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Group-theoretical independence of
`-adic Galois representations
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Sebastian Petersen (Kassel)

Introduction. Following Serre (cf. [19]), let us call an arbitrary family
(ρ` : G→ G`)`∈L of continuous homomorphisms of profinite groups indepen-
dent if the induced homomorphism ρ : G →

∏
`∈L ρ`(G) is surjective. The

family (ρ` : G→ G`)`∈L is said to be group-theoretically independent if for all
prime numbers `1 6= `2 the groups ρ`1(Gal(K)) and ρ`2(Gal(K)) do not have
a common finite simple group as a quotient. It is known that group-theoretical
independence implies independence (cf. [19, Lemme 2]). The following results
have been established in the series of papers [19], [8], [3], [4].

Let K be a field of characteristic p ≥ 0 and X/K a separated algebraic
scheme. Let L′ = L r {p}. Let q ∈ N and let ρ` be the representation of
Gal(K) on Hq(XK ,Q`).

(I1) If K is a finitely generated field of characteristic zero, then there ex-
ists a finite extension E/K such that the restricted family
(ρ`|Gal(E))`∈L is independent.

(I2) If K is a function field over an algebraically closed field, then there
exists a finite separable extension E/K such that (ρ`|Gal(E))`∈L′ is
group-theoretically independent.

In the important special case where K is a number field, (I1) was proved
by Serre [19]. When trdeg(K/Q) > 0, (I1) was proved by Gajda and the
author [8], answering a question of Serre (cf. [19, Section 3.2], [20, 10.1?])
and Illusie (cf. [11, 5.5]). (I2) was proved by Böckle, Gajda and the author [3]
and independently by Cadoret and Tamagawa [4].

One cannot replace the word “independent” by “group-theoretically in-
dependent” in (I1): If K is a finitely generated field of characteristic zero,
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then dimQ`
(H2(P1

K
,Q`)) = 1 and the action of Gal(K) on H2(P1

K
,Q`)

is given by the inverse of the cyclotomic character εK,` : Gal(K) → Z×`
over K, and it can easily be seen from the prime number theorem in arith-
metic progressions that the family of cyclotomic characters (εK,`)`∈L is not
group-theoretically independent.

Assume for the moment that K is a finitely generated field without any
restriction on its characteristic p ≥ 0. In the light of the above facts the
following question comes up naturally.

Are the cyclotomic characters the only obstruction to group-theoretical
independence, i.e. is there a finite separable extension E/K such that
(ρ`|Gal(E(µ∞)))`∈L′ is group-theoretically independent?

If p > 0, then the answer is “yes”, because then the prime field F of
K is finite and hence F agrees with the field F(µ∞) obtained from F by
adjoining all roots of unity; one can thus apply (I2) to XFK/FK to conclude

that there is a finite separable extension E/K such that (ρ`|Gal(FE)`∈L) is
group-theoretically independent. Somewhat surprisingly, the answer to the
above question is “no” in the case p = 0 (cf. Corollary A.2, Remark A.3),
as we shall see in the appendix. One can construct counterexamples from
certain CM abelian varieties. We do have the following affirmative result,
however.

Main Theorem (cf. Corollary 3.2). Let K be a finitely generated field
of characteristic 0, and X/K a smooth projective variety. Let q ∈ N and
let ρ` be the representation of Gal(K) on Hq(XK ,Q`). Then there are finite
Galois extensions k/Q and F/K such that the family (ρ`|Gal(kabF ))`∈L is
group-theoretically independent, where kab stands for the maximal abelian
Galois extension of k. Furthermore (ρ`|Gal(k†abF ))`∈L is group-theoretically

independent, where k†ab is the compositum
∏
`∈L k

(`)
ab with k

(`)
ab /k being the

maximal abelian extension of k which is unramified outside ` and of order
prime to `.

In certain special cases it can be shown that group-theoretical indepen-
dence is achieved already over the smaller extensionF †cyc =

∏
`∈L F (µ`) where

F (µ`) is the field obtained from F by adjoining an `th root of unity. For
example, if in the situation of the main theorem q = 1 andX is an abelian va-
riety with EndK(X) = Z and of dimension 2, 6 or odd, then, based on Serre’s
open image theorem [17, 2.2.8], one can easily see that in this case one can

choose the finite Galois extension F/K in such a way that (ρ`|Gal(F †cyc))`∈L is
group-theoretically independent. On the other hand, if q = 1, K is a number
field and X/K is an absolutely simple abelian variety with complex multi-

plication over K, then (ρ`|Gal(F †cyc))`∈L is group-theoretically independent
for no finite Galois extension F/K (cf. Corollary A.2, Remark A.3).
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There are three main ingredients to the proof: (1) We make strong use of
certain concepts from group theory (profinite and algebraic). In particular
we crucially use information about the structure of subgroups of GLn(F`)
(cf. [14] and [3, Section 3]) and about point groups of reductive algebraic
groups defined over finite fields (cf. Proposition 1.1). (2) We use information
about the ramification of the representations under consideration provided
by constructibility and semistability theorems in étale cohomology (cf. [11]).
Furthermore we make use of Caruso’s solution of Serre’s tame inertia con-
jecture (cf. [5]) in order to control the ramification of ρ` “at primes above `”.
(3) Finally, we invoke finiteness results for étale fundamental groups from
geometric class field theory (cf. [12] and [8, Section 2]).

Notation. Throughout this manuscript, L denotes the set of all prime
numbers. If K is a field, then we denote by K an algebraic closure of K
and by Gal(K) its absolute Galois group. We denote by Kab the maximal
abelian extension of K and by Ksolv the maximal prosolvable extension of K.
Furthermore we denote by Kcyc = K(µ∞) the extension obtained from K by

adjoining all roots of unity and write K†cyc =
∏
`∈LK(µ`). If K is a number

field, then for ` ∈ L we denote by K
(`)
ab the maximal abelian extension of K

which is unramified outside ` and has degree prime to `. Furthermore we

define K†ab :=
∏
`∈LK

(`)
ab .

A K-variety is a separated algebraic K-scheme which is reduced and
irreducible. For a profinite group G we denote by S`(G) the normal subgroup
of G generated by its `-Sylow subgroups. If ` is clear from the context, then
we write G+ instead of S`(G).

1. Preliminaries on group theory. This section is devoted to the
concepts from group theory used in this paper. The following proposition
about point groups of connected algebraic groups over finite fields is proba-
bly well-known to experts. It will be applied later in the situation of the Main
Theorem to suitable reductive envelopes of the images of the semisimplified
mod-` representations under consideration.

Proposition 1.1. Let F be a finite field of characteristic ` and G a
connected algebraic group over F . Then the group G(F )/G(F )+ is an abelian
group of order prime to `.

Proof. Let U be the unipotent radical of G and H = G/U . Let S =
[H,H] be the derived group of H. The group U(F ) is a normal subgroup
of G(F ) of `-power order. Hence U(F ) ⊂ G(F )+ ⊂ G(F ). Furthermore
H(F ) = G(F )/U(F ) because U is connected. It follows that H(F )+ =
G(F )+/U(F ) and G(F )/G(F )+ ∼= H(F )/H(F )+. Thus we can assume that
G is reductive (i.e. U is trivial and G = H). Then T := G/S is a torus and
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G(F )/S(F ) embeds into T (F ). Hence G(F )/S(F ) is abelian of order prime
to `. This implies that G(F )+ = S(F )+.

Let Z be the centre of G. Let S̃ → S be the simply connected covering
of the semisimple group S and let I be the image of S̃(F ) → S(F ). Then
S(F )+ = I by a theorem of Steinberg (cf. [22, 12.4, 12.6]). It thus suffices
to show that [G(F ), G(F )] ⊂ I. To prove this, let a1, a2 ∈ G(F ) and s =
[a1, a2]. Then s ∈ S(F ) and we denote by ai the image of ai in G/Z(F ). We
have central isogenies

S̃
f→ S

g→ G/Z.

Choose for i ∈ {1, 2} an ãi ∈ S̃(F ) such that g ◦ f(ãi) = ai and define
s̃ = [ã1, ã2]. There exist zi ∈ Z(F ) such that f(ãi) = ziai. Thus

f(s̃) = [f(ã1), f(ã2)] = [z1a1, z2a2] = [a1, a2] = s.

For all σ ∈ Gal(F ) and i ∈ {1, 2} there exists ki ∈ ker(g ◦ f)(F ) such that
ãσi = kiãi. Hence s̃σ = [k1ã1, k2ã2] = s̃, because the ki lie in the centre of

S̃(F ). It follows that s̃ ∈ S̃(F ) is F -rational. Thus s ∈ I as desired.

Definition 1.2. For d ∈ N we denote by B(d) the class of all finite
groups of order ≤ d, and by Jor(d) the class of all finite groups G which have
an abelian normal subgroup N such that G/N ∈ B(d). For ` ∈ L denote
by Lie` the class of all finite simple groups of Lie type in characteristic `.
Let Lie`(d) be the class of all finite groups G which have an abelian normal
subgroup N such that |N | is coprime to `, |N | ≤ d and G/N is isomorphic
to a finite product of groups in Lie`.

Note that the product is allowed to be empty and thus the trivial group
lies in Lie`(d) (but not in Lie`). The following theorem about finite subgroups
of GLn(F`) is a corollary to a result of Larsen and Pink [14], established in [3,
Section 3]. It slightly generalizes [19, Thms. 3′ and 4]. We shall later apply
it in order to understand the group-theoretical properties of the images of
certain mod-` representations.

Theorem 1.3 (cf. [3, Section 3]). For every n ∈ N there exists a constant
J ′(n) ≥ 5 with the following property: For every ` ∈ L and every finite
subgroup G of GLn(F`) the group G/G+ lies in Jor(J ′(n)). Moreover, if
` > J ′(n) and P denotes the maximal normal `-subgroup of G+, then G+/P
lies in Lie`(2

n−1).

Let G be a profinite group and H a finite simple (not necessarily non-
abelian) group. We call H a Jordan–Hölder factor of G if there exists a
closed normal subgroup G1 of G, an open normal subgroup G2 of G1 and
a continuous isomorphism G1/G2

∼= H. We denote by JH(G) the class of
all Jordan–Hölder factors of G. Let FSQ(G) be the class of all finite simple



Group-theoretical independence 165

(not necessarily non-abelian) quotients of G. Then FSQ(G) ⊂ JH(G). The
proof of the following elementary lemma is left to the reader.

Lemma 1.4.

(a) If 1→ G′ → G
π−→ G′′ → 1 is an exact sequence of profinite groups,

then JH(G) = JH(G′)∪JH(G′′) and FSQ(G) ⊂ FSQ(G′)∪FSQ(G′′).
(b) Let G be a profinite group. Let (Ni)i∈I be a family of closed normal

subgroups of G and N =
⋂
i∈I Ni. Then JH(G/N) ⊂

⋃
i∈I JH(G/Ni).

Theorem 1.3 will frequently enter our considerations through the follow-
ing remark.

Remark 1.5. Let G be a finite subgroup of GLn(F`) where ` ≥ J ′(n).
Let P be the maximal normal `-subgroup of G+.

(a) The group G/G+ lies in Jor(J ′(n)) (cf. Theorem 1.3) and thus

JH(G/G+) ⊂ B(J ′(n)) ∪ {Z/p : p ∈ L r {`}}

by Lemma 1.4.
(b) The group G+/P lies in Lie`(2

n−1) (cf. Theorem 1.3) and thus

JH(G+) ⊂ Lie` ∪ {Z/p : p ∈ L r {`}, p ≤ 2n−1} ∪ {Z/`}

by Lemma 1.4. Furthermore FSQ(G+) cannot contain groups of or-
der prime to ` as G+ is generated by its `-Sylow subgroups, and
consequently FSQ(G+) ⊂ Lie` ∪ {Z/`}.

For technical reasons the following lemma will be useful.

Lemma 1.6. Let G be a finite subgroup of GLn(F`). Assume that ` >
J ′(n). Let N be a normal subgroup of G+. If JH(G/N) ∩ Lie` = ∅, then
N = N+.

Proof. Let P be the maximal normal `-subgroup of G and consider the
exact sequence of groups

1→ N/P ∩N → G+/P → G+/NP → 1.

The group G+/NP is a quotient of G+/N , which is in turn isomorphic to
a normal subgroup of G/N . Hence, by Lemma 1.4, JH(G+/NP )∩Lie` = ∅.
On the other hand, G+/NP is a quotient of G+/P . As ` > J ′(n), we have

FSQ(G+/NP ) ⊂ FSQ(G+/P ) ⊂ Lie`

(cf. Remark 1.5). It follows that FSQ(G+/NP ) = ∅, hence G+/NP is the
trivial group. By the exact sequence above, N/P ∩ N ∼= G+/P is a group
generated by its `-Sylow subgroups. As P ∩N is an `-group, it follows that
N is generated by its `-Sylow subgroups as well, so N = N+.
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2. The monodromy groups of mod-` representations. Let K be a
field of characteristic zero and X/K a smooth projective variety. Fix q ∈ N.
Let ρ` (resp. ρ`) be the representation of Gal(K) on Hq(XK ,Q`) (resp.
on Hq(XK ,F`)). The following lemma explains the relation between the
`-adic monodromy groups ρ`(Gal(K)) and the mod-` monodromy groups
ρ`(Gal(K)). The rest of this section is then devoted to images of mod-`
representations.

Lemma 2.1. There is a constant D such that for every prime number
` ≥ D there is an epimorphism π` : ρ`(Gal(K)) → ρ`(Gal(K)) such that
π` ◦ ρ` = ρ` and P` := ker(π`) is a pro-` group.

Proof. By a theorem of Gabber (cf. [7]) there exists a constant D such
that Hq(XK ,Z`) and Hq+1(XK ,Z`) are torsion free Z`-modules for all prime
numbers ` ≥ D. For every ` ∈ L there is an exact sequence of Gal(K)-
modules

Hq(XK ,Z`)
`→ Hq(XK ,Z`)→ Hq(XK ,F`)

→ Hq+1(XK ,Z`)
`→ Hq+1(XK ,Z`).

We set V` := Hq(XK ,Q`), T` := Hq(XK ,Z`) and W` := Hq(XK ,F`). Then,
for all ` ∈ L with ` > D the natural map T` ⊗ F` → W` is an isomorphism,
because Hq+1(XK ,Z`)[`] = 0. Furthermore V` = T` ⊗ Q` (by definition),
and the natural map T` → V` must be injective because T` is torsion free.
We denote by ρ′` the representation of Gal(K) on the finitely generated free
Z`-module T`. The canonical maps

GLW`
(F`)

F`←− GLT`(Z`)
G`−→ GLV`(Q`)

induce by restriction epimorphisms

ρ`(Gal(K))
f`←− ρ′`(Gal(K))

g`−→ ρ`(Gal(K))

such that f` ◦ ρ′` = ρ` and g` ◦ ρ′` = ρ`. Furthermore ker(f`) is pro-` because
ker(F`) is pro-`, and g` is injective because G` is injective. It follows that
π` := f` ◦ (g`)

−1 is an epimorphism ρ`(Gal(K)) → ρ`(Gal(K)) such that
ρ` ◦ π` = ρ`, and P` := ker(π`) is pro-`.

For a non-archimedian place v of a number field K we shall denote
by char(v) its residue characteristic. Recall the definition of K†ab from the
Notation section.

Lemma 2.2. Let K be a number field, X/K a smooth projective geomet-
rically irreducible variety and q ∈ N. Let ρ` be the representation of Gal(K)
on Hq(XK ,F`). Then there exists a finite Galois extension E/K such that

ρ`(Gal(E†ab)) ⊂ ρ`(Gal(K))+ for every ` ∈ L.
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Proof. We denote by ρ` the representation of Gal(K) on Hq(XK ,Q`).
By [11, Cor. 2.3] there exists a finite set S of places of K such that for every
non-archimedian place v of K outside S and every prime number ` 6= char(v)
the representation ρ` is unramified at v. Furthermore there exists a finite
Galois extension K ′/K such that for every non-archimedian place v′ of K ′

above S and every prime number ` 6= char(v′) the group ρ`(Iv′) is a pro-`
group (cf. [6], [2, 6.3.2]). After replacingK ′ by a larger finite Galois extension
of K we can assume in addition that ρ`(Gal(K ′)) = {e} for all ` ≤ D where
D is the constant from Lemma 2.1. It follows (via Lemma 2.1) that for every
place v′ of K ′ and every ` 6= char(v′) the group ρ`(Iv′) is an `-group, which
is trivial if v′ does not lie over S.

Let W ss
` be the semisimplification of the Gal(K)-module Hq(XK ,F`)

and ρss` be the representation of Gal(K) on W ss
` . By the above we see

that for every place v′ of K ′ and every prime number ` 6= char(v′) the
group ρss` (Iv′) is an `-group, which is trivial if v′ does not lie over S. Let
`0 = max(char(w) : w ∈ S). Let ` ∈ L with ` > `0. If w′ is a place of K ′

with char(w′) = `, then by Caruso [5, Thm. 1.2] the weight of the tame
inertia group It(w′) acting via the contragredient of the semisimplification
of the restricted representation ρss` |I(w′) is in the interval [0, eq] where e is
the ramification index of K ′w′/Q`. Furthermore dim(W ss

` ) does not depend
on `. Altogether we see that ρss` |Gal(K ′) satisfies the conditions (a)–(d) of
[23, Section 3.3]. By [23, Thm. 4] (or by [10, Thm. 2.3.5]) there exists, after
replacing `0 by a larger constant, a finite Galois extension L/K ′ and for
every prime number ` ≥ `0 a reductive algebraic subgroup G`/F` of GLW ss

`

with the following properties:

(1) ρss` (Gal(L)) ⊂ G`(F`) for every prime number ` ≥ `0.
(2) ρss` (Gal(L))+ = G`(F`)+ for every prime number ` ≥ `0.

We can replace L by its Galois closure and enlarge `0 accordingly in order
to assume L/K is Galois. It follows from (1), (2) and Proposition 1.1 that
ρss` (Gal(L))/ρss` (Gal(L))+ is abelian for every prime number ` ≥ `0. The
kernel P` of the natural epimorphism g : ρ`(Gal(L)) → ρss` (Gal(L)) is an
`-group; hence it lies in ρ`(Gal(L))+. Thus g induces an isomorphism

ρ`(Gal(L))/ρ`(Gal(L))+ ∼= ρss` (Gal(L))/ρss` (Gal(L))+.

It follows that ρ`(Gal(L))/ρ`(Gal(L))+ is abelian for every ` ≥ `0. In par-
ticular

ρ`(Gal(Eab)) ⊂ ρ`(Gal(L))+ ⊂ ρ`(Gal(K))+

for every finite extension E/L and every ` ≥ `0. We now choose E to be a
finite Galois extension of K containing L·

∏
`≤`0 K(ρ`). Then ρ`(Gal(Eab)) ⊂

ρ`(Gal(K))+ for every ` ∈ L. Moreover, for every ` ∈ L, the group ρ`(Iv)
is an `-group and hence is contained in ρ`(Gal(K))+ for every place v of E
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with char(v) 6= `. Thus ρ(Gal(E
(`)
ab )) ⊂ ρ`(Gal(K))+ for all ` ∈ L, so the

assertion follows with the above choice of E.

We shall now generalize Lemma 2.2 to the situation where the ground
field K is an arbitrary finitely generated extension of Q, possibly of tran-
scendence degree ≥ 1. For this we use a specialization argument along with
a finiteness theorem for unramified Jordan extensions from [8]; the latter
theorem in turn relies on a finiteness theorem in geometric class field the-
ory of Katz and Lang (cf. [12]) and on some finiteness results for geometric
fundamental groups from SGA.

Proposition 2.3. Let K/Q be a finitely generated extension of fields.
Let X/K be a smooth projective variety. For every prime number ` let ρ` be
the representation of Gal(K) on Hq(XK ,F`). Then there exist finite Galois

extensions E/K and k/Q such that ρ`(Gal(k†abE)) ⊂ ρ`(Gal(K))+ for every
` ∈ L.

Proof. There exists a finite Galois extension K ′/K such that XK′ splits
up into a disjoint sum of geometrically connected (smooth projective) K ′-
varieties. Once the proposition is true for every connected component of
XK′/K

′ it will follow for X/K. We may thus assume right from the outset
that X/K is geometrically connected.

There exists a Q-variety S with function field K. Moreover, by the
usual spreading-out principles, there exists after replacing S by one of
its dense open subschemes a smooth projective morphism f : X → S
with generic fibre X. The stalk of f∗OX at the generic point of S is
zero because X/K is geometrically connected. Now, after replacing S by
one of its non-empty open subschemes and shrinking X accordingly, we
may assume that f∗OX = 0, where OX stands for the structure sheaf
of X . Then f has geometrically connected fibres (cf. [9, 4.3.4]). Shrink-
ing S and X once more one can assume that the étale sheaves Rqf∗F`
are lisse and compatible with any base change [11, Cor. 2.2]. In particu-
lar the representation ρ` factors through (1) the étale fundamental group
π1(S).

Let G` = ρ`(π1(S)) and let n be an upper bound for the dimensions of
the F`-vector spaces Hq(XK ,F`) (` ∈ L). The existence of such an upper
bound is guaranteed by [11, Thm. 1.1]. Now ρ`(Gal(K)) is isomorphic to
a subgroup of GLn(F`) for all ` ∈ L. Thus there exists a constant J ′(n)
such that G`/G

+
` ∈ Jor(J ′(n)) for all ` ∈ L (cf. Theorem 1.3). Hence, by

[8, Prop. 2.2], there exists an open normal subgroup U of π1(S) such that
ρ`(U ∩ π1(SQ)) ⊂ G+

` for all ` ∈ L. Let s ∈ S be a closed point. Let S′ be

(1) We take the étale fundamental group with respect to the geometric generic base
point of S afforded by the choice of K.
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the finite étale Galois cover of S corresponding to U and pick a closed point
s′ ∈ S′ over s. Let E be the function field of S′.

Consider the following commutative diagram of profinite groups:

G`

1 // π1(SQ) // π1(S)

ρ`

OO

// Gal(Q)

Gal(k(s))

OO
s∗

ee

(The map s∗ is well-defined only up to conjugation.) IfXs = X ×SSpec(k(s))
is the special fibre of X over S, then, by the base change compatibility alluded
to above, the representation ρ` ◦s∗ of Gal(k(s)) on Hq(XK ,F`) is isomorphic
to the representation of Gal(k(s)) on Hq(X

s,k(s)
,F`). Furthermore Xs is a

smooth projective geometrically connected variety over the number field k(s).
By Lemma 2.2 there is a finite Galois extension k/Q containing k(s) such that

ρ` ◦ s∗(Gal(k†ab)) ⊂ ρ` ◦ s∗(Gal(k))+ ⊂ G+
` .

After replacing k by a finite extension we can also assume that k ⊃ k(s′).
Now there is a commutative diagram with exact rows

G`

1 // π1(SQ) // π1(S)

ρ`

OO

// Gal(Q)

Gal(k(s))

OO
s∗

ff

1 // π1(S
′
Q) //

OO

π1(S
′
k†ab

)

OO

// Gal(k†ab)

OO

//oo 1

We already know that ρ`(π1(S
′
Q)) and ρ`(s∗(Gal(k†ab))) are contained

in G+
` . As π1(S

′
k†ab

) is generated by π1(S
′
Q) and s∗(Gal(k†ab)) we conclude

that ρ`(Gal(k†abE)) = ρ`(π1(S
′
k†ab

)) ⊂ G+
` as desired.

Remark 2.4. In the situation of Proposition 2.3 it is easy to see (with
the help of Remark 1.5 and Lemma 1.4) that

JH(ρ`(Gal(k†abE))) ⊂ Lie` ∪ {Z/p : p ∈ L r {`}, p ≤ 2n−1} ∪ {Z/`}
for all but finitely many primes ` ∈ L.
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Note, however, that this does not rule out the possibility that for some
small prime number p there exist infinitely many ` ∈ L such that Z/p is

a finite simple quotient of ρ`(Gal(k†abE)). Hence Proposition 2.3 alone does

not imply group-theoretical independence for the family (ρ`|Gal(k†abE))`∈L;
we need additional arguments to establish the Main Theorem.

3. Independence results. In the following theorem we shall prove
among other things that in the situation of Proposition 2.3 one can, after
replacing E by a finite extension F which is Galois over K, achieve a very
good control over the possible finite simple quotients of ρ`(Gal(k†abF )) and

of ρ`(Gal(k†abF )). In particular we shall see that for a suitable choice of F the

groups ρ`(Gal(k†abF )) cannot have a finite simple quotient of order prime
to ` any more. The argument is of a group-theoretical nature. The Main
Theorem about group-theoretical independence along with some variants
will then follow quite easily.

Theorem 3.1. Let K/Q be a finitely generated field extension. Let X/K
be a smooth projective variety. Fix q ∈ N. Let ρ` (resp. ρ`) be the represen-
tation of Gal(K) on Hq(XK ,Q`) (resp. on Hq(XK ,F`)). Let `0 ∈ N. Then
there are finite Galois extensions F/K and k/Q with the following proper-
ties:

(a) For every algebraic extension Ω/F and every ` ≤ `0 in L the group
ρ`(Gal(Ω)) is trivial and ρ`(Gal(Ω)) is a pro-` group.

(b) For every solvable Galois extension Ω/k†abF and every ` ∈ L we have
ρ`(Gal(Ω)) = ρ`(Gal(Ω))+, and there exists a closed normal pro-`
subgroup Q` of ρ`(Gal(Ω)) such that ρ`(Gal(Ω))/Q` ∼= ρ`(Gal(Ω)).

(c) For every solvable Galois extension Ω/k†abF and every ` ∈ L we have

FSQ(ρ`(Gal(Ω))) ⊂ Lie`∪Z/` and FSQ(ρ`(Gal(Ω))) ⊂ Lie`∪{Z/`}.

Proof. There exists n ∈ N such that

dimQ`
(Hq(XK ,Q`)) ≤ dimF`

(Hq(XK ,F`)) ≤ n
for all ` ∈ L (cf. [11, Thm. 1.1]). We can assume right from the outset
that `0 ≥ max(J ′(n), D) where J ′(n) is the constant from Theorem 1.3
and D is the constant from Lemma 2.1. We put G` := ρ`(Gal(K)) and
G` = ρ`(Gal(K)). For every ` ∈ L the maximal normal pro-` subgroup P`
of G` is open.

By Proposition 2.3 there exists a finite Galois extension E/K with

ρ`(Gal(k†abE)) ⊂ G+
` for every ` ∈ L. Let E′ := E ·

∏
`≤`0 K

ρ−1
` (P`) ·Kker(ρ`).

Pick a prime number `1 > max(`0, [E
′ : K]). Let F := E′ ·

∏
`0<`≤`1 K

ker(ρ`).

The E′/K and F/K are finite Galois extensions because P` is open and
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normal in G`, and G` is finite. Note that for every algebraic extension Ω/F
the group ρ`(Gal(Ω)) is pro-` for every ` ≤ `0 in L and ρ`(Gal(Ω)) is trivial
for every ` ≤ `1 in L. In particular (a) holds true.

To prove (b) let Ω be a solvable Galois extension of k†abF . We already
know that (b) holds true for all ` ≤ `0. For ` > `0, by Lemma 2.1, the group
ρ`(Gal(Ω)) is an extension of ρ`(Gal(Ω)) by a pro-` group. As we know that
ρ`(Gal(Ω)) is trivial for all ` ≤ `1 it follows that ρ`(Gal(Ω)) is pro-` for all
` ≤ `1. Thus (b) holds true for every ` ≤ `1, and to establish (b) completely
it suffices to prove

Claim. ρ`(Gal(Ω)) = ρ`(Gal(Ω))+ for all ` > `1.

Let C be the class of all prime cyclic groups. We shall now compute
JH(Gal(k†abF/K)) and then establish the Claim with the help of Lemma
1.6. By Lemma 1.4,

JH(Gal(k†abF/K)) ⊂ JH(Gal(k†abK/K))∪ JH(Gal(E′/K))∪
⋃

`0<`≤`1

JH(G`),

and JH(Gal(E′/K)) ⊂ B([E′/K]) ⊂ B(`1). Moreover JH(Gal(k†abK/K))
⊂ C. If `0 < ` ≤ `1, then J ′(n) < `, and hence

JH(G`) ⊂ JH(G
+
` ) ∪ JH(G`/G

+
` ).

We have JH(G
+
` ) ⊂ Lie` ∪ C (cf. Remark 1.5), and

JH(G`/G
+
` ) ⊂ B(J ′(n)) ∪ C ⊂ B(`1) ∪ C

(again cf. Remark 1.5). Altogether it follows that

JH(Gal(k†abF/K)) ⊂ C ∪B(`1) ∪
⋃

`0<`≤`1

Lie`.

For ` > `1 the groups in Lie` are non-commutative and generated by their
`-Sylow subgroups, and hence they are contained neither in C nor in B(`1).
Using a theorem of E. Artin about the orders of the finite simple groups of
Lie type (cf. [19, Thm. 5], see also [1], [13]) we see that

JH(Gal(k†abF/K)) ∩ Lie` = ∅ for all ` > `1.

We now prove the claim. Let ` > `1. Let N` = ρ`(Gal(k†abF )) and M` =
ρ`(Gal(Ω)). As F ⊃ E by construction, we see that N` ⊂ G+

` . Moreover

G`/N` is a quotient of Gal(k†abF/K). Hence JH(G`/N`) ∩ Lie` = ∅ for all
` > `1. Lemma 1.6 implies N` = N+

` . But then M` ⊂ N` = N+
` , and

moreover N`/M` is a quotient of Gal(Ω/k†abF ). As Ω/k†abF is solvable, we
see that JH(N`/M`) ∩ Lie` = ∅ for all ` > `1. Applying Lemma 1.6 once
more, we find that M` = M+

` for all ` > `1. This finishes the proof of the
Claim and of part (b).



172 S. Petersen

We now turn to part (c). If ` > `1, then (recall that `1 ≥ `0 ≥ J ′(n))
FSQ(M`) ⊂ Lie` ∪ {Z/`} by Remark 1.5. If ` ≤ `1, then we even have
FSQ(M`) = ∅ by part (a). Thus FSQ(M`) ⊂ Lie` ∪ {Z/`} for all ` ∈ L. As
ρ`(Gal(Ω)) is an extension of M` by a pro-` group, the statement about ρ`
in part (c) is also true.

Corollary 3.2. Let K/Q be a finitely generated field extension. Let
X/K be a smooth projective variety. Fix q ∈ N. Let ρ` (resp. ρ`) be the rep-
resentation of Gal(K) on Hq(XK ,Q`) (resp. on Hq(XK ,F`)). Then there
are finite Galois extensions F/K and k/Q such that for every solvable Ga-

lois extension Ω/k†abF the families (ρ`|Gal(Ω))`∈L and (ρ`|Gal(Ω))`∈L are
group-theoretically independent.

Proof. Let `0 = 5. Let F/K and k/Q be finite Galois extensions such
that the assertions (a)–(c) from Theorem 3.1 hold true. From (c) we have

FSQ(ρ`(Gal(Ω))) ⊂ Lie` ∪ {Z/`} and FSQ(ρ`(Gal(Ω))) ⊂ Lie` ∪ {Z/`}
for all ` ∈ L. If ` ∈ {2, 3}, then even

FSQ(ρ`(Gal(Ω))) = ∅ and FSQ(ρ`(Gal(Ω))) ⊂ {Z/`}
by (a). The class Lie` consists of non-commutative groups, and Lie`1 ∩Lie`2
= ∅ for all prime numbers 5 ≤ `1 < `2 by E. Artin’s theorem (cf. [19, Thm. 5],
see also [1], [13]). Hence FSQ(ρ`1(Gal(Ω))) ∩ FSQ(ρ`2(Gal(Ω))) = ∅ for all
prime numbers `1 6= `2, and thus (ρ`)`∈L is group-theoretically independent.
Similarly the assertion about (ρ`)`∈L is derived.

Remark 3.3. If in the situation of Corollary 3.2,

Ω ∈ {k†abF, kabF, ksolvF, (kF )ab, (kF )solv},

then Ω/k†abF is solvable and hence the families

(ρ`|Gal(Ω))`∈L and (ρ`|Gal(Ω))`∈L

are group-theoretically independent.

Appendix: A counterexample. The aim of this Appendix is to prove

that one cannot replace k†abF by k†cycF (or by kcycF ) in Corollary 3.2. In fact
certain abelian varieties with complex multiplication over a number field K
provide a counterexample. Throughout this section let K be a number field
and A/K an absolutely simple abelian variety with complex multiplication
over K. For every m ∈ N we denote by A[m] = {x ∈ A(K) : mx = 0}
the group of m-torsion points of A and for ` ∈ L by T`(A) = lim←−j A[`j ] the

`-adic Tate module of A. Let η` (resp. η`) be the representation of Gal(K)
on T`(A) (resp. on A[`]). It is known that η`(Gal(K)) is abelian for all ` ∈ L.
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Theorem A.1. For every prime number q there exists a set S ⊂ L of
positive Dirichlet density such that Z/q ∈ FSQ(η`(Gal(K(µ∞))) for every
` ∈ S.

Proof. There exists a finite extension K ′/K such that AK′ has good
reduction everywhere (cf. [21, Thm. 7]).

For every number field F we let OF be its ring of integers and Spl(F )
the set of prime numbers ` which split completely in F . We always denote
by TF = ResF/QGm the torus over Q obtained as the Weil restriction of the
multiplicative group over F . Furthermore, for every prime p of F we denote
by Fp the corresponding local field and by Up(F ) the group of units in the
integer ring of Fp. For any torus T/Q, ` ∈ L and n ≥ 0 we define, following
Ribet [16, p. 77],

T (1 + `nZ`) := {x ∈ T (Q`) : v`(χ(x)− 1) ≥ n
for all χ ∈ HomQ`

(TQ`
,Gm,Q`

)}

where v` denotes the unique extension to Q` of the canonical discrete valu-
ation of the complete field Q`. We set

T (Z`) = {x ∈ T (Q`) : v`(χ(x)− 1) ≥ 0 for all χ ∈ HomQ`
(TQ`

,Gm,Q`
)}

and T (F`) = T (Z`)/T (1+ `Z`). Note that TF (Q`) =
∏

p|` F
×
p and TF (Z`) =∏

p|` Up(F ) (cf. [16, Example 2.1]). We denote by IF the idele group of F ,
define

I1F =
{

(xp) ∈
∏
p

F×p : xp ∈ Up(F ) for all p -∞
}

and view TF (Z`) as a subgroup of I1F .
Let I ⊂ L be a finite set of prime numbers that contains the primes

dividing [OE : E ∩EndK′(A)] and the primes that are ramified in K ′E. Let
` ∈ LrI. Then the OE⊗Z`-module T`(A) is free of rank 1 (cf. [21, Thm. 5]),
and hence

η`(Gal(K ′)) ⊂ AutOE⊗Z`
(T`(A)) = (OE ⊗ Z`)× = TE(Z`).

Thus η` factors to a map Gal(K ′ab/K
′) → TE(Z`), which is again denoted

by η`. We compose η` with the Artin symbol (−,K ′ab/K ′) in order to obtain
a map

η̂` : IK′ → Gal(K ′ab/K
′)

η`−→ TE(Z`).
The image U of I1K′ under the norm residue symbol is open in Gal(K ′ab/K

′),
and the fixed field of U is the Hilbert class field H of K ′. If p is a
prime of K ′ and p - `, then η` is unramified at p by [21, Thm. 1] be-
cause A has good reduction everywhere. Hence η̂`(Up) = {e}. Thus η̂`
induces a map η̂′` : TK′(Z`) =

∏
p|` Up(K

′) → TE(Z`) and im(η̂′`) =

η`(Gal(H)). By a reformulation due to Serre and Tate (cf. [21, Thm. 11,
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Cor. 2]) of a theorem of Shimura and Taniyama there is a homomor-
phism ψ : TK′ → TE of tori over Q such that η̂′(x) = ψ`(x

−1) for all
x ∈ TK′(Z`), where ψ` : TK′(Z`) → TE(Z`) is the homomorphism induced
by ψ. Thus η`(Gal(H)) = im(ψ`). Let T/Q be the image of ψ`. Ribet proved
that dim(T ) ≥ 2 (cf. [16, p. 87]). (It is known that T agrees with the
Mumford-Tate group of A, but we will not need this fact.) Furthermore
η`(Gal(H)) = im(ψ`) ⊂ T (F`) if ψ` : TK′(F`) → TE(F`) is the homomor-
phism induced by ψ.

By another theorem of Ribet (cf. [16, Thm. 2.4]) there is a constantC such
that c` := [T (F`) : η`(Gal(H))] ≤ C for all ` ∈ L r I. Furthermore, by [19],
there exists a finite extension H ′/H such that (H ′(µ`∞ , A[`]))`∈L is a linearly
disjoint sequence of extensions of H ′. Now let a ∈ N be an exponent such
that qa > C[H ′ : H]. Let L/Q be a Galois extension such that T × Spec(L)
is a split torus and such that K ′E(µqa) ⊂ L. Then Spl(L) ∩ I = ∅. Let
` ∈ Spl(L). Then T ×Q` is a split torus over Q` because L can be embedded
into Q`. Hence, if we set d = dim(T ), then T (F`) = (F×` )d. If ` ∈ Spl(L)
does not divide the polarization degree π of A, then H ′(µ`) ⊂ H ′(A[`])
and

[H ′(µ`) : H ′][H ′(A[`]) : H ′(µ`)]c` = (`− 1)d,

[H ′(µ`) : H ′] divides ` − 1, c` ≤ C[H ′ : H], qa > C[H ′ : H], d ≥ 2 and
` = 1 mod qa because ` splits completely in Q(µpa). This forces [H ′(A[`]) :
H ′(µ`)] to be divisible by q. Furthermore Gal(H ′(µ`∞)/H ′(µ`)) ∼= Z`. It
follows that [H ′(A[`], µ`∞) : H ′(µ`∞)] is still divisible by q. Finally, by
the linear disjointness of the sequence (H ′(µ`∞ , A[`]))`∈L, one sees that∏
`′ 6=`H

′(µ`′∞) is linearly disjoint fromH ′(µ`∞ , A[`]) overH ′ for every ` ∈ L.

It follows that |η`(Gal(H ′(µ∞)))| = [H ′(µ∞, A[`]) : H ′(µ∞)] is divisible
by q for all but finitely many ` ∈ Spl(L). Furthermore η`(Gal(K(µ∞))) is
a subgroup of η`(Gal(H ′(µ∞))), and hence |η`(Gal(K(µ∞)))| is divisible
by q for all ` ∈ Spl(L). As η`(Gal(K(µ∞))) is a finite abelian group, it
follows that Z/q ∈ FSQ(η`(Gal(K(µ∞)))) for all ` ∈ Spl(L). Finally, by
Chebotarev, the set S := Spl(L) of prime numbers has a positive Dirichlet
density.

Corollary A.2. For every finite extension E/K neither the restricted

family (η`|Gal(Ecyc))`∈L nor the restricted family (η`|Gal(E†cyc))`∈L is group-
theoretically independent.

Proof. Let E/K be a finite extension. We apply Theorem A.1 to AE/E in
order to conclude that Z/2 ∈ FSQ(η`(Gal(Ecyc))) for infinitely many ` ∈ L.

As η`(Gal(Ecyc)) is a subgroup of the finite abelian group η`(Gal(E†cyc)), we

conclude that also Z/2 ∈ FSQ(η`(Gal(E†cyc))) for infinitely many ` ∈ L.
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Remark A.3. Corollary A.2 holds accordingly with η` replaced by η`.
In fact, for every algebraic extension K ′/K we have FSQ(η`(Gal(K ′))) ⊂
FSQ(η`(Gal(K ′))) for all ` ∈ L, because A[`] = T`(A)⊗ F` for all ` ∈ L and
thus η`(Gal(K ′)) is a quotient of η`(Gal(K ′)) for all ` ∈ L.
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Wilhelmshöher Allee 73
34121 Kassel, Germany
E-mail: petersen@mathematik.uni-kassel.de

http://dx.doi.org/10.1090/S0894-0347-2011-00695-4
http://dx.doi.org/10.2307/1970722

	Introduction
	1 Preliminaries on group theory
	2 The monodromy groups of mod- representations
	3 Independence results
	Appendix: A counterexample
	References

