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1. Introduction. For any finite or infinite increasing sequence S =
{s(n)}n>1 of positive integers, let us call a positive number N an S-ex-
ponential number, written N € FE(S), if all exponents in its prime power
factorization are in S. Let us agree that 1 € E(S). For example, if S = {1},
then the 1-exponential numbers form the sequence B of square-free numbers,
and, as is well-known,

6
1 1=—z+0(z'?).
(1) ig;ieB — (z/7)
Note that if s(1) > 1, the density h(E(S)) of the set E(S) is zero. Indeed, it
is not more than the density of the sequence E(Y"), where 7" = {2,3,4,...}.
Note that E(7) is also called the set of powerful numbers [6, sequence
A001694]. Bateman and Grosswald [1] proved that

_C3/2) 1y €(2/3) /3 1/6
(2) 1= /7 + 7+ 0z ®).
6%%@) ¢(3) ¢(2)

Thus A(E(Y)) = 0 and, in general, if s(1) > 1, then h(E(S)) = 0.

If § = B, the B-exponential numbers are also known as exponentially
square-free numbers (for the first time this notion was introduced by
M. V. Subbarao in 1972 [7], see [6l, A209061]). These numbers were studied
by many authors (for example, see [3], [T, Theorem 6.7], [§], [L0]). In these
papers, the authors analyzed the Subbarao asymptotic formula

© 200 200 —
(3) 3 1:H<1+2“() p‘:( 1)>a:+R(a:),

i<z,i€E(B)
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where the product is over all primes, and p is the Mobius function. The best
result of type R(z) = o(z'/*) was obtained by Wu (1995) without assuming
R.H. (for more details see [10]). In 2007, assuming R.H., Téth [9] obtained
R(x) = O(x'/5*%), and in 2010, Cao and Zhai [3] found more exactly that
R(x) = Cz'/> + O(233/193+2)  where C is a computable constant. Moreover,
T6th [§] also studied the exponentially k-free numbers for k > 2.

Let G be the set of all finite or infinite increasing positive integer se-
quences S = {s(n)},>1 with s(1) = 1.

In this paper, without assuming R.H., we obtain a general formula with
a remainder term O(,/z log ze¢VIeg/loglog ) (¢ g a constant) not depending
on S € G. More exactly, we prove the following.

THEOREM 1. For every sequence S € G the S-exponential numbers have
a density h = h(E(S)) such that

(4) Z 1 = h(E(S))z + O(zlog ﬂz:fzc\/@/loglog%)7
i<z, i€E(S)
with ¢ = 41/2.4/log2 = 7.443083 ... and
-1
) h(E(S) H<1+Z ]
i>2

where u(-) is the characteristic function of S u( )=1ifneS andu(n) =0
otherwise.

In particular, for S = B we obtain with a slightly worse remainder
term, but which is suitable for all sequences in G.
Recall that a perfect set is a closed set with no isolated points.

THEOREM 2. The set {h(E(S)) : S € G} is a perfect set with countably
many gaps. All these gaps are left-sided neighborhoods of the densities of
E(S) corresponding to all finite S except for S = {1}.

2. Proof of Theorem 1. For the proof Theorem [l| we need a lemma
proved earlier (2007) by the author [5, pp. 200-202]. For a fixed square-free
number r, denote by B, the set of square-free numbers n for which (n,r) = 1,
and set

by(x) = |B, N{1,...,x}.
In particular, B = Bj is the set of all square-free numbers.

LEMMA 1. 6r
b?“(x) (p + 1) T+ Rr(x)a

p|7“
where for every x > 1 and every r € B,

kﬁ’ T < N,
R (z)] < >
| Ry ()] < {kec@/loglogr\/z, r>N+1,
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where k = 3.5 [y<<p3(1 +1/y/p) = 57.682607 ... (in case r = 1, k = 3.5),
¢=4,/24]log2 = 7.443083..., N = 6469693229

Everywhere below, 7(n) denotes the product of all distinct prime divisors
of n; we set r(1) = 1.

Let S € G. Note that the set E(Y) N E(S) contains all numbers of E(.S)
whose exponents in their prime power factorizations are all more than 1.
Evidently, every y € E(S) has a unique representation as the product of
some a € E(T)NE(S) and some b € B,(,). Note that E(T) N E(S) is always
non-empty (by definition, it contains 1). In particular, if y is square-free,
then a = 1, b = y (€ By). For a fixed a € E(T7) N E(S), denote the set
of y = ab € E(S) by E(S)®. Then E(S) = |,ep(s)nmr) E(S) (disjoint
union). Consequently, by Lemma

Y. l=bix)+ 3 bra) <z>

i<z,i€E(S) 4<a<z,a€E(S)NE(T)

and since 7(a) = [],},(,) P, we have

plr

© S 1=2(1+ ¥ I (1-— ) )e+R@)
4 w2 p+1l)a ’
i<z,i€E(S) 4<a<z,a€E(S)NE(Y) p|r(a)

where

(1) |R(z)| <3.5vz+ >

4<a<z,a€E(S)NE(T)

+ Y Jre(f)lr T

4<a<z,r(a)<N 4<a<z,r(a)>N+1
a€E(S)NE(Y) a€E(S)NE(Y)

with N = 6469693229.

Let x > N go to infinity. We distinguish two cases.

CAsE (i): r(a) < N. Denote by E(T)(n) the nth powerful number (in
increasing order). According to , E(T)(n) = (¢(3)/¢(3/2))*n2(1 + o(1)).
S0, > 1<n<z 1/VEX)(n) = O(log ). Hence, by Lemma

> ‘Rr(a) <Z>‘ < kv > R O(Vxlog ).

4<a<z,r(a)<N 4<a<z,a€E(S)NE(Y) \/a
a€E(S)NE(Y)

CASE (ii): 7(a) > N. Then, by Lemma
1
2l <$>‘ SkVE 30 e

4<a<z,r(a)>N+1 4<a<z,r(a)>N+1
a€E(S)NE(Y) ac€E(S)NE(Y)

x
rea ()
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where the last sum does not exceed
Z Lec\/loga/logloga < ec\/logz/loglog:vo(log {L‘)

N+1<a<z,r(a)>N+1

So, R(z) = O(y/z log zecVice/loglogz) "an( by @ we have

> -

i<z,icB(S)

6 1 1 cy/log x /log log x

7r2(1+ Z H (1_H> >x+0(floga:e gz/loglogz)
4<a<z,acE(S)NE(Y) p|r(a)

Moreover, if we here replace Zagx,aeE(s)mE(T) by ZGGE(S)QE(T), then

the error does not exceed 6z7 2% _ 1/E(Y)(n) = 6z 20(1/z) = O(1),
so the result does not change. Finally,

(8) 1=

i<z,i€E(S)
6 1
— cy/log z/log log ©
SCE Tl oo
a€E(S)NE(T) p|r(a)
Formula (8] shows that if S € G, then E(S) has a density.

3. Completion of the proof of Theorem 1. It remains to evaluate
the sum (). For that we follow the scheme of [5, pp. 203-204]. For a fixed
l € B, denote by C(l) the set of all E(S) N E(Y)-numbers a with r(a) = [.
Recall that (1) = 1. By (8)), we have

1
) 3 xzn< - ) > R,
z‘gx,z‘eE(S) leB p|l aeC(l)
Consider the function A: N — R given by
1 le B,
A(l) = { 2acc 1/
0, l ¢ B.
It is evident that if 11,1y € B and (ly, lg) =1, then
Alhl)= Y —-= Y = Z A(lp),
aEC(lllg) aGC(ll) aEC lg
so A(l) is a multiplicative function. Hence the function f defined by

ro=TJ(1- 55 )aw

|l



S-exponential numbers 389

is also multiplicative. Moreover,

fm <> Am < 30 % < 0.
1 n=1

acE(Y)

n=

Consequently [4, p. 103],

(10) S fm)y =T+ fp) + f@*) +-).

n=1 P
Since f(p*¥) =0 for k > 2, by @) we obtain

S 1= e Y0+ R@) = e [0+ F) + R(2)
=1 p

i<z,i€E(S)

6 1 1 1 1
zﬂle;[<1+ (1—p+1><ps( Tt +)> + R(x).

N

Now, since ;5o pslu) =D i>2 “;f) and % =[[,(1 - Z%), we have
6 1 1
(11)  h(E(S)) = — (1 + (1 - ) )
™ p+1 =P (4)
1
IO () )
T p p+ = p
1 1 1
(62) (- 6 E
p p p p+ 1>2 p
1 1 ]
SN0 -5) < (5)25)
p p p i>2 p
and taking into account that u(1) = 1, we find

; = =P
(- b R
:1;[<1+;u(i) ;(Z—1)>’

which gives the required evaluation of the sum in and completes the
proof of the theorem.
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4. A question of D. Berend. Berend [2] posed the following question.
Let p, be the nth prime. Let A = {S51,S59,...} be an infinite sequence of
sequences S; € G. We say that a positive number N is an A-exponential
number (N € E(A)) if, for every n, whenever p,, divides N, then its exponent
in the prime power factorization of N belongs to S,,. We agree that 1 € E(A).
How will Theorem [I] change for A-exponential numbers?

An analysis of the proof of Theorem [I] shows that also in this more
general case, for every sequence A the density h(A) of the A-exponential
numbers exists, and

(12) > 1=h(EA)x+ R(x),
i<z,i€E(A)
where R(z) is as in Theorem [I] and

(13) ) = [T (1+ X 0= =),

n>1 i>2

where uy,(+) is the characteristic function of the sequence S, : u,(k) = 1 if
k € S,, and u,(k) = 0 otherwise.

EXAMPLE 1. Let
A={S={1},%={1,2},....5. ={1,...,n},...}.

Then, by (|13]),
1
h(EA) =[] (1 — W) =0.7210233....

n>1

5. The set {h(E(S)): S € G}. Let S € G. Then h(E(S)) € [6/72,1].
Our question was the following: is the set {h(E(S))} dense in this interval?
D. Berend [2] gave a negative answer. Indeed, consider the set G®) of se-
quences S € G containing 2. Then, evidently, h(E(S)) > h(E({1,2})), so
that, by Theorem

(14) h(E(S)) > H<1 - p13> for § € GO,

Now consider the set G of sequences S € G not containing 2. Then
h(E(S)) < h(E({1,3,4,5,6,...})), so that, by Theorem

(15) h(E(S))§H<1—12+p13> H<1_ _31> for $ € G®),

Thus, by (14)-(15), we have a gap in the set {h(E(S))} in the interval

(0 10 5))

p
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Below we use this idea of Berend. We write {h(E(S))} instead of
{h(E(S)): S € G}.
We begin the study of {h(E(S))} by considering its cardinality.

LEMMA 2. G is uncountable.
Proof. Trivially, G is equivalent to the set of all subsets of {2,3,4,...}. =
LEMMA 3. For any distinct A, B € G, we have h(E(A)) # h(E(B)).

Proof. Let A = {a(i) : i > 1}, B = {b(i) : i > 1}. Let n > 1 be the
maximal index such that a(i) = b(i), i = 1,...,n, while a(n + 1) # b(n+1)
(the case n = 0 is impossible, since by assumption a(1) = b(1) = 1).

Set

Then
(16) hE(An+1)) < h(E(A)) < h(E(A541)),

and analogously for B.
We distinguish four cases:

(i) a(n+1) =a(n) +1, b(n +1) > a(n) +

(ii) a(n+1) > a(n) + k, b(n + ):a(n)+1 k>2

(iii) a(n+1) =a(n) +k,aln)+2<bn+1) < )—i—k—l k> 3;
(iv) a(n+1) =a(n) + k, b(n+)2a(n)+k;+1 k> 2.

(i) By and (16), we have
a(n)

(17) >H(1+Z _“_1)),

where u(-) is the characteristic function of A. On the right-hand side we sum
to a(n) since here u(a(n + 1)) — u(a(n +1) —1) = 0. On the other hand,

u(i—1) 1 1
(18)  h(E(Bpi1)) < H(l + Z o pa(n)+1 - pa(n)+2>'
By ([7)-(18), h(E(B)) < h(E(4)).

(ii) Symmetrically to (i), we have

(19) >H<1+az ' _“_1)>.
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On the other hand,

a(n)

—uli— 1) 1 1
(20) n+1)) H<1 + Z ~ a1 T pa(n)+2>'
P =2

Thus h(E(A)) <h( (B)).
(iii) Again, by (5)) and (16} E, we have

u(i —1) 1 1
(21) ) = H(l + Z o pa(n)+1 - pa(n)—‘rk—l)’
while
(22) H(l + SRui) -1 1 T )
n+1 . g pz pa(n)+1 pa(n)+k ’

Hence, h(E(A)) < h(E(B)).
(iv) Symmetrically,

a(n)
u(i) —u(i—1) 1 1
(23) h 1)) < H< Z o T palmil + pelmHEAT )

while
(24)

a(n)

w(i) —u(i —1) 1 1 1
E H<1 + Z o pa(n)-i-l + pa(n)-i-k a pa(n)+k+1>
P 1=2

and since 2/p*MHk+l < 1/pa(M+E with equality only for p = 2, we have
h(E(A)) > h(E(B)). =

COROLLARY 1. Let A,B € G be distinct. Let s* = s*(A,B) be the
smallest number in the symmetric difference of A and B. If, say, s* € A,

then h(E(A)) > h(E(B)).

Proof. Referring to the proof of Lemma (3, we have s*(A,B) = n + 1.
We see that in all four cases in the proof of Lemma [3] the corollary is
confirmed. m

Lemmas [2] and 3] directly imply
LEMMA 4. The set {h(E(S)} is uncountable.

Denote by Gg, the subset of all finite sequences in G. Since the set of
all finite subsets of a countable set is countable, g, is countable and so is
the set {h(E(S)) : S € Ggn}-
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6. Proof of Theorem Our proof is divided into three parts: 1)
accumulation points; 2) gaps; 3) perfectness.

6.1. Accumulations
LEMMA 5. Every point h € {h(E(S))} is an accumulation point.

Proof. We distinguish two cases: when S is finite and when S is infinite.
Let S = {s(1),...,s(k)} € Ggn. Let n > s(k) + 2. Denote by S,, the
sequence {s(1),...,s(k),n}. Then, by (F),

(25)  h(E(S,)) H<1 n Z u(@i — 1) ps(;)ﬂ N 1)

pT’L

2—1) 1 1
= exp<210g<1+z — S +p”>>

The sum over all primes converges uniformly over n since it is majorized by
the convergent series

SEM (X )

p 1>2 p i>2

Hence
s(k)

) ) —u(i— 1) 1
Jim A(E(Sq)) H (1 + Z T >’

and by (5)), lim,—e0 h(E(Sn)) = h(E(S)).
Let now S = {s(1),...,s(k),...} € G be an infinite sequence. Let S,, =
{s(1),...,s(n)} be the n-part of S. In the same way, taking into account

the uniform convergence of the product for the density of .S,,, we find that
limy, 00 R(E(Sy)) = h(E(S)). m

6.2. Gaps. Let us show that, for every finite S € G except S = {1},
there exists an & > 0 such that no value of & is in (h(E(S)) — ¢, h(E(S9))).

We need a lemma.
LEMMA 6. Let
S ={s(1),...,s(k)} € Gan, k>2,
So={s(1),...,s(k—1),s(k)+1,s(k)+2,...}.
Then the interval
(26) (h(E(S2))., h(E(S1))
is a gap in the set {h(E(S)): S € G}.
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Proof. Consider in addition to S1, 52 any sequence S € G, S # 51,59,
which contains s*(S1, S). By Corollary[1} h(E(S)) > h(E(S1)). Thus h(E(S))
is not in the interval . Now consider in addition to S, S any sequence
S € G which does not contain s*(S1,S). Then Sy contains s*(S, S2). Indeed,
1) S cannot contain all terms s(1), ..., s(k) (since S differs from Sy, it should
contain additional terms, the smallest of which is s*(S,51) € S, contrary to
assumption); 2) if i, 1 <1 < k, is the smallest for which S misses s(i), then,
by assumption, all terms of S are larger than s(i). So s*(.5, S2) = s(i) € Sy if
i < k,whileifi = k, since S differs from So, we have s*(S, S3) = s(k)+j € So,
where j is the smallest for which s; + j is not in S. Hence, by Lemma [0}
h(E(S2)) > h(E(S)), and again h(E(S)) is not in the interval (26).

LEMMA 7. All gaps of the set {h(E(S))} are left-sided neighborhoods of
the densities of E(S) corresponding to all finite S except for S = {1}.

Proof. By Lemma [6] for every S = S; € Gy except S = {1}, we have
a gap of type which is a left neighborhood of h(E(S)). Let us show
that it is the only situation when a gap appears. Suppose a sequence S € G
does not contain an infinite set L of positive integers. Adding [ € L to S,
which goes to infinity, we obtain a set S; such that h(E(S;)) > h(E(S)) and
h(E(S;)) — h(E(S)). So, in a right neighborhood of h(E(S)) there cannot
be a gap of {h(E(S))}. In the opposite case, when S € G only misses a
finite set of positive integers, in a right neighborhood of h(E(S)) a gap of
{h(E(S))} is possible, but in this case S has the form of S5 in Lemmal6} Also,
if S € G is infinite, then in a left neighborhood of h(E(S)) there cannot be
a gap of {h(E(S))}, since h(E(S)) is a limiting point of {h(E(S,))}, where
Sy is the n-part of S. u

It is easy to see that for distinct sequences S1, the gaps are disjoint.
From Lemmas [6] and [ we deduce

LEMMA 8. The set {h(E(S))} has countably many gaps.

6.3. Perfectness
LEMMA 9. The set {h(E(S))} is perfect.

Proof. By Lemma 5] the set {h(E(S))} has no isolated points. For a set
AC[6/m2 1], let A=1[6/72,1]\ A. Let further {g} be the set of all gaps of
{h(E(S))}. Then

{(nES)=Js=7
Since a gap ¢ is an open interval, g is closed. But arbitrary intersections

of closed sets are closed. Thus the set {h(E(S))} is closed without isolated
points. So it is a perfect set. m

This completes the proof of Theorem
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7. An open problem. It is natural to conjecture that the sum of
lengths of all gaps equals the length of the whole interval [6/72, 1], or equiv-
alently, the set {h(E(S))} has measure zero. This question we leave open.
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