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Summary. Our purpose in this paper is to study the stability of f -maximal spacelike
hypersurfaces immersed in a weighted generalized Robertson–Walker spacetime −I×ρMn

f ,
where Mn

f is a weighted Riemannian manifold endowed with a weight function f . In this
setting, we obtain sufficient conditions to guarantee that an f -maximal hypersurface be
Lf -stable, where Lf stands for the weighted Jacobi operator.

1. Introduction. Let (M
n+1

, 〈 , 〉) be an orientable (n+1)-dimensional
Lorentzian manifold endowed with a timelike vector field V and let f :

M
n+1 → R be a smooth function. The weighted Lorentzian manifold M

n+1
f

associated with M
n+1

and f is the triple (M
n+1

, 〈 , 〉, e−fdM), where dM

denotes the standard volume element of M
n+1

induced by the metric 〈 , 〉.
We will refer to the function f as being the weight function associated

to M
n+1
f . In this setting, an important tensor is the Bakry–Émery Ricci

tensor Ricf , a natural generalization of the Ricci tensor Ric of M
n+1
f de-

fined by

(1.1) Ricf = Ric + Hess f,

where Hess f is the Hessian of f on M
n+1
f .

Appearing naturally in the study of self-shrinkers, Ricci solitons, har-
monic heat flows and many other subjects in differential geometry, weighted
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manifolds proved to be important nontrivial generalizations of Riemannian
manifolds and they are objects of extensive ongoing investigation. For a
brief overview of results in this area, we refer the articles of Morgan [M] and
Wei–Wylie [WW].

In this context, we consider a (connected) spacelike hypersurface ψ :

Σn → M
n+1
f immersed in a weighted Lorentzian manifold M

n+1
f , that is,

the metric induced on Σn via ψ is a Riemannian metric. As usual, we also
denote by 〈 , 〉 the metric of Σn induced via ψ. Since V is a globally
defined timelike vector field on M

n+1
f , there exists a unique unitary timelike

normal vector field N globally defined on Σn which is in the same time-
orientation of V , that is, 〈V,N〉 < 0. We will refer to this normal timelike
vector field N as being the future-pointing Gauss map of Σn. Throughout
this work, N will always denote the future-pointing Gauss map of a spacelike

hypersurface ψ : Σn → M
n+1
f . On the other hand, we note that the weight

function f induces a weighted measure e−fdσ on Σn, where dσ denotes the
standard volume element of Σn with respect to the induced metric from the

ambient space M
n+1
f . So, we have an induced weighted Riemannian manifold

(Σn, 〈 , 〉, e−fdσ).

The f -divergence operator on Σn is defined by

(1.2) Divf (X) = ef Div(e−fX),

where X is a tangent vector field on Σn and Div denotes the standard
divergence operator of Σn. From (1.2) we can define the f -Laplacian of Σn

by

(1.3) ∆fu = Divf (∇u) = ∆u− 〈∇f,∇u〉,

where u is a smooth function on Σn, ∆ denotes the Laplacian induced by
Div and ∇ stands for the Levi-Civita connection of Σn induced from the
Levi-Civita connection ∇ on the ambient space M

n+1
f .

Following Gromov [G], the weighted mean curvature, or simply f -mean
curvature, Hf of Σn is defined by

(1.4) nHf = nH − 〈∇f,N〉,

where H = − 1
ntr(A) denotes the standard mean curvature of Σn and A :

X(Σ) → X(Σ), given by AX = −∇XN , is the shape operator of Σn with
respect to its future-pointing Gauss map N . So, a spacelike hypersurface

ψ : Σn →M
n+1
f immersed in a weighted Lorentzian manifold M

n+1
f is called

an f -maximal hypersurface if its f -mean curvature Hf vanishes identically
or, equivalently, if its mean curvature H satisfies

nH = 〈∇f,N〉.
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Stability questions concerning constant mean curvature compact hyper-
surfaces in Riemannian space forms began with Barbosa–do Carmo [BC],
and Barbosa–do Carmo–Eschenburg [BCE]. In the former paper, the au-
thors introduced the notion of stability and proved that spheres are the
only stable critical points for the area functional, for volume preserving
variations. In the setting of spacelike hypersurfaces in Lorentz manifold,
Barbosa–Oliker [BO] proved that constant mean curvature spacelike hyper-
surfaces are critical points for volume preserving variations. Moreover, by
computing the second variation formula they showed that constant mean
curvature embedded spheres in the de Sitter space Sn+1

1 maximize the area
functional for such variations. Later on, Barros–Brasil–Caminha [BBC] clas-
sified strongly stable spacelike hypersurfaces with constant mean curvature
immersed into so-called generalized Robertson–Walker spacetimes −I×ρMn,
that is, Lorentzian warped products with 1-dimensional negative definite
base I ⊂ R, Riemannian fiber Mn and warping function ρ : I → R. As-
suming a certain convexity condition on the warping function, they showed
that a closed strongly stable spacelike hypersurface immersed with constant
mean curvature in −I×ρMn is either maximal or a spacelike slice {t0}×Mn.

Proceeding in this direction, our aim is to investigate the Lf -stability
of f -maximal spacelike hypersurfaces immersed in a weighted generalized
Robertson–Walker spacetime −I ×ρMn

f , where Lf stands for the weighted
Jacobi operator defined by

(1.5) Lf = ∆f − (|A|2 + Ricf (N,N)).

Here, motivated by a splitting theorem due to Case [C], we will suppose
that the weight function f does not depend on the parameter t ∈ I.

This manuscript is organized as follows. In Section 2 we compute the first
and second variation formulas for a spacelike hypersurface in a weighted
Lorentzian manifold (see Lemmas 2.1 and 2.2). Next, in Section 3 we es-
tablish an Lf -stability criterion (see Lemma 3.2) and, finally, we apply it to
determine when a f -maximal spacelike hypersurface immersed in a weighted
generalized Robertson–Walker spacetime I ×ρ Mn

f is Lf -stable (see Theo-
rem 3.3).

2. Preliminaries. In what follows,M
n+1

denotes an (n+1)-dimensional

Lorentzian manifold endowed with a timelike vector field V , f : M
n+1 → R

a smooth function and M
n+1
f the weighted Lorentzian manifold associated

with M
n+1

and f . If ψ : Σn → M
n+1
f is a (connected) spacelike hyper-

surface in M
n+1
f , then Σn is automatically orientable (see [O, p. 189]) and

we can choose a globally defined unit timelike normal vector field N on Σn

which is in the same time-orientation as V , that is, 〈V,N〉 < 0. Moreover,
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as already mentioned, we have an induced weighted Riemannian manifold
(Σn, 〈 , 〉, e−fdσ).

The weighted area functional of Σn is naturally defined by

volf (Σ) =
�

Σ

e−f dσ.

The first and second variation formulas for the weighted area functional are
well known in the case of hypersurfaces immersed in Riemannian spaces (see,
for instanse, [CMZ]). In the present context, we have not found their proof
in the current literature. So, for the sake of completeness, we will deduce
them here.

For this, let F : Σn×(−ε, ε)→M
n+1

be a variation of Σn with compact

support and fixed boundary, that is, F (·, t) : Σn → M
n+1

, t ∈ (−ε, ε), is a
spacelike immersion and

(i) F = Id outside a compact subset of Σn;
(ii) F (x, 0) = ψ(x) for all x ∈ Σn;

(iii) F (x, t) = x for all x ∈ ∂Σ.

The vector field Ft = ∂F
∂t

∣∣
t=0

restricted to Σn is called the variational vector
field of the variation F . We note that

Ft = F>t − 〈Ft, N〉N,
where ( )> denotes the tangential component of a vector field in X(M)
along Σn. The variation F is called normal when F>t = 0 on Σn.

Lemma 2.1. Let M
n+1
f be a weighted Lorentzian manifold and let ψ :

Σn → M
n+1
f be a spacelike hypersurface. If F : Σn × (−ε, ε) → M

n+1
is a

variation of Σn with compact support and fixed boundary, then

d

dt
volf (F (Σ, t))

∣∣∣∣
t=0

= n
�

Σ

Hfϕe
−f dσ.

where Ft = F>t + ϕN (thus ϕ = −〈Ft, N〉). In particular, Σn is f -maximal
if, and only if, d

dt volf (F (Σ, t))
∣∣
t=0

= 0 for every variation F with compact
support and fixed boundary.

Proof. Let (x1, . . . , xn) be a local coordinate system on Σn. Then
(F ◦ x1, . . . , F ◦ xn) is a local coordinate system on Σt = F (Σ, t). Denote
Fxi(t) = dF

(
∂
∂xi

)
and consider

gij(t) = 〈Fxi(t), Fxj (t)〉 and v(t) =

√
det(gij(t))√
det(gij(0))

.

Note that v(t) is well defined and independent of the choice of a local co-
ordinate system on Σn. Furthermore, denoting by dσt the standard volume
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element of Σt with respect to the metric induced from the ambient space,
we have

volf (F (Σ, t)) =
�

Σt

e−f(p,t) dσt =
�

Σ

v(t)e−f(p,t) dσ,

where f(p, t) = f(F (p, t)). Differentiating this, we obtain

(2.1)
d

dt
volf (F (Σ, t))

∣∣∣∣
t=0

=
�

Σ

d

dt
(v(t)e−f(x,t))

∣∣∣∣
t=0

dσ.

Now, to evaluate d
dt(v(t)e−f(p,t))

∣∣
t=0

at some point p ∈ Σn, we may choose
a local coordinate system which is orthonormal at p. It is well known that
d
dtv(t)

∣∣
t=0

= DivF Tt + nHϕ. Hence, we get

(2.2)
d

dt
(v(t)e−f(x,t))

∣∣∣∣
t=0

= e−f(p,0)
d

dt
v(t)

∣∣∣∣
t=0

− v(0)e−f(p,0)
d

dt
f(F (p, t))

∣∣∣∣
t=0

= e−f (DivF Tt + nHϕ)− e−f 〈∇f, Ft〉
= e−f (Divf F

T
t + nHfϕ).

Therefore, taking into account the weighted version of the divergence the-
orem (see [CR, Lemma 2.2]), we can use (2.1) and (2.2) to conclude the
proof.

Our aim is to study f -maximal spacelike hypersurfaces ψ : Σn →M
n+1

which maximize the weighted area functional for every normal variation of
Σn with compact support and fixed boundary. Hence, in order to exam-
ine when an f -maximal spacelike hypersurface is actually a maximum of
weighted area functional, one certainly needs to study the second variation
d2

dt2
volf (F (Σ, t))

∣∣
t=0

. In the next result, we compute the second variation

formula of the weighted area functional.

Lemma 2.2. Let M
n+1
f be a weighted Lorentzian manifold and let ψ :

Σn →M
n+1
f be an f -maximal spacelike hypersurface. If F : Σn× (−ε, ε)→

M
n+1

is a normal variation of Σn with compact support and fixed boundary,
then

d2

dt2
volf (F (Σ, t))

∣∣∣∣
t=0

=
�

Σ

ϕ
(
∆fϕ− (|A|2 + Ricf (N,N))ϕ

)
e−f dσ,

where Ft = ϕN (thus ϕ = −〈Ft, N〉).
Proof. In what follows, we keep the notation established in the proof of

Lemma 2.1. We have

(2.3)
d2

dt2
volf (F (Σ, t))

∣∣∣∣
t=0

=
�

Σ

d2

dt2
(v(t)e−f(x,t))

∣∣∣∣
t=0

dσ.
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It is well known that

(2.4)
d2

dt2
v(t)

∣∣∣∣
t=0

= Div(∇FtFt)+n2ϕ2H2−|∇ϕ|2−(|A|2+Ric(N,N))ϕ2.

On the other hand, using the fact that Σn is f -maximal jointly with (2.4),
with a straightforward computation we obtain

d2

dt2
(v(t)e−f(x,t))

∣∣∣∣
t=0

= e−f
(
d2

dt2
v(t)

∣∣∣∣
t=0

− 〈∇f, Ft〉
d

dt
v(t)

∣∣∣∣
t=0

− v(0)
d

dt
〈∇f, Ft〉

∣∣∣∣
t=0

)
+
d

dt
e−f(x,t)

∣∣∣∣
t=0

(
d

dt
v(t)

∣∣∣∣
t=0

− v(0)〈∇f, Ft〉
)

= e−f
(
Divf (∇FtFt)− |∇ϕ|2 − (|A|2 + Ricf (N,N))ϕ2

)
.

Therefore, using once more the weighted divergence theorem and the fact
that Σn is f -maximal we conclude our proof.

3. Stability of f-maximal spacelike hypersurfaces. It follows from
Lemma 2.2 that the second variation formula for the weighted area func-
tional depends only on ϕ ∈ C∞0 . So, the following definition makes sense.

Definition 3.1. Let M
n+1
f be a weighted Lorentzian manifold and let

ψ : Σn → M
n+1
f be an f -maximal spacelike hypersurface. We say that Σn

is Lf -stable if, for any compactly supported smooth function ϕ ∈ C∞0 (Σ),

d2

dt2
volf (Σ)

∣∣∣∣
t=0

=
�

Σ

ϕLfϕe
−f dσ ≤ 0,

where the weighted Jacobi operator Lf is defined by (1.5).

To prove our main theorem, we will also need the following auxiliary
result.

Lemma 3.2. Let M
n+1
f be a weighted Lorentzian manifold and let ψ :

Σn → M
n+1
f be an f -maximal spacelike hypersurface. If there exists a

positive smooth function u ∈ C∞(Σ) such that Lfu ≤ 0, then Σn is Lf -
stable.

Proof. Assume that such a u exists and take ϕ ∈ C∞0 (Σ). Then, we can
choose η ∈ C∞0 (Σ) satisfying ϕ = ηu. Hence, from (1.5) we have
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(3.1)
�

Σ

ϕLfϕe
−f dσ =

�

Σ

ηuLf (ηu)e−f dσ

=
�

Σ

[
η2uLfu+ ηu2∆η + 2ηu〈∇u,∇η〉 − ηu2〈∇η,∇f〉

]
e−f dσ

≤
�

Σ

[
ηu2∆η + 2ηu〈∇u,∇η〉 − ηu2〈∇η,∇f〉

]
e−f dσ

=
�

Σ

[
ηu2∆η + 1

2〈∇u
2,∇η2〉 − ηu2〈∇η,∇f〉

]
e−f dσ.

On the other hand, it is not difficult to verify that

Div(u2∇η2) = 〈∇u2,∇η2〉+ u2∆η2(3.2)

= 〈∇u2,∇η2〉+ 2ηu2∆η + 2u2|∇η|2.

Therefore, using once more the weighted version of the divergence theorem,
from (3.1) and (3.2) we get

�

Σ

ϕLfϕe
−f dσ ≤

�

Σ

[
1
2 Div(u2∇η2)− ηu2〈∇η,∇f〉 − u2|∇η|2

]
e−f dσ

=
�

Σ

[
1
2 Divf (u2∇η2)− u2|∇η|2

]
e−f dσ

≤ −
�

Σ

u2|∇η|2e−f dσ ≤ 0,

and consequently Σn is Lf -stable.

Now, let Mn be a (connected) complete n-dimensional Riemannian man-
ifold, I ⊂ R an open interval in R and ρ : I → R a positive smooth function

on I. We will denote by M
n+1

= −I ×ρMn the product manifold I ×Mn

endowed with the Lorentzian metric

(3.3) 〈 , 〉 = −π∗I (dt2) + (ρ ◦ πI)2π∗M (〈 , 〉M ),

where πI and πM denote the canonical projections from I ×Mn onto each
factor, 〈 , 〉M is the Riemannian metric on the fiber Mn, and I is endowed

with the metric −dt2. The Lorentzian manifold M
n+1

is called a Lorentzian
warped product with base I, fiber Mn and warping function ρ.

When Mn has constant sectional curvature, the warped product M
n+1

=
−I ×ρ Mn has been known in the literature as a Robertson–Walker (RW)
spacetime, due to the fact that, for n = 3, it is an exact solution of Ein-
stein’s field equations (see [O, Chapter 12]). After [ARS], the warped product

M
n+1

= −I ×ρMn has usually been referred to as a generalized Robertson–
Walker (GRW) spacetime, and we will stick to this terminology along this
paper.
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Let M
n+1

= −I ×ρ Mn be a GRW spacetime and f : M
n+1 → R

a smooth function on M
n+1

. It follows from a splitting theorem due to

Case (see [C, Theorem 1.2]) that if a weighted GRW spacetime M
n+1
f with

bounded weight function f is such that Ricf (T, T ) ≥ 0 for all timelike vector
fields T , then f must be constant along I. Motivated by this result, here

we will consider weighted GRW spacetimes M
n+1
f whose weight function f

does not depend on t ∈ I, that is, 〈∇f, ∂t〉 = 0; for simplicity, we will denote

them by M
n+1
f = −I ×ρMn

f .

Recall that, since ∂t is a globally defined timelike vector field on M
n+1
f ,

there exists a unique unitary timelike normal vector field N globally defined
on Σn which is in the same time-orientation as ∂t, i.e. 〈N, ∂t〉 ≤ −1. In this
context, we will consider one particular smooth function, namely, the angle
function Θ = 〈N, ∂t〉, where ∂t stands for the unitary vector field which

determines on M
n+1

= −I ×ρ Mn a codimension one foliation by totally
umbilical slices {t} ×M .

Now, we will state and prove our main result concerning Lf -stability of
spacelike hypersurfaces in a weighted GRW spacetime.

Theorem 3.3. Let ψ : Σn → M
n+1
f be an f -maximal spacelike hyper-

surface immersed into a weighted GRW spacetime M
n+1
f = −I ×ρMn

f .

(a) If ρ′′ ≤ 0 on Σn, then Σn is Lf -stable.
(b) If Σn is compact and ρ′′ ≥ 0 on Σn, then Σn is Lf -stable if and

only if ρ′′ = 0 on Σn.
(c) If Σn is compact and ρ′′ > 0 on Σn, then Σn cannot be Lf -stable.

Proof. First, we will prove (a). For this, let us consider on Σn the neg-

ative function Θ̃ = ρΘ. Since ρ∂t is a conformal vector field in M
n+1
f with

∇Xρ∂t = ρ′X for every X ∈ X(Σ), we can see that

X(Θ̃) = X〈N, ρ∂t〉 = 〈∇XN, ρ∂t〉+ 〈N,∇Xρ∂t〉
= −〈AX, ρ∂t〉 = −〈X,A(ρ∂>t )〉.

So, from the last equation we obtain ∇Θ̃ = −ρA(∂>t ), and from [CL, Propo-
sition 2.1],

(3.4) ∆Θ̃ = nρ∂>t (H) + nρ′H − nN(p′) + (|A|2 + Ric(N,N))Θ̃.

On the other hand, taking into account our restriction on the weight
function, from (1.4) we get

n∂>t (H) = ∂>t 〈∇f,N〉(3.5)

= 〈∇∂t∇f,N〉+Θ〈∇N∇f,N〉 − 〈∇f,A(∂>t )〉
= Hess f(N, ∂t) +ΘHess f(N,N) + ρ−1〈∇f,∇Θ̃〉.
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Moreover, it is not difficult to verify that

(3.6) Hess f(N, ∂t) = −ρ−1ρ′〈∇f,N〉 = −nρ−1ρ′H.
It follows from (3.4)–(3.6) that

∆Θ̃ = 〈∇f,∇Θ̃〉 − nN(ρ′) + (|A|2 + Ricf (N,N))Θ̃.

Thus, from (1.3) we obtain

∆f Θ̃ = ∆Θ̃ − 〈∇f,∇Θ̃〉
= −nN(ρ′) + (|A|2 + Ricf (N,N))Θ̃.

Now, writing N = N∗ − Θ∂t, where N∗ denotes the orthogonal projection
of N onto the fiber Mn, we find that

N(ρ′) = −Θ∂t(ρ′) = −ρ
′′

ρ
Θ̃.

Hence, we conclude that

(3.7) Lf Θ̃ = n
ρ′′

ρ
Θ̃.

Therefore, we conclude that Σn is Lf -stable.
Now, let us consider (b). In this case, we have C∞0 (Σ) = C∞(Σ). So, if

Σn is Lf -stable, we obtain

0 ≥
�

Σ

Θ̃Lf Θ̃e
−f dσ =

�

Σ

n
ρ′′

ρ
Θ̃2e−f dσ ≥ 0,

that is, ρ′′ = 0 on Σn. The converse follows from item (a).
Finally, we prove (c). From the definition of Lf -stability we conclude

that �

Σ

Θ̃Lf Θ̃e
−f dσ =

�

Σ

n
ρ′′

ρ
Θ̃2e−f dσ > 0.

Therefore, Σn cannot be Lf -stable.

Remark 3.4. Let M
n+1
f = −I ×ρ Mn

f be a weighted GRW spacetime

whose fiber Mn is compact. In particular, the slices in M
n+1
f are also com-

pact. Assume in addition that ρ′′ ≥ 0 and that

Ω = {t ∈ I : ρ′′(t) = 0}
is a set of isolated points. Then, for every t ∈ Ω such that ρ′(t) = 0, the
f -maximal slice Σt = {t} ×Mn is Lf -stable.
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