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Chen’s first inequality for Riemannian maps

Bayram S.ahin (Izmir)

Abstract. We obtain a basic Chen inequality for Riemannian maps between Rie-
mannian manifolds.

1. Introduction. In [C1] and [C2], B. Y. Chen established a sharp
inequality for a submanifold in a real space form involving intrinsic invariants
of submanifolds and squared mean curvature, the main extrinsic invariant.
After that work many related results have been published by various authors
for different submanifolds in different ambient spaces; much of those results
have been included in the monograph [C6]. However, this subject is still a
very active research area (see [FG], [G], [GKKT], [KTG], [LLY], [MR], [OD],
[OM], [V], [ZZ], [ZZS], [Z]).

As indicated in [GRK], a major flaw in Riemannian geometry (as com-
pared to other areas) is a shortage of suitable types of maps between Rie-
mannian manifolds that will enable comparing their geometric properties.
In this direction, Fischer [F] introduced Riemannian maps between Rieman-
nian manifolds as a generalization of isometric immersions and Riemannian
submersions. Isometric immersions and Riemannian submersions have been
widely studied in differential geometry (see for example [C3] and [FIP]), but
the theory of Riemannian maps is a new research field.

Let F : (M1, g1) → (M2, g2) be a smooth map between Riemannian
manifolds such that 0 < rankF < min{m,n}, where dimM1 = m and
dimM2 = n. Then we denote the kernel space of F∗p by kerF∗p at p ∈ M1

and consider its orthogonal complement Hp = (kerF∗p)
⊥ in TpM1. Thus

TpM1 = kerF∗p ⊕Hp.
We denote the range of F∗p by rangeF∗p and consider its orthogonal comple-
ment (rangeF∗p)

⊥ in TF (p)M2. Since rankF < min{m,n}, we always have
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(rangeF∗)
⊥ 6= {0}. Thus

TF (p)M2 = (rangeF∗p)⊕ (rangeF∗p)
⊥.

Now, a smooth map F : (Mm
1 , g1) → (Mn

2 , g2) is called a Riemannian map

at p1 ∈ M if the horizontal restriction F h∗p1 : (kerF∗p1)⊥ → rangeF∗p1 is
a linear isometry of inner product spaces. Thus, as stated by Fischer [F],
a Riemannian map is a map which is as isometric as it can be.

Isometric immersions and Riemannian submersions are particular Rie-
mannian maps with kerF∗ = {0} and (rangeF∗)

⊥ = {0}. It is known that
a Riemannian map is a subimmersion, which implies that the rank of the
linear map F∗p : TpM1 → TF (p)M2 is constant for p in each connected com-
ponent of M1 [AMR], [F]. It is also important to note that Riemannian maps
satisfy the eikonal equation which is a bridge between geometric optics and
physical optics. For Riemannian maps and their applications in spacetime
geometry, see [GRK].

In this paper, we obtain a Chen inequality for Riemannian maps.

2. Preliminaries. In this section we recall some notions and results
from [BW] and [N].

Let (M, gM ) and (N, gN ) be Riemannian manifolds and suppose that
F : M → N is a smooth map. Then the differential F∗ of F can be viewed a
section of the bundle Hom(TM,F−1TN)→M,whereF−1TN is the pullback
bundle which has fibres (F−1TN)p = TF (p)N , p ∈ M. Hom(TM,F−1TN)

has a connection ∇ induced from the Levi-Civita connection ∇M and the
pullback connection. Then the second fundamental form of F is given by

(2.1) (∇F∗)(X,Y ) = ∇FXF∗(Y )− F∗(∇MX Y )

for X,Y ∈ Γ (TM). It is known that the second fundamental form is sym-
metric. A smooth map ϕ : (M, gM ) → (N, gN ) is said to be harmonic if
trace∇ϕ∗ = 0. On the other hand, the tension field of ϕ is the section
τ(ϕ) of Γ (ϕ−1TN) defined by τ(ϕ) = divϕ∗ =

∑m
i=1(∇ϕ∗)(ei, ei), where

{e1, . . . , em} is an orthonormal frame on M . It follows that ϕ is harmonic if
and only if τ(ϕ) = 0. In [S1] we showed that the second fundamental form
(∇F∗)(X,Y ),X,Y ∈ Γ ((kerF∗)

⊥), of a Riemannian map has no components
in rangeF∗. More precisely we have the following.

Lemma 2.1 ([S1]). Let F be a Riemannian map from a Riemannian
manifold (M1, g1) to a Riemannian manifold (M2, g2). Then

g2((∇F∗)(X,Y ), F∗(Z)) = 0, ∀X,Y, Z ∈ Γ ((kerF∗)
⊥).

As a consequence of Lemma 2.1, we have

(2.2) (∇F∗)(X,Y ) ∈ Γ ((rangeF∗)
⊥), ∀X,Y ∈ Γ ((kerF∗)

⊥).



Chen inequality 251

In [S], Solórzano introduced the second fundamental form B for Rieman-
nian maps as follows. Let ϕ : (M, g) → (M̄, ḡ) be a Riemannian map. The
second fundamental form B of ϕ is a bilinear bundle map B :

⊕2(ker(ϕ∗)
⊥)

→ TM̄ over ϕ given by

(2.3) B(u, x) = ∇̄ϕ∗(u)x− ϕ∗(∇ux)

for basic vector fields. Solórzano showed that B vanishes identically if and
only if ϕ(M) is a totally geodesic submanifold of M̄ .

From now on, for simplicity, we denote by ∇2 both the Levi-Civita con-
nection of (M2, g2) and its pullback along F . Then according to Nore [N],
for any vector field X on M1 and any section V of (rangeF∗)

⊥, where
(rangeF∗)

⊥ is the subbundle of F−1(TM2) with fibre (F∗(TpM))⊥ over p, we
have∇F⊥X V which is the orthogonal projection of∇2

XV on (F∗(TM))⊥. Nore
showed that∇F⊥ is a linear connection on (F∗(TM))⊥ such that∇F⊥g2 = 0.
We now define SV via

(2.4) ∇FXV = −SV F∗X +∇F⊥X V,

where SV F∗X is the tangential component (a vector field along F ) of∇2
F∗X

V .
It is easy to see that SV F∗X is bilinear in V and F∗X, and SV F∗X at p
depends only on Vp and F∗pXp. By direct computation, we obtain

(2.5) g2(SV F∗X,F∗Y ) = g2(V, (∇F∗)(X,Y ))

for X,Y ∈ Γ ((kerF∗)
⊥) and V ∈ Γ ((rangeF∗)

⊥). Since (∇F∗) is symmetric,
it follows that SV is a symmetric linear transformation of rangeF∗, called
the shape operator of a Riemannian map.

We also recall the following algebraic lemma which will be a key tool for
our result.

Lemma 2.2 ([C1]). Let n ≥ 2 and let a1, . . . , an, b be real numbers such
that

(2.6)
( n∑
i=1

ai

)2
= (n− 1)

( n∑
i=1

a2
i + b

)
.

Then 2a1a2 ≥ b, with equality holding if and only if

a1 + a2 = a3 = · · · = an.

3. Chen inequality for Riemannian maps. In this section we are
going to obtain Chen’s inequality. First let us recall the Gauss equation for
Riemannian maps from [S3]:

gN (RN (F∗X,F∗Y )F∗Z,F∗T ) = gM (RM (X,Y )Z, T )(3.1)

+ gN
(
(∇F∗)(X,Z), (∇F∗)(Y, T )

)
− gN

(
(∇F∗)(Y, Z), (∇F∗)(X,T )

)
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for X,Y, Z, T ∈ Γ ((kerF∗)
⊥), where RM and RN denote the curvature ten-

sors of the metric connections ∇M and ∇N on M and N , respectively.

Now suppose that N is a space form N(c). Since F is a Riemannian map,
we have

gM (RM (X,Y )Z, T ) = c
(
gM (Y, , Z)gM (X,T )− gM (X,Z)gM (Y, T )

)
(3.2)

− gN
(
(∇F∗)(X,Z), (∇F∗)(Y, T )

)
+ gN

(
(∇F∗)(Y,Z), (∇F∗)(X,T )

)
.

Theorem 3.1. Let F be a Riemannian map from a Riemannian mani-
fold (M, gM ) to a space form (N(c), gN ) with rankF = r ≥ 3. Then for each
point p ∈M and each plane section π ⊂ TpM , we have

(3.3) K(π) ≥ ρH −
r − 2

2

(
(r + 1)c+

1

r − 1
‖τH‖2

)
,

where ρH is the scalar curvature defined on H = (kerF∗)
⊥, and τH is defined

by

τH =
r∑
i=1

gN
(
(∇F∗)(ei, ei), (∇F∗)(ei, ei)

)
.

Equality holds if and only if there exists an orthonormal basis {e1, . . . , er} of
(kerF∗p)

⊥ and an orthonormal basis {Vr+1, . . . , Vr+d} of (rangeF∗p)
⊥ such

that the shape operator takes the form

Sr+1 =



a 0 0 · · · 0

0 b 0 · · · 0

0 0 µ · · · 0
...

...
...

. . .
...

0 0 0 · · · µ


, a+ b = µ,

and

Sα =



Bα
11 Bα

12 0 · · · 0

Bα
12 −Bα

11 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


, α = r + 2, . . . , r + d.

Proof. Taking X = T = ei and Y = Z = ej in (3.2) we get

(3.4) r(r − 1)c = 2ρH +
r∑

i,j=1

gN
(
(∇F∗)(ei, ej), (∇F∗)(ei, ej)

)
− ‖τH‖2.
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Set

(3.5) ε = −r(r − 1)c+ 2ρH −
r − 2

r − 1
‖τH‖2.

Then

(3.6) ‖τH‖2 = (r − 1)

r∑
i,j=1

(
gN
(
(∇F∗)(ei, ej), (∇F∗)(ei, ej)

)
+ ε
)
.

If we use the notation introduced in (2.3), we get

(3.7) ‖τH‖2 = (r − 1)
( r∑
i,j=1

gN (B(ei, ej), B(ei, ej)) + ε
)
.

Now for p ∈ M , consider a plane π ⊂ TpM spanned by {e1, e2}. From
Lemma 2.1 we know that τH ∈ (rangeF∗)

⊥. Take an orthonormal frame
{Vr+1, . . . , Vd} of (rangeF∗)

⊥ such that Vr+1 is parallel to τH. Also for con-
venience, set Bn

ij = gN ((∇F∗)(ei, ej), Vn). Then

(3.8)
( r∑
i=1

Br+1
ii

)2
= (r − 1)

( r∑
i,j=1

r+d∑
α=r+1

(Bα
ij)

2 + ε
)

or

(3.9)
( r∑
i=1

Br+1
ii

)2
= (r − 1)

{ r∑
i=1

(Br+1
ii )2 +

r∑
i 6=j=1

(Br+1
ij )2

+
r+d∑

α=r+2

r∑
i,j=1

(Bα
ij)

2 + ε
}
.

Applying Lemma 2.2 we get

(3.10) 2Br+1
11 Br+1

22 ≥
r∑
i 6=j

(Br+1
ij )2 +

r+d∑
α=r+2

r∑
i,j=1

(Bα
ij)

2 + ε.

Thus we obtain

(3.11) 2Br+1
11 Br+1

22 ≥ 2(Br+1
12 )2+

r∑
i 6=j>2

(Br+1
ij )2+2

r∑
j>2

((Br+1
1j )2 + (Br+1

2j )2)

+ 2

r+d∑
α=r+2

(Bα
12)2 +

r+d∑
α=r+2

r∑
i,j>2

(Bα
ij)

2 + 2

r+d∑
α=r+2

r∑
j>2

((Bα
1j)

2 + (Bα
2j)

2)

+
r+d∑

α=r+2

((Bα
11)2 + (Bα

22)2) + ε.
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Hence

(3.12) 2Br+1
11 Br+1

22 − 2(Br+1
12 )2 − 2

r+d∑
α=r+2

(Bα
12)2 + 2

r+d∑
α=r+2

Bα
11B

α
22

≥
r∑

i 6=j>2

(Br+1
ij )2 + 2

r∑
j>2

((Br+1
1j )2 + (Br+1

2j )2) +
r+d∑

α=r+2

r∑
i,j>2

(Bα
ij)

2

+ 2
r+d∑

α=r+2

r∑
j>2

((Bα
1j)

2 + (Bα
2j)

2) +
r+d∑

α=r+2

(Bα
11 +Bα

22)2 + ε.

Taking X = T = e1 and Y = Z = e2 in (3.1) and using it in (3.11), we get

(3.13) K(π) ≥
r+d∑

α=r+1

r∑
j>2

((Bα
1j)

2 + (Bα
2j)

2) +
1

2

r∑
i 6=j>2

(Br+1
ij )2

+
1

2

r+d∑
α=r+2

∑
i,j>2

(Bα
ij)

2 +
1

2

r+d∑
α=r+2

(Bα
11 +Bα

22)2 + c+
ε

2
≥ c+

ε

2
.

Thus we arrive at (3.3). If equality holds in (3.3) at a point p, then the
inequality (3.13) becomes an equality. In this case, from (3.13) we have

Br+1
1j = Br+1

2j = Br+1
ij = 0, i 6= j > 2,

Bα
ij = 0, ∀i 6= j, i, j = 3, . . . , r, α = r + 2, . . . , r + d,

Bα
11 +Bα

22 = 0, ∀α = r + 2, . . . , r + d,

Br+2
11 +Br+2

22 = · · · = Br+d
11 +Br+d

22 = 0.

Now, we choose e1, e2 such thatBr+1
12 = 0 and we denote a = Bα

11, b = Bα
22,

µ = Br+1
33 = · · · = Bα

33. Thus by choosing a suitable orthonormal basis the
shape operators SV take the desired forms.

From Theorem 3.1, we have the following corollary.

Corollary 3.2. Let F be a harmonic Riemannian map from a Rie-
mannian manifold (M, gM ) to the Euclidean space En with rankF = r ≥ 3.
Then for each point p ∈M and each plane section π ⊂ TpM , we have

K(π) ≥ ρH,
where ρH is the scalar curvature defined on H = (kerF∗)

⊥.

Remark 3.3. In [C1], Chen obtained the following result. Let M be
an n-dimensional (n ≥ 2) submanifold of a Riemannian manifold M̄(c) of
constant sectional curvature c. Then

(3.14) inf K ≥ 1

2

{
ρ− n2(n− 2)

(n− 1)
‖H‖2 − (n+ 1)(n− 2)c

}
.
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Equality holds if and only if there exists an orthonormal basis {e1, . . . , en}
of TpM and an orthonormal basis {en+1, . . . , em} of T⊥M such that the
shape operator takes the following form:

An+1 =



a 0 0 · · · 0

0 b 0 · · · 0

0 0 µ · · · 0
...

...
...

. . .
...

0 0 0 · · · µ


, a+b = µ, Ar =



hr11 hr12 0 · · · 0

hr12 −hr11 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


,

r = n+ 2, . . . ,m, where hrij are the components of the second fundamental
form of the submanifold.

Let Cm+1 denote the complex Euclidean (m+ 1)-space and let S2m+1 =
{z = (z1, . . . , zm+1) ∈ Cm+1 | 〈z, z〉 = 1} be the unit hypersphere of Cm+1.
Then consider the Hopf fibration π : S2m+1 → CPm(4c). It is well known
that this map is a Riemannian submersion with totally geodesic fibres. Let
N be an n-dimensional submanifold of CPm(4c). set π−1(N) = Ñ . Then
π̄ : Ñ → N is also a Riemannian submersion with totally geodesic fibres,
where π̄ is the restriction πN . For a horizontal 2-plane Px ⊂ TxÑ , we denote
by P̃x the dim(S2m+1) − dim(CPm(4c)) + 2-subspace spanned by Px and
the vertical space Vx. Let x ∈ Ñ and let e1, e2 be orthonormal vectors at
π(x) ∈ N . Denote by ẽ1, ẽ2 the horizontal lifts of e1, e2 at x ∈ Ñ . Then P̃x
is spanned by ẽ1, ẽ2 and Vx. In [ACM], Alegre, Chen and Munteanu proved
the following result: Let π : S2m+1 → CPm(4) be the Hopf fibration and let
N be an n-dimensional submanifold of CPm(4). Then

ρÑ (x)− inf
P̃x

ρÑ P̃x ≤
n2(n− 2)

2(n− 1)
‖H‖2 + ‖P‖2 +

1

2
(n+ 1)(n− 2)c,

where P̃x runs over (m+3)-subspaces associated with all horizontal 2-planes
Px at x ∈ Ñ , P is the projection from CPm to TN , and ‖H‖2 is the squared
mean curvature of N in CPm. Equality holds if and only if there exists an
orthonormal basis {e1, . . . , em} such that

(a) the shape operator A of N in CPm(4) satisfies

As =

(
Bs 0

0 µsI

)
, s = n+ 1, . . . ,m,

where I is the identity (n−2)×(n−2) matrix and Bs are symmetric
2× 2 submatrices satisfying µs = traceBs, s = n+ 1, . . . , 2m, and

(b) Pe1 = Pe2 = 0.

From the above remarks, one can see that if r = dim(M), then a Riemannian
map becomes an isometric immersion and Theorem 3.1 gives the immersion
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case. Since the base space for the Hopf map is a complex manifold, the two
inequalities seem different due to extra terms, but still they relate similar
notions.

In [C4] and [C5], Chen obtained another inequality for Riemannian sub-
mersions and found an interesting result about non-existence of certain im-
mersions defined on the same total space. Let π : M → B be a Riemannian
submersion with totally geodesic fibres and φ : M → M̄ an isometric im-
mersion into a Riemannian manifold M̄ . It was shown in [C4] that

Ăπ ≤
n2

4
‖H‖2 + b(n− b) max K̄

where Ăπ is the submersion invariant defined by Ăπ=
∑b

i=1

∑n
s=b+1‖Aeies‖2,

and max K̄(p) denotes the maximum value of the sectional curvature func-
tion of M̄m restricted to plane sections in TpM . By using this inequality,
Chen proved that π cannot be isometrically immersed in any Riemannian
manifold of non-positive sectional curvature as a minimal submanifold.

We now give an example of Riemannian maps satisfying (3.3); we first
recall the notion of totally umbilical Riemannian maps.

Lemma 3.4 ([S2]). Let F be a Riemannian map between Riemannian
manifolds (M, g) and (N, gN ). Then F is an umbilical Riemannian map if
and only if

(3.15) (∇F∗)(X,Y ) = gM (X,Y )H2

for X,Y ∈ Γ ((kerF∗)
⊥), where H2 is a nowhere zero vector field on

(rangeF∗)
⊥.

Corollary 3.5. For every umbilical Riemannian map F from a Rie-
mannian manifold (M, gM ) to a space form (N(c), gN ) with rankF = r ≥ 3,
equality holds in (3.3).

We also have the following result.

Proposition 3.6 ([S2]). Let F1 be a Riemannian submersion from a
Riemannian manifold (M, gM ) onto a Riemannian manifold (N, gN ) and
F2 a totally umbilical isometric immersion from (N, gN ) into a Rieman-
nian manifold (N̄ , gN̄ ). Then F2 ◦F1 is an umbilical Riemannian map from
(M, gM ) to (N̄ , gN̄ ).

Considering Proposition 3.6, we have the following example.

Example 3.7. We consider the Hopf fibration π : S7 → S4. This map is
a Riemannian submersion with totally geodesic fibres and it has fibres S3.
We also consider the isometric immersion i : S4 → E5 as a hypersurface
of E5. Then i is a totally umbilical isometric immersion. Thus i ◦ π is a
totally umbilical Riemannian map and therefore it satisfies (3.3).
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Concluding remarks. In [C6], there are many different versions of
Chen’s inequality for various ambient manifolds and applications of Chen’s
inequality in different manifolds. Still, many problems for Chen-like inequal-
ities for Riemannian maps remain to be explored.
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