The set of regular values (in the sense of Clarke) of a Lipschitz map. A sufficient condition for rectifiability of class C^{3}
 Silvano Delladio (Trento)

Abstract

Let n, N be positive integers such that $n<N$. We prove a result about the rectifiability of class C^{3} of the set of regular values (in the sense of Clarke) of a Lipschitz $\operatorname{map} \varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$.

1. Introduction and statement of the main result. In this paper we prove a result about the rectifiability of class C^{3} of the set of regular values (in the sense of Clarke) of a Lipschitz map

$$
\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N} \quad(n<N)
$$

Before we state it, let us recall some basic definitions.
A Borel subset S of \mathbb{R}^{N} is said to be $\left(\mathcal{H}^{n}, n\right)$ rectifiable of class C^{3} (or simply rectifiable of class C^{3}) if there exist countably many n-dimensional submanifolds M_{j} of \mathbb{R}^{N} of class C^{3} such that

$$
\mathcal{H}^{n}\left(S \backslash \bigcup_{j} M_{j}\right)=0
$$

Analogously one can define $\left(\mathcal{H}^{n}, n\right)$ rectifiable sets of class C^{k} for each positive integer k. In particular, for $k=1$ this notion is equivalent to that of n-rectifiable set, e.g. by [S, Lemma 11.1].

For $\gamma \in I(n, N)=\left\{\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{N}^{n}: 1 \leq \gamma_{1}<\cdots<\gamma_{n} \leq N\right\}$ and $s \in \mathbb{R}^{n}$, let $\partial \varphi^{\gamma}(s)$ denote the Clarke subdifferential of the map

$$
\varphi^{\gamma}:=\left(\varphi^{\gamma_{1}}, \ldots, \varphi^{\gamma_{n}}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

[^0]namely
$$
\partial \varphi^{\gamma}(s):=\operatorname{co}\left\{\lim _{i \rightarrow \infty} D \varphi^{\gamma}\left(s_{i}\right) \mid D \varphi^{\gamma}\left(s_{i}\right) \text { exists, } s_{i} \rightarrow s\right\}
$$
(see CLSW, p. 133]). The set $\partial \varphi^{\gamma}(s)$ is said to be nonsingular if every matrix in $\partial \varphi^{\gamma}(s)$ is of rank n. Observe that $D \varphi^{\gamma}(s) \in \partial \varphi^{\gamma}(s)$ whenever φ^{γ} is differentiable at s. In particular, $D \varphi^{\gamma}(s)$ is nonsingular provided $\partial \varphi^{\gamma}(s)$ is nonsingular. Define
$$
\mathcal{R}:=\left\{s \in \mathbb{R}^{n} \mid \partial \varphi^{\gamma}(s) \text { is nonsingular for some } \gamma\right\}
$$

We can now state our theorem.
Theorem 1.1. Consider a Lipschitz map

$$
\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N} \quad(n<N)
$$

Moreover let

$$
c_{1, i}, c_{2, i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \backslash\{0\} \quad(i=1, \ldots, n)
$$

be a family of locally bounded functions, let

$$
G_{1, i}, G_{2, i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N} \quad(i=1, \ldots, n), \quad H_{i j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N} \quad(i, j=1, \ldots, n)
$$

be a family of Lipschitz maps and denote by A the set of points $t \in \mathbb{R}^{n}$ satisfying the following conditions:
(i) The map φ and all the maps $G_{1, i}$ are differentiable at t.
(ii) The equality

$$
\begin{equation*}
D_{i} \varphi(t)=c_{1, i}(t) G_{1, i}(t)=c_{2, i}(t) G_{2, i}(t) \tag{1.1}
\end{equation*}
$$

holds for all $i=1, \ldots, n$.
(iii) One has

$$
\begin{equation*}
D_{j} G_{1, i}(t)=c_{2, j}(t) H_{i j}(t) \tag{1.2}
\end{equation*}
$$

for all $i, j=1, \ldots, n$.
Also assume that
(iv) For almost every $a \in A$ there exists a nontrivial ball B centered at a and such that $\mathcal{L}^{n}(B \backslash A)=0$.
Then $\varphi(A \cap \mathcal{R})$ is $\left(\mathcal{H}^{n}, n\right)$ rectifiable of class C^{3}.
REmark 1.2. As an immediate corollary of Theorem 1.1, we get this result: Let

$$
\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}, \quad G_{1, i}, G_{2, i}, H_{i j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N} \quad(i, j=1, \ldots, n)
$$

be a family of Lipschitz maps and let

$$
c_{1, i}, c_{2, i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \backslash\{0\} \quad(i=1, \ldots, n)
$$

be a family of bounded functions such that 1.1 and 1.2 hold almost everywhere in \mathbb{R}^{n}. Then $\varphi(\mathcal{R})$ is $\left(\mathcal{H}^{n}, n\right)$ rectifiable of class C^{3}.

REMARK 1.3. Suppose each component φ_{i} of $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N}$ belongs to $C^{3}\left(\mathbb{R}^{n}\right)$ and has uniformly bounded gradient $\nabla \varphi_{i}$. Moreover suppose the differential $D \varphi$ has rank n at each point of \mathbb{R}^{n}. Then the assumptions of Theorem 1.1 are trivially satisfied upon setting

$$
c_{1, i}:=1, \quad c_{2, i}:=1, \quad G_{1, i}:=D_{i} \varphi, \quad G_{2, i}:=D_{i} \varphi \quad(i=1, \ldots, n)
$$

and

$$
H_{i j}:=D_{i j}^{2} \varphi \quad(i, j=1, \ldots, n)
$$

with $A=\mathbb{R}^{n}$.
Rectifiable sets of class C^{k} have been been introduced in AS and provide a natural setting for the description of singularities of convex functions and convex surfaces [A, AO]. More generally, they can be used to study the singularities of surfaces with generalized curvatures AO. Rectifiability of class C^{2} is strictly related to Legendrian rectifiable subsets of $\mathbb{R}^{N} \times \mathbf{S}^{N-1}$ [Fu1, Fu2, D2, D3]. The level sets of a $W_{\text {loc }}^{k, p}$ mapping between manifolds are rectifiable sets of class C^{k} BHS. Applications of rectifiable sets of class C^{H} (with $H \geq 2$) to geometric variational problems can be found in D4].

Finally, we would like to explain the reasons of our interest in conditions (1.1) and 1.2 . In the particular case when $n=1$, such conditions arose naturally in the context of one-dimensional generalized Gauss graphs (see [AST, D1] for the basic definitions and results) and of two-storey towers of one-dimensional generalized Gauss graphs (see [D4]). Then it was natural to explore the question of how those assumptions could be generalized in order to get results about higher order rectifiability, including the case when $n \geq 2$. A general theorem for curves was provided in [D3], while in D5] we started studying the case of general dimension by proving a result about rectifiability of class C^{2}. Further results in this direction can be found in AS and Fu1, Fu2. Roughly speaking, the very basic idea and the proof strategy in the present paper are the same as in [D5], namely we use the celebrated Whitney extension theorem to show that the image of φ is captured, up to \mathcal{H}^{n} measure 0 , by countably many highly regular images of \mathbb{R}^{n}. More precisely, our main objective is to get a set of third order Whitney estimates which allows us to perform (countably many) extensions of class C^{3} necessary to show that the image of φ is C^{3}-rectifiable. This result is an outcome of our efforts to prove a general theorem about rectifiability of class C^{H} in any dimension, which is the subject of our ongoing investigations.

2. Reduction to graphs

Remark 2.1. Under the hypotheses of Theorem 1.1, let A^{\prime} denote the set of $a \in A$ such that there exists a non-trivial ball B centered at a satisfying
$\mathcal{L}^{n}(B \backslash A)=0$. One has

$$
\begin{equation*}
\mathcal{L}^{n}\left(A \backslash A^{\prime}\right)=0 \tag{2.1}
\end{equation*}
$$

by assumption (iv). Hence, it will be enough to prove that $\varphi\left(A^{\prime} \cap \mathcal{R}\right)$ is $\left(\mathcal{H}^{n}, n\right)$ rectifiable of class C^{3}.

REMARK 2.2. By the main theorem of D5, we already know that $\varphi(A \cap \mathcal{R})$ (hence also $\varphi\left(A^{\prime} \cap \mathcal{R}\right)$) is $\left(\mathcal{H}^{n}, n\right)$ rectifiable of class C^{2}.

Remark 2.3. Let E be any subset of \mathcal{R} and define

$$
E^{\gamma}:=\left\{s \in E \mid \partial \varphi^{\gamma}(s) \text { is nonsingular }\right\}, \quad \gamma \in I(n, N)
$$

Then obviously

$$
\bigcup_{\gamma \in I(n, N)} E^{\gamma}=E
$$

REMARK 2.4. If $s \in \mathcal{R}^{\gamma}$, then by the Lipschitz inverse function theorem (e.g. CLSW, Theorem 3.12]), there exist a neighborhood U of $s\left(\right.$ in $\left.\mathbb{R}^{n}\right)$ and a neighborhood V of $\varphi^{\gamma}(s)$ (in \mathbb{R}^{n}) such that

- $V=\varphi^{\gamma}(U)$ and $\varphi^{\gamma} \mid U: U \rightarrow V$ is invertible;
- $\left(\varphi^{\gamma} \mid U\right)^{-1}$ is Lipschitz.

Let $\bar{\gamma}$ denote the multi-index in $I(N-n, N)$ which complements γ in $\{1, \ldots, N\}$ in the natural increasing order and set (for $x \in \mathbb{R}^{N}$)

$$
\begin{aligned}
& x^{\gamma}:=\left(x^{\gamma_{1}}, \ldots, x^{\gamma_{n}}\right), \\
& x^{\bar{\gamma}}:=\left(x^{\bar{\gamma}_{1}}, \ldots, x^{\bar{\gamma}_{N-n}}\right) .
\end{aligned}
$$

Then the map

$$
f:=\varphi^{\bar{\gamma}} \circ\left(\varphi^{\gamma} \mid U\right)^{-1}: V \rightarrow \mathbb{R}^{N-n}
$$

is Lipschitz and its graph

$$
\mathcal{G}_{f}^{\gamma}:=\left\{x \in \mathbb{R}^{N} \mid x^{\gamma} \in V \text { and } x^{\bar{\gamma}}=f\left(x^{\gamma}\right)\right\}
$$

coincides with $\varphi(U)$.
By the previous remarks, it will be enough to prove
Theorem 2.5. Under the assumptions of Theorem 1.1, let $\gamma \in I(n, N)$ and consider a map

$$
g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{N-n}
$$

of class C^{2}. Then $\varphi\left(\left(A^{\prime} \cap \mathcal{R}\right)^{\gamma}\right) \cap \mathcal{G}_{g}^{\gamma}$ is $\left(\mathcal{H}^{n}, n\right)$ rectifiable of class C^{3}.
REmARK 2.6. The remainder of the paper is devoted to proving Theorem 2.5. With no loss of generality, we can restrict to the case of $\gamma=\{1, \ldots, n\}$.

3. Preliminaries

3.1. Further reduction of the claim. From now on, for simplicity,

$$
\mathcal{G}_{g}^{\{1, \ldots, n\}}, \quad\left(A^{\prime} \cap \mathcal{R}\right)^{\{1, \ldots, n\}}, \quad \varphi^{\{1, \ldots, n\}}
$$

will be denoted by \mathcal{G}_{g}, F and λ, respectively.
Define

$$
L:=\varphi^{-1}\left(\mathcal{G}_{g}\right) \cap F
$$

Without loss of generality, we can assume that $\mathcal{L}^{n}(L)<\infty$. Then, by a well-known regularity property of \mathcal{L}^{n}, for any given $\varepsilon>0$ there exists a closed subset L_{ε} of \mathbb{R}^{n} with

$$
\begin{equation*}
L_{\varepsilon} \subset L, \quad \mathcal{L}^{n}\left(L \backslash L_{\varepsilon}\right) \leq \varepsilon \tag{3.1}
\end{equation*}
$$

(see e.g. [M, Theorem 1.10]). Moreover, since L_{ε} is closed, one has

$$
\begin{equation*}
L_{\varepsilon}^{*} \subset L_{\varepsilon} \tag{3.2}
\end{equation*}
$$

where L_{ε}^{*} is the set of density points of L_{ε}. Recall that

$$
\begin{equation*}
\mathcal{L}^{n}\left(L_{\varepsilon} \backslash L_{\varepsilon}^{*}\right)=0 \tag{3.3}
\end{equation*}
$$

by a well-known result of Lebesgue. In the special case that L has measure zero, we define $L_{\varepsilon}:=\emptyset$, hence $L_{\varepsilon}^{*}:=\emptyset$.

Observe that

$$
\mathcal{G}_{g} \cap \varphi(F) \backslash \varphi\left(L_{\varepsilon}^{*}\right) \subset \varphi\left(\varphi^{-1}\left(\mathcal{G}_{g}\right) \cap F \backslash L_{\varepsilon}^{*}\right)=\varphi\left(L \backslash L_{\varepsilon}^{*}\right)
$$

hence

$$
\begin{aligned}
\mathcal{H}^{n}\left(\mathcal{G}_{g} \cap \varphi(F) \backslash \varphi\left(L_{\varepsilon}^{*}\right)\right) & \leq \mathcal{H}^{n}\left(\varphi\left(L \backslash L_{\varepsilon}^{*}\right)\right) \leq \int_{L \backslash L_{\varepsilon}^{*}} J_{n} \varphi d \mathcal{L}^{n} \\
& \leq(\operatorname{Lip} \varphi)^{n} \mathcal{L}\left(L \backslash L_{\varepsilon}^{*}\right) \leq \varepsilon(\operatorname{Lip} \varphi)^{n}
\end{aligned}
$$

by the area formula (see [F, §3.2], [S, §8]) and (3.1)-(3.3). It follows that

$$
\mathcal{H}^{n}\left(\mathcal{G}_{g} \cap \varphi(F) \backslash \bigcup_{j=1}^{\infty} \varphi\left(L_{1 / j}^{*}\right)\right)=0
$$

Thus, to prove Theorem 2.5, it suffices to show that $\varphi\left(L_{\varepsilon}^{*}\right)$ is $\left(\mathcal{H}^{n}, n\right)$ rectifiable of class C^{3} for all $\varepsilon>0$.
3.2. Further notation. Let us consider the projection

$$
\Pi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N-n}, \quad\left(x_{1}, \ldots, x_{N}\right) \mapsto\left(x_{n+1}, \ldots, x_{N}\right)
$$

Moreover, set

$$
\begin{aligned}
\mathcal{R}_{s}^{(0)}(\sigma):= & g(\lambda(\sigma))-g(\lambda(s))-\sum_{i=1}^{n} D_{i} g(\lambda(s))\left[\varphi^{i}(\sigma)-\varphi^{i}(s)\right] \\
& -\frac{1}{2} \sum_{i, j=1}^{n} D_{i j}^{2} g(\lambda(s))\left[\varphi^{i}(\sigma)-\varphi^{i}(s)\right]\left[\varphi^{j}(\sigma)-\varphi^{j}(s)\right] \\
\mathcal{R}_{i ; s}^{(1)}(\sigma):= & D_{i} g(\lambda(\sigma))-D_{i} g(\lambda(s))-\sum_{j=1}^{n} D_{i j}^{2} g(\lambda(s))\left[\varphi^{j}(\sigma)-\varphi^{j}(s)\right], \\
\mathcal{R}_{i j ; s}^{(2)}(\sigma):= & D_{i j}^{2} g(\lambda(\sigma))-D_{i j}^{2} g(\lambda(s)) .
\end{aligned}
$$

For $h=1,2$, let G_{h} denote the $n \times n$ matrix field given by

$$
\left[G_{h}(t)\right]_{i}^{j}:=G_{h, i}^{j}(t), \quad t \in \mathbb{R}^{n} \quad(i, j=1, \ldots, n)
$$

Also let H be the $n^{2} \times n$ matrix field defined by

$$
[H(t)]_{i j}^{k}:=H_{i j}^{k}(t), \quad t \in \mathbb{R}^{n} \quad(i, j, k=1, \ldots, n)
$$

where the couples $i j$ (indexing the rows) are ordered lexicographically.
Then consider the $\left(n+n^{2}\right) \times\left(n+n^{2}\right)$ matrix field

$$
M:=\left[\begin{array}{cc}
G_{1} & 0 \\
H & G_{1} \otimes G_{2}
\end{array}\right]
$$

where \otimes denotes the Kronecker product of matrices [HJ, Sect. 4.2].
For $l=1, \ldots, N-n$, let $D^{2} g^{l}$ denote the $\mathbb{R}^{n^{2}}$-valued field such that

$$
\left[D^{2} g^{l}(t)\right]^{i j}:=D_{i j}^{2} g^{l}(t), \quad t \in \mathbb{R}^{n} \quad(i, j=1, \ldots, n)
$$

where the lexicographical order is assumed.
Finally, given a matrix X and an index k, denote by

$$
R_{k}(X), \quad C_{k}(X)
$$

the k th row and k th column of X, respectively.

4. The derivatives of g in terms of $\left\{G_{1}, G_{2}, H\right\}$

Proposition 4.1. Let $l \in\{1, \ldots, N-n\}$ and $s \in L_{\varepsilon}^{*}$. Then

$$
\begin{equation*}
M(s)\left(D g^{l}(\lambda(s)), D^{2} g^{l}(\lambda(s))\right)^{T}=\left(G_{1}^{n+l}(s), H^{n+l}(s)\right)^{T} \tag{4.1}
\end{equation*}
$$

where G_{1}^{n+l} and H^{n+l} are the the vector fields defined as follows:

$$
\begin{aligned}
G_{1}^{n+l} & :=\left(G_{1,1}^{n+l}, \ldots, G_{1, n}^{n+l}\right) \\
H^{n+l} & \left.:=\left[H_{i j}^{n+l}\right]_{i, j=1}^{n} \quad \text { (in lexicographical order }\right)
\end{aligned}
$$

Proof. First of all, observe that

$$
g(\lambda(t))=\Pi \varphi(t)
$$

for all $t \in \varphi^{-1}\left(\mathcal{G}_{g}\right)$. Since $L_{\varepsilon}^{*} \subset A$, the two members of this equality are both differentiable at s. Moreover, s is a limit point of $L_{\varepsilon} \subset \varphi^{-1}\left(\mathcal{G}_{g}\right)$. Hence

$$
\sum_{j=1}^{n} D_{j} g(\lambda(s)) D_{i} \varphi^{j}(s)=\Pi D_{i} \varphi(s) \quad(i=1, \ldots, n),
$$

so

$$
\sum_{j=1}^{n} D_{j} g(\lambda(s)) c_{1, i}(s) G_{1, i}^{j}(s)=c_{1, i}(s) \Pi G_{1, i}(s) \quad(i=1, \ldots, n)
$$

by (1.1). Since $c_{1, i}(s) \neq 0(i=1, \ldots, n)$, we get

$$
\begin{equation*}
\sum_{j=1}^{n} D_{j} g^{l}(\lambda(s)) G_{1, i}^{j}(s)=G_{1, i}^{n+l}(s) \quad(i=1, \ldots, n) \tag{4.2}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
G_{1}(s) D g^{l}(\lambda(s))=G_{1}^{n+l}(s) \tag{4.3}
\end{equation*}
$$

By the same argument, we can differentiate (4.2) to obtain

$$
\sum_{j, k=1}^{n} D_{j k}^{2} g^{l}(\lambda(s)) D_{m} \varphi^{k}(s) G_{1, i}^{j}(s)+\sum_{j=1}^{n} D_{j} g^{l}(\lambda(s)) D_{m} G_{1, i}^{j}(s)=D_{m} G_{1, i}^{n+l}(s)
$$

for all $i, m=1, \ldots, n$. By (1.2),

$$
\begin{aligned}
& \sum_{j, k=1}^{n} D_{j k}^{2} g^{l}(\lambda(s)) c_{2, m}(s) G_{2, m}^{k}(s) G_{1, i}^{j}(s) \\
&+\sum_{j=1}^{n} D_{j} g^{l}(\lambda(s)) c_{2, m}(s) H_{i m}^{j}(s)=c_{2, m}(s) H_{i m}^{n+l}(s)
\end{aligned}
$$

for all $i, m=1, \ldots, n$, so that

$$
\begin{equation*}
\left[G_{1}(s) \otimes G_{2}(s)\right] D^{2} g^{l}(\lambda(s))+H(s) D g^{l}(\lambda(s))=H^{n+l}(s) . \tag{4.4}
\end{equation*}
$$

We conclude by observing that the system of equalities (4.3) and (4.4) is equivalent to 4.1).

We now investigate the properties of the matrix field $t \mapsto M(t)^{-1}$.
Proposition 4.2. Let $s \in A$ be such that $D \lambda(s)$ is nonsingular (e.g. $s \in F)$. Then there exists a nontrivial ball B, centered at s, such that:

- For all $t \in B$, the matrices $G_{1}(t), G_{2}(t)$ and $M(t)$ are invertible and

$$
M(t)^{-1}=\left[\begin{array}{cc}
G_{1}(t)^{-1} & 0 \tag{4.5}\\
-\left[G_{1}(t)^{-1} \otimes G_{2}(t)^{-1}\right] H(t) G_{1}(t)^{-1} & G_{1}(t)^{-1} \otimes G_{2}(t)^{-1}
\end{array}\right] .
$$

- The map $t \mapsto M(t)^{-1}, t \in B$, is Lipschitz.

Proof. One has

$$
D \lambda(s)=\left[\prod_{i=1}^{n} c_{1, i}(s)\right] G_{1}(s)^{T}=\left[\prod_{i=1}^{n} c_{2, i}(s)\right] G_{2}(s)^{T}
$$

by (1.1), hence $G_{1}(s)$ and $G_{2}(s)$ are nonsingular. Moreover,

$$
\begin{equation*}
\operatorname{det} M=\operatorname{det} G_{1} \operatorname{det}\left(G_{1} \otimes G_{2}\right)=\left(\operatorname{det} G_{1}\right)^{n+1}\left(\operatorname{det} G_{2}\right)^{n} \tag{4.6}
\end{equation*}
$$

by [HJ, Sect. 4.2, Problem 1]. Thus $\operatorname{det} M(s) \neq 0$. Since the function $t \mapsto$ $\operatorname{det} M(t)$ is continuous, there exists a nontrivial ball B centered at s and such that

$$
|\operatorname{det} M(t)| \geq \frac{|\operatorname{det} M(s)|}{2}>0
$$

for all $t \in B$. As a consequence, $M(t)$ is invertible at every $t \in B$. Formula (4.5) follows at once by observing that, for $t \in B$, the matrix $M(t)^{-1}$ has to be of the form (recall (4.6)

$$
\left[\begin{array}{cc}
G_{1}(t)^{-1} & 0 \\
X(t) & {\left[G_{1}(t) \otimes G_{2}(t)\right]^{-1}}
\end{array}\right]
$$

with $X(t)$ satisfying

$$
H(t) G_{1}(t)^{-1}+\left[G_{1}(t) \otimes G_{2}(t)\right] X(t)=0
$$

and finally recalling that

$$
\left[G_{1}(t) \otimes G_{2}(t)\right]^{-1}=G_{1}(t)^{-1} \otimes G_{2}(t)^{-1}
$$

(see [HJ, Corollary 4.2.11]). This concludes the proof of the first claim. The second one follows by observing that the entries of M are Lipschitz.

5. Whitney-type estimates

Proposition 5.1. Let $s \in L_{\varepsilon}^{*}$ and $t \in A \cap \varphi^{-1}\left(\mathcal{G}_{g}\right)$ be such that

$$
\begin{equation*}
\mathcal{H}^{1}([s ; t] \backslash A)=0 \tag{5.1}
\end{equation*}
$$

where $[s ; t]$ denotes the segment joining s and t. Then

$$
\left\|\mathcal{R}_{s}^{(0)}(t)\right\| \leq\left(\sup _{[s ; t]}\left\|c_{1}\right\|\right)\left(\sup _{[s ; t]}\left\|c_{2}\right\|\right) \Lambda_{s}\|t-s\|^{3}
$$

where

$$
c_{1}:=\left(c_{1,1}, \ldots, c_{1, n}\right), \quad c_{2}:=\left(c_{2,1}, \ldots, c_{2, n}\right)
$$

and Λ_{s} is a constant not depending on t.
Proof. First of all, observe that:

- Since $s, t \in \varphi^{-1}\left(\mathcal{G}_{g}\right)$, one has $g(\lambda(s))=\Pi \varphi(s)$ and $g(\lambda(t))=\Pi \varphi(t)$.
- Consider the following parametrization of $[s ; t]$:

$$
\sigma:[0,1] \rightarrow \mathbb{R}^{n}, \quad \rho \mapsto s+\rho(t-s) .
$$

Then the function $\rho \mapsto \varphi(\sigma(\rho))$ is Lipschitz, hence differentiable almost everywhere in $[0,1]$. Moreover (5.1) implies that

$$
(\varphi \circ \sigma)^{\prime}(\rho)=\sum_{i_{1}=1}^{n}\left(t^{i_{1}}-s^{i_{1}}\right) D_{i_{1}} \varphi(\sigma(\rho)) \quad \text { for a.e. } \rho \in[0,1]
$$

Recalling also 1.1, we obtain

$$
\begin{aligned}
\mathcal{R}_{s}^{(0)}(t)= & \Pi \varphi(t)-\Pi \varphi(s)-\sum_{i=1}^{n} D_{i} g(\lambda(s))\left[\varphi^{i}(t)-\varphi^{i}(s)\right] \\
& -\frac{1}{2} \sum_{i, j=1}^{n} D_{i j}^{2} g(\lambda(s))\left[\varphi^{i}(t)-\varphi^{i}(s)\right]\left[\varphi^{j}(t)-\varphi^{j}(s)\right] \\
= & \sum_{h=1}^{n}\left(t^{h}-s^{h}\right) \int_{0}^{1}\left\{\Pi D_{h} \varphi(\sigma(\rho))-\sum_{i=1}^{n} D_{i} g(\lambda(s)) D_{h} \varphi^{i}(\sigma(\rho))\right. \\
& \left.-\sum_{i, j=1}^{n} D_{i j}^{2} g(\lambda(s))\left[\varphi^{i}(\sigma(\rho))-\varphi^{i}(s)\right] D_{h} \varphi^{j}(\sigma(\rho))\right\} d \rho
\end{aligned}
$$

that is,

$$
\begin{equation*}
\mathcal{R}_{s}^{(0)}(t)=\sum_{h=1}^{n}\left(t^{h}-s^{h}\right) \int_{0}^{1} c_{1, h}(\sigma(\rho)) \Phi_{s, h}(\sigma(\rho)) d \rho \tag{5.2}
\end{equation*}
$$

where $\Phi_{s, h}$ denotes the Lipschitz map defined as follows:

$$
\begin{equation*}
\Phi_{s, h}:=\Pi G_{1, h}-\sum_{i=1}^{n} D_{i} g(\lambda(s)) G_{1, h}^{i}-\sum_{i, j=1}^{n} D_{i j}^{2} g(\lambda(s))\left[\varphi^{i}-\varphi^{i}(s)\right] G_{1, h}^{j} \tag{5.3}
\end{equation*}
$$

Now, since $\Phi_{s, h} \circ \sigma$ is Lipschitz, it is differentiable almost everywhere in $[0,1]$ and

$$
\left(\Phi_{s, h} \circ \sigma\right)^{\prime}=\sum_{k=1}^{n}\left(t^{k}-s^{k}\right)\left(D_{k} \Phi_{s, h}\right) \circ \sigma
$$

Moreover $\Phi_{s, h}(s)=0$, by (4.2). By (5.3) and recalling (1.2), we get

$$
\begin{align*}
\Phi_{s, h}(\sigma(\rho)) & =\Phi_{s, h}(\sigma(\rho))-\Phi_{s, h}(s)=\int_{0}^{\rho}\left(\Phi_{s, h} \circ \sigma\right)^{\prime} \tag{5.4}\\
& =\sum_{k=1}^{n}\left(t^{k}-s^{k}\right) \int_{0}^{\rho}\left(D_{k} \Phi_{s, h}\right) \circ \sigma \\
& =\sum_{k=1}^{n}\left(t^{k}-s^{k}\right) \int_{0}^{\rho}\left(c_{2, k} \circ \sigma\right)\left(\Psi_{s, h k} \circ \sigma\right)
\end{align*}
$$

where $\Psi_{s, h k}$ is the Lipschitz map defined by

$$
\begin{aligned}
\Psi_{s, h k}:= & \Pi H_{h k}-\sum_{i=1}^{n} D_{i} g(\lambda(s)) H_{h k}^{i} \\
& -\sum_{i, j=1}^{n} D_{i j}^{2} g(\lambda(s))\left\{G_{2, k}^{i} G_{1, h}^{j}+\left[\varphi^{i}-\varphi^{i}(s)\right] H_{h k}^{j}\right\}
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\Psi_{s, h k}(s) & =\Pi H_{h k}(s)-\sum_{i=1}^{n} D_{i} g(\lambda(s)) H_{h k}^{i}(s)-\sum_{i, j=1}^{n} D_{i j}^{2} g(\lambda(s)) G_{2, k}^{i}(s) G_{1, h}^{j}(s) \\
& =0
\end{aligned}
$$

by 4.4). Hence (for all $r \in[0,1]$)

$$
\begin{aligned}
\left\|\Psi_{s, h k}(\sigma(r))\right\| & =\left\|\Psi_{s, h k}(\sigma(r))-\Psi_{s, h k}(s)\right\| \leq\|\sigma(r)-s\| \operatorname{Lip} \Psi_{s, h k} \\
& =r\|t-s\| \operatorname{Lip} \Psi_{s, h k} \\
& \leq\|t-s\| \Lambda_{s}
\end{aligned}
$$

with

$$
\Lambda_{s}:=\max _{h, k=1, \ldots, n} \operatorname{Lip} \Psi_{s, h k}
$$

Recalling (5.4), we obtain

$$
\left\|\Phi_{s, h}(\sigma(\rho))\right\| \leq\left(\sup _{[s ; t]}\left\|c_{2}\right\|\right) \Lambda_{s}\|t-s\|^{2}
$$

The conclusion follows at once from (5.2).
Proposition 5.2. Let $s \in L_{\varepsilon}^{*}$. Then there exists a nontrivial ball B, centered at s, such that

$$
\left\|\mathcal{R}_{i ; s}^{(1)}(t)\right\| \leq\left(\sup _{[s ; t]}\left\|c_{2}\right\|\right) \Sigma_{s}\|t-s\|^{2} \quad(i=1, \ldots, n)
$$

for all $t \in L_{\varepsilon}^{*} \cap B$ such that (5.1) is satisfied, where c_{2} is defined as in Proposition 5.1, while Σ_{s} is a constant not depending on t or i.

Proof. Since $s \in L_{\varepsilon}^{*} \subset F$, there exists a ball B as in Proposition 4.2, Consider $t \in L_{\varepsilon}^{*} \cap B$ such that (5.1) is satisfied. Then (for $l=1, \ldots, N-n$)

$$
\begin{aligned}
{\left[\mathcal{R}_{i ; s}^{(1)}(t)\right]^{l}=} & D_{i} g^{l}(\lambda(t))-D_{i} g^{l}(\lambda(s))-\sum_{j=1}^{n} D_{i j}^{2} g^{l}(\lambda(s))\left[\varphi^{j}(t)-\varphi^{j}(s)\right] \\
= & R_{i}\left(G_{1}(t)^{-1}\right) \bullet G_{1}^{n+l}(t)-R_{i}\left(G_{1}(s)^{-1}\right) \bullet G_{1}^{n+l}(s) \\
& -\sum_{j=1}^{n} D_{i j}^{2} g^{l}(\lambda(s))\left[\varphi^{j}(t)-\varphi^{j}(s)\right]
\end{aligned}
$$

by Propositions 4.1 and 4.2. Moreover, if σ is the parametrization of $[s ; t]$ defined above, the function

$$
\Pi: \rho \mapsto R_{i}\left(G_{1}(\sigma(\rho))^{-1}\right) \bullet G_{1}^{n+l}(\sigma(\rho)), \quad \rho \in[0,1],
$$

is Lipschitz, hence differentiable almost everywhere in $[0,1]$. Recalling (5.1) and denoting by G_{1}^{-1} the map $r \mapsto G_{1}(r)^{-1}$ (by a convenient abuse of notation), we obtain

$$
\Pi^{\prime}(\rho)=\sum_{q=1}^{n}\left(t^{q}-s^{q}\right)\left\{R_{i}\left(D_{q} G_{1}^{-1}\right) \bullet G_{1}^{n+l}+R_{i}\left(G_{1}^{-1}\right) \bullet D_{q} G_{1}^{n+l}\right\}(\sigma(\rho))
$$

for a.e. $\rho \in[0,1]$. By the well-known formula for the derivative of the inverse matrix field (see [HJ, (6.5.7)]),

$$
\begin{aligned}
\Pi^{\prime}(\rho)= & \sum_{q=1}^{n}\left(t^{q}-s^{q}\right)\left\{R_{i}\left(G_{1}^{-1}\right) \bullet D_{q} G_{1}^{n+l}\right. \\
& \left.\quad-R_{i}\left[G_{1}^{-1}\left(D_{q} G_{1}\right) G_{1}^{-1}\right] \bullet G_{1}^{n+l}\right\}(\sigma(\rho)) \\
= & \sum_{m, q=1}^{n}\left(t^{q}-s^{q}\right)\left\{\left[G_{1}^{-1}\right]_{i}^{m} D_{q} G_{1, m}^{n+l}-\left[G_{1}^{-1}\left(D_{q} G_{1}\right) G_{1}^{-1}\right]_{i}^{m} G_{1, m}^{n+l}\right\}(\sigma(\rho)) \\
= & \sum_{m, q=1}^{n}\left(t^{q}-s^{q}\right)\left\{\left[G_{1}^{-1}\right]_{i}^{m} D_{q} G_{1, m}^{n+l}\right. \\
& \left.\quad-\sum_{h, k=1}^{n}\left[G_{1}^{-1}\right]_{i}^{h}\left(D_{q} G_{1, h}^{k}\right)\left[G_{1}^{-1}\right]_{k}^{m} G_{1, m}^{n+l}\right\}(\sigma(\rho))
\end{aligned}
$$

for a.e. $\rho \in[0,1]$. Recalling $\sqrt{1.2}$, we get

$$
\begin{aligned}
\Pi^{\prime}(\rho)=\sum_{m, q=1}^{n} c_{2, q}(\sigma(\rho))\left(t^{q}-s^{q}\right)\{ & {\left[G_{1}^{-1}\right]_{i}^{m} H_{m q}^{n+l} } \\
& \left.-\sum_{h, k=1}^{n}\left[G_{1}^{-1}\right]_{i}^{h} H_{h q}^{k}\left[G_{1}^{-1}\right]_{k}^{m} G_{1, m}^{n+l}\right\}(\sigma(\rho))
\end{aligned}
$$

for a.e. $\rho \in[0,1]$. It follows that

$$
\begin{equation*}
\left[\mathcal{R}_{i ; s}^{(1)}(t)\right]^{l}=\sum_{q=1}^{n}\left(t^{q}-s^{q}\right) \int_{0}^{1} c_{2, q}(\sigma(\rho)) \Theta_{q ; s}^{l}(\sigma(\rho)) d \rho \tag{5.5}
\end{equation*}
$$

where $\Theta_{q ; s}^{l}: B \rightarrow \mathbb{R}$ is defined as
$\Theta_{q ; s}^{l}:=\sum_{m=1}^{n}\left\{\left[G_{1}^{-1}\right]_{i}^{m} H_{m q}^{n+l}-\sum_{h, k=1}^{n}\left[G_{1}^{-1}\right]_{i}^{h} H_{h q}^{k}\left[G_{1}^{-1}\right]_{k}^{m} G_{1, m}^{n+l}-D_{i m}^{2} g^{l}(\lambda(s)) G_{2, q}^{m}\right\}$.

One has

$$
\begin{aligned}
D_{i m}^{2} g^{l}(\lambda(s))= & \sum_{c, d=1}^{n}\left[G_{1}(s)^{-1} \otimes G_{2}(s)^{-1}\right]_{i m}^{c d} H_{c d}^{n+l}(s) \\
& -\sum_{b, c, d, e=1}^{n}\left[G_{1}(s)^{-1} \otimes G_{2}(s)^{-1}\right]_{i m}^{c d} H_{c d}^{b}(s)\left[G_{1}(s)^{-1}\right]_{b}^{e} G_{1, e}^{n+l}(s) \\
= & \sum_{c, d=1}^{n}\left[G_{1}(s)^{-1}\right]_{i}^{c}\left[G_{2}(s)^{-1}\right]_{m}^{d} H_{c d}^{n+l}(s) \\
& -\sum_{b, c, d, e=1}^{n}\left[G_{1}(s)^{-1}\right]_{i}^{c}\left[G_{2}(s)^{-1}\right]_{m}^{d} H_{c d}^{b}(s)\left[G_{1}(s)^{-1}\right]_{b}^{e} G_{1, e}^{n+l}(s)
\end{aligned}
$$

by Propositions 4.1 and 4.2. Hence

$$
\begin{aligned}
\sum_{m=1}^{n} D_{i m}^{2} g^{l}(\lambda(s)) G_{2, q}^{m}(s)= & \sum_{c, d=1}^{n}\left[G_{1}(s)^{-1}\right]_{i}^{c} H_{c d}^{n+l}(s) \delta_{d q} \\
& -\sum_{b, c, d, e=1}^{n}\left[G_{1}(s)^{-1}\right]_{i}^{c} H_{c d}^{b}(s)\left[G_{1}(s)^{-1}\right]_{b}^{e} G_{1, e}^{n+l}(s) \delta_{d q} \\
= & \sum_{c=1}^{n}\left[G_{1}(s)^{-1}\right]_{i}^{c} H_{c q}^{n+l}(s) \\
& -\sum_{b, c, e=1}^{n}\left[G_{1}(s)^{-1}\right]_{i}^{c} H_{c q}^{b}(s)\left[G_{1}(s)^{-1}\right]_{b}^{e} G_{1, e}^{n+l}(s)
\end{aligned}
$$

so that

$$
\Theta_{q ; s}^{l}(s)=0
$$

Moreover $\Theta_{q ; s}^{l}$ is Lipschitz, by Proposition 4.2. Then, if we define

$$
\Sigma_{s}:=(N-n) \max _{\substack{q=1, \ldots, n \\ l=1, \ldots, N-n}} \operatorname{Lip} \Theta_{q ; s}^{l}
$$

we get

$$
\left|\Theta_{q ; s}^{l}(\sigma(\rho))\right|=\left|\Theta_{q ; s}^{l}(\sigma(\rho))-\Theta_{q ; s}^{l}(s)\right| \leq \frac{\Sigma_{s}}{N-n} \rho\|t-s\| \leq \frac{\Sigma_{s}}{N-n}\|t-s\|
$$

for all $q=1, \ldots, n$, all $l=1, \ldots, N-n$ and all $\rho \in[0,1]$. From (5.5) it finally follows that

$$
\left\|\mathcal{R}_{i ; s}^{(1)}(t)\right\| \leq \sum_{l=1}^{N-n}\left|\left[\mathcal{R}_{i ; s}^{(1)}(t)\right]^{l}\right| \leq\left(\sup _{[s ; t]}\left\|c_{2}\right\|\right) \Sigma_{s}\|t-s\|^{2}
$$

The estimate of the second order remainder term is established in the following result, an immediate consequence of Proposition 4.2 and 4.1).

Proposition 5.3. Let $s \in L_{\varepsilon}^{*}$. Then there exists a nontrivial ball B, centered at s, such that

$$
\left\|\mathcal{R}_{i j ; s}^{(2)}(t)\right\|=\left\|D_{i j}^{2} g(\lambda(t))-D_{i j}^{2} g(\lambda(s))\right\| \leq \Gamma_{s}\|t-s\| \quad(i, j=1, \ldots, n)
$$

for all $t \in L_{\varepsilon}^{*} \cap B$, where Γ_{s} is a constant not depending on t or i, j.
6. Proof of Theorem 2.5. As pointed out in Section 3.1, our task amounts to proving that $\varphi\left(L_{\varepsilon}^{*}\right)$ is $\left(\mathcal{H}^{n}, n\right)$ rectifiable of class C^{3} (for all $\varepsilon>0)$.

For each positive integer h, define $\Gamma_{\varepsilon, h}$ as the set of $s \in L_{\varepsilon}^{*}$ such that

$$
\begin{equation*}
\left\|\mathcal{R}_{s}^{(0)}(t)\right\| \leq h\|\lambda(t)-\lambda(s)\|^{3} \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\mathcal{R}_{i ; s}^{(1)}(t)\right\| \leq h\|\lambda(t)-\lambda(s)\|^{2}, \quad\left\|\mathcal{R}_{i j ; s}^{(2)}(t)\right\| \leq h\|\lambda(t)-\lambda(s)\| \tag{6.2}
\end{equation*}
$$

for all $i, j=1, \ldots, n$ and all $t \in L_{\varepsilon}^{*}$ satisfying

$$
\|t-s\| \leq 1 / h
$$

Proposition 6.1. One has

$$
\bigcup_{h} \Gamma_{\varepsilon, h}=L_{\varepsilon}^{*}
$$

Proof. The inclusion $\bigcup_{h} \Gamma_{\varepsilon, h} \subset L_{\varepsilon}^{*}$ is obvious. In order to prove the opposite inclusion, consider $s \in L_{\varepsilon}^{*}$ and let U and V be as in Remark 2.4. Observe that

$$
\begin{align*}
\|t-s\| & =\left\|(\lambda \mid U)^{-1}(\lambda(t))-(\lambda \mid U)^{-1}(\lambda(s))\right\| \tag{6.3}\\
& \leq \operatorname{Lip}(\lambda \mid U)^{-1}\|\lambda(t)-\lambda(s)\|
\end{align*}
$$

for all $t \in U$.
Since $s \in A^{\prime}$, there exists a nontrivial ball B centered at s such that

$$
B \subset U, \quad \mathcal{L}^{n}(B \backslash A)=0
$$

By shrinking, if need be, we may also assume that B is as in the claims of Propositions 5.2 and 5.3 .

We now recall the following fact, proved in [D5]: given a null-measure subset Z of \mathbb{R}^{n} and $s \in \mathbb{R}^{n}$, one has $\mathcal{H}^{1}(Z \cap[s ; t])=0$ for a.e. $t \in \mathbb{R}^{n}$.

For $Z:=B \backslash A$, we get

$$
\mathcal{H}^{1}([s ; t] \backslash A)=\mathcal{H}^{1}(Z \cap[s ; t])=0
$$

for a.e. $t \in B$. Then Proposition 5.1 yields

$$
\left\|\mathcal{R}_{s}^{(0)}(t)\right\| \leq C\|t-s\|^{3}
$$

for a.e. $t \in B \cap \varphi^{-1}\left(\mathcal{G}_{g}\right)$, where C does not depend on t. By continuity we get

$$
\left\|\mathcal{R}_{s}^{(0)}(t)\right\| \leq C\|t-s\|^{3}
$$

for all $t \in B \cap \varphi^{-1}\left(\mathcal{G}_{g}\right)$. Recalling (6.3) we conclude that

$$
\left\|\mathcal{R}_{s}^{(0)}(t)\right\| \leq C_{0}\|\lambda(t)-\lambda(s)\|^{3}, \quad C_{0}:=C\left[\operatorname{Lip}(\lambda \mid U)^{-1}\right]^{3}
$$

for all $t \in B \cap \varphi^{-1}\left(\mathcal{G}_{g}\right)$. Analogously, we can use Propositions 5.2 and 5.3 , and (6.3), to deduce the existence of C_{1} and C_{2} which do not depend on t and are such that

$$
\begin{aligned}
\left\|\mathcal{R}_{i ; s}^{(1)}(t)\right\| & \leq C_{1}\|\lambda(t)-\lambda(s)\|^{2} \\
\left\|\mathcal{R}_{i j ; s}^{(2)}(t)\right\| & \left(i=C_{2}\|\lambda(t)-\lambda(s)\|\right.
\end{aligned} \quad(i, j=1, \ldots, n),
$$

for all $t \in L_{\varepsilon}^{*} \cap B$. Hence $s \in \Gamma_{\varepsilon, h}$ provided h is large enough.
From Proposition 6.1 it follows that

$$
\varphi\left(L_{\varepsilon}^{*}\right)=\bigcup_{h} \varphi\left(\Gamma_{\varepsilon, h}\right)
$$

hence it will be enough to verify that

$$
\begin{equation*}
\varphi\left(\Gamma_{\varepsilon, h}\right) \text { is }\left(\mathcal{H}^{n}, n\right) \text { rectifiable of class } C^{3} \tag{6.4}
\end{equation*}
$$

for all ε and h.
To prove this, we first consider a countable measurable covering $\left\{Q_{l}\right\}_{l=1}^{\infty}$ of $\Gamma_{\varepsilon, h}$ such that diam $Q_{l} \leq 1 / h$ for all l, and define

$$
F_{l}:=\overline{\lambda\left(\Gamma_{\varepsilon, h} \cap Q_{l}\right)}
$$

If $\xi, \eta \in F_{l}$, then there exist sequences $\left\{s_{k}\right\},\left\{t_{k}\right\} \subset \Gamma_{\varepsilon, h} \cap Q_{l}$ such that

$$
\lim _{k} \lambda\left(s_{k}\right)=\xi, \quad \lim _{k} \lambda\left(t_{k}\right)=\eta
$$

By (6.1) and (6.2), for all k,

$$
\left\|\mathcal{R}_{s_{k}}^{(0)}\left(t_{k}\right)\right\| \leq h\left\|\lambda\left(t_{k}\right)-\lambda\left(s_{k}\right)\right\|^{3}
$$

and

$$
\left\|\mathcal{R}_{i, s_{k}}^{(1)}\left(t_{k}\right)\right\| \leq h\left\|\lambda\left(t_{k}\right)-\lambda\left(s_{k}\right)\right\|^{2}, \quad\left\|\mathcal{R}_{i j, s_{k}}^{(2)}\left(t_{k}\right)\right\| \leq h\left\|\lambda\left(t_{k}\right)-\lambda\left(s_{k}\right)\right\|
$$

for all $i, j=1, \ldots, n$. Letting $k \rightarrow \infty$, we obtain

$$
\begin{array}{r}
\left\|g(\eta)-g(\xi)-\sum_{i=1}^{n} D_{i} g(\xi)\left(\eta^{i}-\xi^{i}\right)-\frac{1}{2} \sum_{i, j=1}^{n} D_{i j}^{2} g(\xi)\left(\eta^{i}-\xi^{i}\right)\left(\eta^{j}-\xi^{j}\right)\right\| \\
\leq h\|\eta-\xi\|^{3} \\
\left\|D_{i} g(\eta)-D_{i} g(\xi)-\sum_{j=1}^{n} D_{i j}^{2} g(\xi)\left(\eta^{j}-\xi^{j}\right)\right\| \leq h\|\eta-\xi\|^{2} \quad(i=1, \ldots, n)
\end{array}
$$

and

$$
\left\|D_{i j}^{2} g(\eta)-D_{i j}^{2} g(\xi)\right\| \leq h\|\eta-\xi\| \quad(i, j=1, \ldots, n)
$$

for all $\xi, \eta \in F_{l}$. By the Whitney extension theorem [St, Ch. VI, §2.3], each $g \mid F_{l}$ can be extended to a map in $C^{2,1}\left(\mathbb{R}^{n}, \mathbb{R}^{N-n}\right)$. Then the Lusin type result
of [F, §3.1.15] implies that $\varphi\left(\Gamma_{\varepsilon, h} \cap Q_{l}\right)$ is $\left(\mathcal{H}^{n}, n\right)$ rectifiable of class C^{3}. Finally, 6.4 follows by observing that

$$
\varphi\left(\Gamma_{\varepsilon, h}\right)=\bigcup_{l} \varphi\left(\Gamma_{\varepsilon, h} \cap Q_{l}\right)
$$

References

[A] G. Alberti, On the structure of singular sets of convex functions, Calc. Var. 2 (1994), 17-27.
[AO] G. Anzellotti and E. Ossanna, Singular sets of surfaces with generalized curvatures, Manuscripta Math. 86 (1995), 417-433.
[AS] G. Anzellotti and R. Serapioni, \mathcal{C}^{k}-rectifiable sets, J. Reine Angew. Math. 453 (1994), 1-20.
[AST] G. Anzellotti, R. Serapioni and I. Tamanini, Curvatures, functionals, currents, Indiana Univ. Math. J. 39 (1990), 617-669.
[BHS] B. Bojarski, P. Hajłasz and P. Strzelecki, Sard's theorem for mappings in Hölder and Sobolev spaces, Manuscripta Math. 118 (2005), 383-397.
[CLSW] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Grad. Texts in Math. 178, Springer, 1998.
[D1] S. Delladio, Do generalized Gauss graphs induce curvature varifolds?, Boll. Un. Mat. Ital. B (7) 10 (1996), 991-1017.
[D2] S. Delladio, A result about C^{2}-rectifiability of one-dimensional rectifiable sets. Application to a class of one-dimensional integral currents, Boll. Un. Mat. Ital. B (8) 10 (2007), 237-252.
[D3] S. Delladio, A sufficient condition for the C^{H}-rectifiability of Lipschitz curves, J. Geom. Anal. 18 (2008), 746-764.
[D4] S. Delladio, A class of one-dimensional geometric variational problems with energy involving the curvature and its derivatives. A geometric measure-theoretic approach, Ann. Mat. Pura Appl. 187 (2008), 611-645.
[D5] S. Delladio, A sufficient condition for the C^{2}-rectifiability of the set of regular values (in the sense of Clarke) of a Lipschitz map, Boll. Un. Mat. Ital. (9) 1 (2008), 695-707.
[F] H. Federer, Geometric Measure Theory, Springer, 1969.
[Fu1] J. H. G. Fu, Some remarks on Legendrian rectifiable currents, Manuscripta Math. 97 (1998), 175-187.
[Fu2] J. H. G. Fu, Erratum to "Some remarks on Legendrian rectifiable currents", Manuscripta Math. 113 (2004), 397-401.
[HJ] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, 1999.
[M] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Univ. Press, 1995.
[S] L. Simon, Lectures on Geometric Measure Theory, Proc. Centre Math. Anal. Austral. Nat. Univ. 3, Canberra, 1983.
[St] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.

Silvano Delladio
Department of Mathematics
University of Trento
Trento, Italy
E-mail: silvano.delladio@unitn.it

[^0]: 2010 Mathematics Subject Classification: Primary 26A16, 49Q15, 53Axx, 54C20; Secondary 28A75, 28A78, 49Q20.
 Key words and phrases: rectifiable sets, geometric measure theory, Whitney extension theorem
 Received 29 January 2016; revised 5 September 2016.
 Published online 3 October 2016.

