ there exist integer polynomials P of degree at most m and arbitrarily large height $H(P)$ such that

$$
\begin{equation*}
H(P)^{-w_{m}(\xi)-\epsilon} \leq|P(\xi)| \leq H(P)^{-w_{m}(\xi)+\epsilon} \tag{3.4}
\end{equation*}
$$

By an argument of Wirsing [23, Hilfssatz 4] (see also [4, p. 54]), we may assume that P is irreducible. We deduce from our assumption (3.3 that, if ϵ is small enough, then P has degree at least n. Moreover, by the definition of $\widehat{w}_{n}(\xi)$, if the height $H(P)$ is sufficiently large, then for all $X \geq H(P)$ the inequalities

$$
\begin{equation*}
0<|Q(\xi)| \leq X^{-\widehat{w}_{n}(\xi)+\epsilon} \tag{3.5}
\end{equation*}
$$

are satisfied by an integer polynomial Q of degree at most n and height $H(Q) \leq X$. Set $\tau(\xi, \epsilon)=\left(w_{m}(\xi)+2 \epsilon\right) /\left(\widehat{w}_{n}(\xi)-\epsilon\right)$ and note that this quantity exceeds 1 . Keep in mind that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \tau(\xi, \epsilon)=\frac{w_{m}(\xi)}{\widehat{w}_{n}(\xi)} \tag{3.6}
\end{equation*}
$$

For any integer polynomial P satisfying (3.4), set $X=H(P)^{\tau(\xi, \epsilon)}$. Then (3.4) implies

$$
\begin{equation*}
|P(\xi)| \geq H(P)^{-w_{m}(\xi)-\epsilon}>H(P)^{-w_{m}(\xi)-2 \epsilon}=X^{-\widehat{w}_{n}(\xi)+\epsilon} \tag{3.7}
\end{equation*}
$$

thus any polynomial Q satisfying (3.5) also satisfies $|Q(\xi)|<|P(\xi)|$. Since P is irreducible of degree at least n and Q has degree at most n, this implies that P and Q are coprime.

On the other hand, by (3.4), we have the estimate

$$
|P(\xi)| \leq H(P)^{-w_{m}(\xi)+\epsilon}=X^{\left(-w_{m}(\xi)+\epsilon\right) / \tau(\xi, \epsilon)}
$$

Thus, by (3.6), we get

$$
\begin{equation*}
|P(\xi)| \leq X^{-\widehat{w}_{n}(\xi)+\epsilon^{\prime}} \tag{3.8}
\end{equation*}
$$

for some ϵ^{\prime} which depends on ϵ and tends to 0 as $\epsilon \rightarrow 0$. Since $|Q(\xi)|<|P(\xi)|$ we obviously obtain

$$
\begin{equation*}
\max \{|P(\xi)|,|Q(\xi)|\} \leq X^{-\widehat{w}_{n}(\xi)+\epsilon^{\prime}} \tag{3.9}
\end{equation*}
$$

We have constructed pairs (P, Q) of coprime integer polynomials of arbitrarily large height and satisfying (3.9).

We show that, provided $H(P)$ was chosen large enough, we have

$$
\begin{equation*}
H(Q) \geq H(P)^{1-\epsilon^{\prime \prime}} \tag{3.10}
\end{equation*}
$$

where $\epsilon^{\prime \prime}$ depends on ϵ and tends to 0 as ϵ tends to 0 . Observe that since $|Q(\xi)|<|P(\xi)|$ and by (3.4) we have

$$
w_{m}(\xi)-\epsilon \leq-\frac{\log |P(\xi)|}{\log H(P)} \leq-\frac{\log |Q(\xi)|}{\log H(P)}
$$

On the other hand,

$$
-\frac{\log |Q(\xi)|}{\log H(Q)} \leq w_{n}(\xi)+\epsilon
$$

since Q has degree at most n and can be assumed of sufficiently large height $H(Q)$. Moreover the assumption $m \geq n$ implies $w_{m}(\xi) \geq w_{n}(\xi)$. Combination of these facts yields

$$
\frac{\log H(Q)}{\log H(P)}=\left(-\frac{\log |Q(\xi)|}{\log H(P)}\right) \cdot\left(-\frac{\log |Q(\xi)|}{\log H(Q)}\right)^{-1} \geq \frac{w_{m}(\xi)-\epsilon}{w_{n}(\xi)+\epsilon} \geq \frac{w_{n}(\xi)-\epsilon}{w_{n}(\xi)+\epsilon}
$$

and we indeed infer (3.10) as $\epsilon \rightarrow 0$.
Now observe that we can apply Lemma 3.1 to the coprime polynomials P and Q. It follows from (3.10) and $H(Q) \leq X$ that

$$
\min \left\{H(P)^{-1}, H(Q)^{-1}\right\} \geq X^{-1 /\left(1-\epsilon^{\prime \prime}\right)}
$$

We then deduce from Lemma 3.1 that

$$
\begin{equation*}
\max \{|P(\xi)|,|Q(\xi)|\} \gg_{m, n, \xi} X^{-(n-1) / \tau(\xi, \epsilon)} X^{-m+1} X^{-1 /\left(1-\epsilon^{\prime \prime}\right)} \tag{3.11}
\end{equation*}
$$

Combining (3.9) and (3.11) we deduce (2.4) as ϵ can be taken arbitrarily small. This completes the proof of the case $w_{m}(\xi)<\infty$.

If $w_{m}(\xi)=\infty$, we take a sequence $\left(P_{j}\right)_{j \geq 1}$ of integer polynomials of degree at most m with increasing heights and such that the quantity $-\log \left|P_{j}(\xi)\right| / \log H\left(P_{j}\right)$ tends to infinity as $j \rightarrow \infty$. We then proceed exactly as above, by using this sequence of polynomials instead of the polynomials satisfying (3.4). We omit the details.

Proof of Theorem 2.3. We assume $n \geq 2$ and $w_{m}(\xi)<\infty$, for similar reasons to those in the previous proof. Let $\epsilon>0$ be a fixed small number. By the definition of $w_{m}(\xi)$, there exist integer polynomials P of degree at most m and arbitrarily large height $H(P)$ such that

$$
|P(\xi)| \leq H(P)^{-w_{m}(\xi)+\epsilon / 2} .
$$

Again, by using an argument of Wirsing [23, Hilfssatz 4], we can assume that P is irreducible. Then, by [4, Lemma A.3], there exists a real number $K(n)$ in $(0,1)$ such that no integer polynomial Q of degree at most n and whose height satisfies $H(Q) \leq K(n) H(P)$ is a multiple of P. Set $X:=$ $H(P) K(n) / 2$. If X is large enough, then P satisfies

$$
\begin{equation*}
|P(\xi)| \leq X^{-w_{m}(\xi)+\epsilon} \tag{3.12}
\end{equation*}
$$

On the other hand, by the definition of $\widehat{w}_{n}(\xi)$, we may consider only the polynomials P for which $H(P)$ is sufficiently large, so that the estimate

$$
\begin{equation*}
0<|Q(\xi)| \leq X^{-\widehat{w}_{n}(\xi)+\epsilon} \tag{3.13}
\end{equation*}
$$

holds for an integer polynomial Q of degree at most n and height $H(Q) \leq X$. Our choice of X ensures that Q is not a multiple of P. Since P is irreducible, P and Q are coprime. Thus we may apply Lemma 3.1, which yields

$$
\begin{equation*}
\max \{|P(\xi)|,|Q(\xi)|\} \gg_{m, n, \xi} X^{-m-n+1} . \tag{3.14}
\end{equation*}
$$

Combining (3.12)-(3.14), we deduce that $\min \left\{w_{m}(\xi), \widehat{w}_{n}(\xi)\right\} \leq m+n-1$, as ϵ can be taken arbitrarily small.

Proof of Theorem 2.4. Most estimates arise by a modification of the proof of Theorem 2.2. Define the irreducible polynomial P as in the proof of Theorem 2.2. In that proof a difficulty occurs since the polynomial Q which satisfies (3.5) is not a priori coprime with P. The assumption (3.3) was used to guarantee that Q is not a multiple of P.

Here, instead of (3.5), we use the fact that, for all $X \geq H(P)$, the inequalities

$$
\begin{equation*}
0<|\xi-\beta|<H(\beta)^{-1} X^{-\widehat{w}_{n}^{*}(\xi)+\epsilon} \tag{3.15}
\end{equation*}
$$

are satisfied by an algebraic number β of degree at most n and height at most X. Let Q be the minimal defining polynomial over \mathbb{Z} of such a β. Then a standard argument yields

$$
\begin{equation*}
|Q(\xi)|<_{n, \xi} X^{-\widehat{w}_{n}^{*}(\xi)+\epsilon} \tag{3.16}
\end{equation*}
$$

(see [4, Proposition 3.2]; actually, this proves the left inequalities of (1.7)). Next we define $\tau^{*}(\xi, \epsilon):=\left(w_{m}(\xi)+2 \epsilon\right) /\left(\widehat{w}_{n}^{*}(\xi)-\epsilon\right)$ and set $X=H(P)^{\tau^{*}(\xi, \epsilon)}$.

Similarly to the proof of Theorem 2.2 we obtain the variant

$$
\begin{align*}
|P(\xi)| \geq H(P)^{-w_{m}(\xi)-\epsilon} & =H(P)^{\epsilon} H(P)^{-w_{m}(\xi)-2 \epsilon} \tag{3.17}\\
& =H(P)^{\epsilon} X^{-\widehat{w}_{n}^{*}(\xi)+\epsilon}
\end{align*}
$$

of (3.7). Observe that the combination of (3.16) and (3.17) implies that $|Q(\xi)|<|P(\xi)|$ and consequently $P \neq Q$, provided that $H(P)$ was chosen large enough. On the other hand, with essentially the argument used to get (3.8), we obtain

$$
\begin{equation*}
|P(\xi)| \leq X^{-\widehat{w}_{n}^{*}(\xi)+\tilde{\epsilon}} \tag{3.18}
\end{equation*}
$$

for some $\tilde{\epsilon}$ which depends on ϵ and tends to 0 as $\epsilon \rightarrow 0$. By (3.16) and $|Q(\xi)|<|P(\xi)|$ we infer

$$
\begin{equation*}
\max \{|P(\xi)|,|Q(\xi)|\} \leq X^{-\widehat{w}_{n}^{*}(\xi)+\tilde{\epsilon}} \tag{3.19}
\end{equation*}
$$

an inequality similar to (3.9).
Now if $m \geq n$, we proceed as in the proof of Theorem 2.2 observing that we may apply Lemma 3.1 here since $P \neq Q$ and both P and Q are irreducible. Indeed, (3.10) holds for exactly the same reason and we get (3.11) with τ replaced by τ^{*}. This yields the first inequality of (2.6), whereas the inequality $\widehat{w}_{n}^{*}(\xi) \leq w_{m}(\xi)$ is trivially implied by the assumption $m \geq n$.

If $m<n$ we treat the cases $H(P) \leq H(Q)$ and $H(P)>H(Q)$ separately. First consider the case $H(P) \leq H(Q)$ for infinitely many pairs (P, Q) as above. In this case we again prove (2.6). The first inequality of (2.6) is derived as for $m \geq n$, using $H(P) \leq H(Q) \leq X$ instead of (3.10). The other inequality $\widehat{w}_{n}^{*}(\xi) \leq w_{m}(\xi)$ remains to be shown. Assume on the contrary that $w_{m}(\xi) / \widehat{w}_{n}^{*}(\xi)<1$. Then for sufficiently small ϵ we have $\tau^{*}(\xi, \epsilon)<1$ and hence $H(Q)=H(\beta) \leq X<X^{1 / \tau^{*}(\xi, \epsilon)}=H(P)$, a contradiction. This finishes the proof of the case $H(P) \leq H(Q)$.

Now assume $H(P)>H(Q)$ for infinitely many pairs (P, Q) as above. Note that (3.10) does not necessarily hold now as we needed $m \geq n$ for its deduction. It is sufficient to show that (2.5) is false, that is,

$$
\begin{equation*}
w_{m}(\xi) \leq \min \left\{m+n-1, w_{n}^{*}(\xi)\right\} . \tag{3.20}
\end{equation*}
$$

Observe that (3.19) implies

$$
\begin{equation*}
\max \{|P(\xi)|,|Q(\xi)|\} \leq H(P)^{-w_{m}(\xi)+\hat{\epsilon}} \tag{3.21}
\end{equation*}
$$

for $\hat{\epsilon}=\tilde{\epsilon} \cdot w_{m}(\xi) / \widehat{w}_{n}^{*}(\xi)$, which again tends to 0 as $\epsilon \rightarrow 0$. On the other hand, Lemma 3.1 yields

$$
\begin{equation*}
\max \{|P(\xi)|,|Q(\xi)|\} \gg_{m, n, \xi} H(P)^{-n} H(Q)^{-m+1} \geq H(P)^{-m-n+1} \tag{3.22}
\end{equation*}
$$

The combination of (3.21) and (3.22) gives $w_{m}(\xi) \leq m+n-1$. It remains to show that $w_{m}(\xi) \leq w_{n}^{*}(\xi)$. Assume that $w_{m}(\xi)-w_{n}^{*}(\xi)=\rho>0$. Then
(3.15) would imply, if ϵ were chosen small enough, that

$$
\begin{aligned}
|\xi-\beta| & \leq H(\beta)^{-1} X^{-\widehat{w}_{n}^{*}(\xi)+\epsilon}=H(Q)^{-1} H(P)^{-w_{m}(\xi)+\epsilon / \tau(\xi, \epsilon)} \\
& <H(Q)^{-w_{m}(\xi)-1+\epsilon / \tau(\xi, \epsilon)} \leq H(Q)^{-w_{n}^{*}(\xi)-1-\rho / 2}
\end{aligned}
$$

contrary to the definition of $w_{n}^{*}(\xi)$ as $H(Q) \rightarrow \infty$. Hence 3.20 is established in this case and the proof is finished.

Proof of Theorem 2.7. Let $n \geq 2$ be an integer and ξ be a real transcendental number.

We establish the first assertion. We follow the proof of Wirsing's theorem as given in [4] and keep the notation used therein. By the definition of \widehat{w}_{n}, observe that the inequality $\left|Q_{k}(\xi)\right| \ll H\left(P_{k}\right)^{-n}$ in [4, (3.16)] can be replaced by

$$
\left|Q_{k}(\xi)\right| \ll H\left(P_{k}\right)^{-\widehat{w}_{n}(\xi)+\varepsilon}
$$

The lower bound for $w_{n}^{*}(\xi)$ on line -8 of [4, p. 57] then becomes

$$
\begin{equation*}
w_{n}^{*}(\xi) \geq \min \left\{\widehat{w}_{n}(\xi), w_{n}(\xi)-\frac{n-1}{2}+\frac{\widehat{w}_{n}(\xi)-n}{2}, \frac{w_{n}(\xi)+1}{2}+\widehat{w}_{n}(\xi)-n\right\} \tag{3.23}
\end{equation*}
$$

Since $w_{n}(\xi) \geq \widehat{w}_{n}(\xi)$, this gives

$$
w_{n}^{*}(\xi) \geq \min \left\{\widehat{w}_{n}(\xi), \frac{3 \widehat{w}_{n}(\xi)}{2}-n+\frac{1}{2}\right\}=\frac{3 \widehat{w}_{n}(\xi)}{2}-n+\frac{1}{2}
$$

by 1.5 . Thus, we have established

$$
\widehat{w}_{n}(\xi) \leq \frac{2\left(w_{n}^{*}(\xi)+n\right)-1}{3}
$$

as asserted.
Now, we prove (2.8). Inequality 1.8 can be rewritten as

$$
\widehat{w}_{n}(\xi) \geq \frac{(n-1) w_{n}^{*}(\xi)}{w_{n}^{*}(\xi)-1}
$$

Assuming $w_{n}(\xi) \leq 2 n-1$, the smallest of the three terms in the curly brackets in 3.23 is the third one and we eventually get

$$
w_{n}(\xi) \leq \frac{2 w_{n}^{*}(\xi)^{2}-2 n-w_{n}^{*}(\xi)+1}{w_{n}^{*}(\xi)-1}
$$

Combining this with the lower bound

$$
\widehat{w}_{n}^{*}(\xi) \geq \frac{w_{n}(\xi)}{w_{n}(\xi)-n+1}
$$

established in [6], we obtain (2.8).

Acknowledgements. The authors are grateful to the referee for a careful reading and several useful suggestions. Johannes Schleischitz is supported by FWF grant P24828.

References

[1] B. Adamczewski et Y. Bugeaud, Mesures de transcendance et aspects quantitatifs de la méthode de Thue-Siegel-Roth-Schmidt, Proc. London Math. Soc. 101 (2010), 1-26.
[2] B. Arbour and D. Roy, A Gel'fond type criterion in degree two, Acta Arith. 111 (2004), 97-103.
[3] V. I. Bernik and K. I. Tsishchanka, Integral polynomials with an overfall of the coefficient values and Wirsing's theorem, Dokl. Akad. Nauk Belarusi 37 (1993), no. 5, 9-11 (in Russian).
[4] Y. Bugeaud, Approximation by Algebraic Numbers, Cambridge Tracts in Math. 160, Cambridge Univ. Press, Cambridge, 2004.
[5] Y. Bugeaud, Exponents of Diophantine approximation, in: Dynamics and Analytic Number Theory (Durham, 2014), London Math. Soc. Lecture Note Ser. 437, D. Badziahin et al. (eds.), Cambridge Univ. Press, Cambridge, to appear.
[6] Y. Bugeaud and M. Laurent, Exponents of Diophantine approximation and Sturmian continued fractions, Ann. Inst. Fourier (Grenoble) 55 (2005), 773-804.
[7] H. Davenport and W. M. Schmidt, Approximation to real numbers by quadratic irrationals, Acta Arith. 13 (1967), 169-176.
[8] H. Davenport and W. M. Schmidt, Approximation to real numbers by algebraic integers, Acta Arith. 15 (1969), 393-416.
[9] V. Jarník, Zum Khintchineschen "Übertragungssatz", Trav. Inst. Math. Tbilissi 3 (1938), 193-212.
[10] V. Jarník, Contribution à la théorie des approximations diophantiennes linéaires et homogènes, Czechoslovak Math. J. 4 (1954), 330-353 (in Russian).
[11] A. Khintchine, Über eine Klasse linearer diophantischer Approximationen, Rend. Circ. Mat. Palermo 50 (1926), 170-195.
[12] W. J. LeVeque, On Mahler's U-numbers, J. London Math. Soc. 28 (1953), 220-229.
[13] N. Moshchevitin, A note on two linear forms, Acta Arith. 162 (2014), 43-50.
[14] D. Roy, Approximation simultanée d'un nombre et de son carré, C. R. Math. Acad. Sci. Paris 336 (2003), 1-6.
[15] D. Roy, Approximation to real numbers by cubic algebraic integers I, Proc. London Math. Soc. 88 (2004), 42-62.
[16] D. Roy and D. Zelo, Measures of algebraic approximation to Markoff extremal numbers, J. London Math. Soc. 83 (2011), 407-430.
[17] J. Schleischitz, On the spectrum of Diophantine approximation constants, Mathematika 62 (2016), 79-100.
[18] W. M. Schmidt, T-numbers do exist, in: Symposia Mathematica, Vol. IV, Ist. Naz. Alta Mat., Roma, and Academic Press, London, 1970, 3-26.
[19] W. M. Schmidt and L. Summerer, Diophantine approximation and parametric geometry of numbers, Monatsh. Math. 169 (2013), 51-104.
[20] W. M. Schmidt and L. Summerer, Simultaneous approximation to three numbers, Moscow J. Combin. Number Theory 3 (2013), no. 1, 84-107.
[21] K. I. Tsishchanka, On approximation of real numbers by algebraic numbers of bounded degree, J. Number Theory 123 (2007), 290-314.
[22] M. Waldschmidt, Recent advances in Diophantine approximation, in: Number Theory, Analysis and Geometry, Springer, New York, 2012, 659-704.
[23] E. Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math. 206 (1961), 67-77.

Yann Bugeaud
IRMA, U.M.R. 7501
Université de Strasbourg et CNRS
7 rue René Descartes
67084 Strasbourg, France
E-mail: bugeaud@math.unistra.fr

Johannes Schleischitz
Institute of Mathematics
Department of Integrative Biology
BOKU Wien
1180, Wien, Austria
E-mail: johannes.schleischitz@boku.ac.at

[^0]: 2010 Mathematics Subject Classification: Primary 11J04; Secondary 11J13, 11J82.
 Key words and phrases: exponents of Diophantine approximation, Mahler classification, extremal numbers.
 Received 2 December 2015; revised 20 May 2016.
 Published online 23 September 2016.

