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The set of regular values (in the sense of Clarke)
of a Lipschitz map. A sufficient condition for rectifiability

of class C3

Silvano Delladio (Trento)

Abstract. Let n,N be positive integers such that n < N . We prove a result about the
rectifiability of class C3 of the set of regular values (in the sense of Clarke) of a Lipschitz
map ϕ : Rn → RN .

1. Introduction and statement of the main result. In this paper
we prove a result about the rectifiability of class C3 of the set of regular
values (in the sense of Clarke) of a Lipschitz map

ϕ : Rn → RN (n < N).

Before we state it, let us recall some basic definitions.
A Borel subset S of RN is said to be (Hn, n) rectifiable of class C3 (or

simply rectifiable of class C3) if there exist countably many n-dimensional
submanifolds Mj of RN of class C3 such that

Hn
(
S \

⋃
j

Mj

)
= 0.

Analogously one can define (Hn, n) rectifiable sets of class Ck for each pos-
itive integer k. In particular, for k = 1 this notion is equivalent to that of
n-rectifiable set, e.g. by [S, Lemma 11.1].

For γ ∈ I(n,N) = {γ = (γ1, . . . , γn) ∈ Nn : 1 ≤ γ1 < · · · < γn ≤ N} and
s ∈ Rn, let ∂ϕγ(s) denote the Clarke subdifferential of the map

ϕγ := (ϕγ1 , . . . , ϕγn) : Rn → Rn,
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namely

∂ϕγ(s) := co
{
lim
i→∞

Dϕγ(si)
∣∣∣Dϕγ(si) exists, si → s

}
(see [CLSW, p. 133]). The set ∂ϕγ(s) is said to be nonsingular if every
matrix in ∂ϕγ(s) is of rank n. Observe that Dϕγ(s) ∈ ∂ϕγ(s) whenever ϕγ
is differentiable at s. In particular, Dϕγ(s) is nonsingular provided ∂ϕγ(s)
is nonsingular. Define

R := {s ∈ Rn | ∂ϕγ(s) is nonsingular for some γ}.
We can now state our theorem.

Theorem 1.1. Consider a Lipschitz map

ϕ : Rn → RN (n < N).

Moreover let
c1,i, c2,i : Rn → R \ {0} (i = 1, . . . , n)

be a family of locally bounded functions, let

G1,i, G2,i : Rn → RN (i = 1, . . . , n), Hij : Rn → RN (i, j = 1, . . . , n)

be a family of Lipschitz maps and denote by A the set of points t ∈ Rn
satisfying the following conditions:

(i) The map ϕ and all the maps G1,i are differentiable at t.
(ii) The equality

(1.1) Diϕ(t) = c1,i(t)G1,i(t) = c2,i(t)G2,i(t)

holds for all i = 1, . . . , n.
(iii) One has

(1.2) DjG1,i(t) = c2,j(t)Hij(t)

for all i, j = 1, . . . , n.

Also assume that

(iv) For almost every a ∈ A there exists a nontrivial ball B centered at
a and such that Ln(B \A) = 0.

Then ϕ(A ∩R) is (Hn, n) rectifiable of class C3.

Remark 1.2. As an immediate corollary of Theorem 1.1, we get this
result: Let

ϕ : Rn → RN , G1,i, G2,i, Hij : Rn → RN (i, j = 1, . . . , n)

be a family of Lipschitz maps and let

c1,i, c2,i : Rn → R \ {0} (i = 1, . . . , n),

be a family of bounded functions such that (1.1) and (1.2) hold almost
everywhere in Rn. Then ϕ(R) is (Hn, n) rectifiable of class C3.



C3-rectifiability of the set of regular values 217

Remark 1.3. Suppose each component ϕi of ϕ : Rn → RN belongs to
C3(Rn) and has uniformly bounded gradient ∇ϕi. Moreover suppose the
differential Dϕ has rank n at each point of Rn. Then the assumptions of
Theorem 1.1 are trivially satisfied upon setting

c1,i := 1, c2,i := 1, G1,i := Diϕ, G2,i := Diϕ (i = 1, . . . , n)

and
Hij := D2

ijϕ (i, j = 1, . . . , n)

with A = Rn.

Rectifiable sets of class Ck have been been introduced in [AS] and provide
a natural setting for the description of singularities of convex functions and
convex surfaces [A, AO]. More generally, they can be used to study the
singularities of surfaces with generalized curvatures [AO]. Rectifiability of
class C2 is strictly related to Legendrian rectifiable subsets of RN × SN−1

[Fu1, Fu2, D2, D3]. The level sets of a W k,p
loc mapping between manifolds are

rectifiable sets of class Ck [BHS]. Applications of rectifiable sets of class CH
(with H ≥ 2) to geometric variational problems can be found in [D4].

Finally, we would like to explain the reasons of our interest in conditions
(1.1) and (1.2). In the particular case when n = 1, such conditions arose
naturally in the context of one-dimensional generalized Gauss graphs (see
[AST, D1] for the basic definitions and results) and of two-storey towers of
one-dimensional generalized Gauss graphs (see [D4]). Then it was natural
to explore the question of how those assumptions could be generalized in
order to get results about higher order rectifiability, including the case when
n ≥ 2. A general theorem for curves was provided in [D3], while in [D5]
we started studying the case of general dimension by proving a result about
rectifiability of class C2. Further results in this direction can be found in [AS]
and [Fu1, Fu2]. Roughly speaking, the very basic idea and the proof strategy
in the present paper are the same as in [D5], namely we use the celebrated
Whitney extension theorem to show that the image of ϕ is captured, up toHn
measure 0, by countably many highly regular images of Rn. More precisely,
our main objective is to get a set of third order Whitney estimates which
allows us to perform (countably many) extensions of class C3 necessary to
show that the image of ϕ is C3-rectifiable. This result is an outcome of our
efforts to prove a general theorem about rectifiability of class CH in any
dimension, which is the subject of our ongoing investigations.

2. Reduction to graphs

Remark 2.1. Under the hypotheses of Theorem 1.1, let A′ denote the
set of a ∈ A such that there exists a non-trivial ball B centered at a satisfying
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Ln(B \A) = 0. One has

(2.1) Ln(A \A′) = 0

by assumption (iv). Hence, it will be enough to prove that ϕ(A′ ∩ R) is
(Hn, n) rectifiable of class C3.

Remark 2.2. By the main theorem of [D5], we already know that
ϕ(A ∩R) (hence also ϕ(A′ ∩R)) is (Hn, n) rectifiable of class C2.

Remark 2.3. Let E be any subset of R and define

Eγ := {s ∈ E | ∂ϕγ(s) is nonsingular}, γ ∈ I(n,N).

Then obviously ⋃
γ∈I(n,N)

Eγ = E.

Remark 2.4. If s ∈ Rγ , then by the Lipschitz inverse function theorem
(e.g. [CLSW, Theorem 3.12]), there exist a neighborhood U of s (in Rn) and
a neighborhood V of ϕγ(s) (in Rn) such that

• V = ϕγ(U) and ϕγ |U : U → V is invertible;
• (ϕγ |U)−1 is Lipschitz.

Let γ denote the multi-index in I(N − n,N) which complements γ in
{1, . . . , N} in the natural increasing order and set (for x ∈ RN )

xγ := (xγ1 , . . . , xγn),

xγ := (xγ1 , . . . , xγN−n).

Then the map
f := ϕγ ◦ (ϕγ |U)−1 : V → RN−n

is Lipschitz and its graph

Gγf := {x ∈ RN | xγ ∈ V and xγ = f(xγ)}

coincides with ϕ(U).

By the previous remarks, it will be enough to prove

Theorem 2.5. Under the assumptions of Theorem 1.1, let γ ∈ I(n,N)
and consider a map

g : Rn → RN−n

of class C2. Then ϕ((A′ ∩R)γ) ∩ Gγg is (Hn, n) rectifiable of class C3.

Remark 2.6. The remainder of the paper is devoted to proving Theorem
2.5. With no loss of generality, we can restrict to the case of γ = {1, . . . , n}.
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3. Preliminaries

3.1. Further reduction of the claim. From now on, for simplicity,

G{1,...,n}g , (A′ ∩R){1,...,n}, ϕ{1,...,n}

will be denoted by Gg, F and λ, respectively.
Define

L := ϕ−1(Gg) ∩ F.

Without loss of generality, we can assume that Ln(L) < ∞. Then, by a
well-known regularity property of Ln, for any given ε > 0 there exists a
closed subset Lε of Rn with

(3.1) Lε ⊂ L, Ln(L \ Lε) ≤ ε

(see e.g. [M, Theorem 1.10]). Moreover, since Lε is closed, one has

(3.2) L∗ε ⊂ Lε

where L∗ε is the set of density points of Lε. Recall that

(3.3) Ln(Lε \ L∗ε) = 0

by a well-known result of Lebesgue. In the special case that L has measure
zero, we define Lε := ∅, hence L∗ε := ∅.

Observe that

Gg ∩ ϕ(F ) \ ϕ(L∗ε) ⊂ ϕ
(
ϕ−1(Gg) ∩ F \ L∗ε

)
= ϕ(L \ L∗ε),

hence

Hn(Gg ∩ ϕ(F ) \ ϕ(L∗ε)) ≤ Hn(ϕ(L \ L∗ε)) ≤
�

L\L∗
ε

JnϕdLn

≤ (Lipϕ)nL(L \ L∗ε) ≤ ε (Lipϕ)n

by the area formula (see [F, §3.2], [S, §8]) and (3.1)–(3.3). It follows that

Hn
(
Gg ∩ ϕ(F ) \

∞⋃
j=1

ϕ(L∗1/j)
)
= 0.

Thus, to prove Theorem 2.5, it suffices to show that ϕ(L∗ε) is (Hn, n) recti-
fiable of class C3 for all ε > 0.

3.2. Further notation. Let us consider the projection

Π : RN → RN−n, (x1, . . . , xN ) 7→ (xn+1, . . . , xN ).



220 S. Delladio

Moreover, set

R(0)
s (σ) := g(λ(σ))− g(λ(s))−

n∑
i=1

Dig(λ(s))[ϕ
i(σ)− ϕi(s)]

− 1

2

n∑
i,j=1

D2
ijg(λ(s))[ϕ

i(σ)− ϕi(s)][ϕj(σ)− ϕj(s)],

R(1)
i;s (σ) := Dig(λ(σ))−Dig(λ(s))−

n∑
j=1

D2
ijg(λ(s))[ϕ

j(σ)− ϕj(s)],

R(2)
ij;s(σ) := D2

ijg(λ(σ))−D2
ijg(λ(s)).

For h = 1, 2, let Gh denote the n× n matrix field given by

[Gh(t)]
j
i := Gjh,i(t), t ∈ Rn (i, j = 1, . . . , n).

Also let H be the n2 × n matrix field defined by

[H(t)]kij := Hk
ij(t), t ∈ Rn (i, j, k = 1, . . . , n)

where the couples ij (indexing the rows) are ordered lexicographically.
Then consider the (n+ n2)× (n+ n2) matrix field

M :=

[
G1 0

H G1 ⊗G2

]
where ⊗ denotes the Kronecker product of matrices [HJ, Sect. 4.2].

For l = 1, . . . , N − n, let D2gl denote the Rn2-valued field such that

[D2gl(t)]ij := D2
ijg

l(t), t ∈ Rn (i, j = 1, . . . , n)

where the lexicographical order is assumed.
Finally, given a matrix X and an index k, denote by

Rk(X), Ck(X)

the kth row and kth column of X, respectively.

4. The derivatives of g in terms of {G1, G2, H}
Proposition 4.1. Let l ∈ {1, . . . , N − n} and s ∈ L∗ε. Then

(4.1) M(s)
(
Dgl(λ(s)), D2gl(λ(s))

)T
= (Gn+l1 (s), Hn+l(s))T

where Gn+l1 and Hn+l are the the vector fields defined as follows:

Gn+l1 := (Gn+l1,1 , . . . , G
n+l
1,n ),

Hn+l := [Hn+l
ij ]ni,j=1 (in lexicographical order).

Proof. First of all, observe that

g(λ(t)) = Πϕ(t)
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for all t ∈ ϕ−1(Gg). Since L∗ε ⊂ A, the two members of this equality are both
differentiable at s. Moreover, s is a limit point of Lε ⊂ ϕ−1(Gg). Hence

n∑
j=1

Djg(λ(s))Diϕ
j(s) = ΠDiϕ(s) (i = 1, . . . , n),

so
n∑
j=1

Djg(λ(s))c1,i(s)G
j
1,i(s) = c1,i(s)ΠG1,i(s) (i = 1, . . . , n)

by (1.1). Since c1,i(s) 6= 0 (i = 1, . . . , n), we get

(4.2)
n∑
j=1

Djg
l(λ(s))Gj1,i(s) = Gn+l1,i (s) (i = 1, . . . , n),

i.e.

(4.3) G1(s)Dg
l(λ(s)) = Gn+l1 (s).

By the same argument, we can differentiate (4.2) to obtain
n∑

j,k=1

D2
jkg

l(λ(s))Dmϕ
k(s)Gj1,i(s) +

n∑
j=1

Djg
l(λ(s))DmG

j
1,i(s) = DmG

n+l
1,i (s)

for all i,m = 1, . . . , n. By (1.2),
n∑

j,k=1

D2
jkg

l(λ(s))c2,m(s)G
k
2,m(s)G

j
1,i(s)

+
n∑
j=1

Djg
l(λ(s))c2,m(s)H

j
im(s) = c2,m(s)H

n+l
im (s)

for all i,m = 1, . . . , n, so that

(4.4) [G1(s)⊗G2(s)]D
2gl(λ(s)) +H(s)Dgl(λ(s)) = Hn+l(s).

We conclude by observing that the system of equalities (4.3) and (4.4) is
equivalent to (4.1).

We now investigate the properties of the matrix field t 7→M(t)−1.

Proposition 4.2. Let s ∈ A be such that Dλ(s) is nonsingular (e.g.
s ∈ F ). Then there exists a nontrivial ball B, centered at s, such that:

• For all t ∈ B, the matrices G1(t), G2(t) and M(t) are invertible and

(4.5) M(t)−1=

[
G1(t)

−1 0

−[G1(t)
−1 ⊗G2(t)

−1]H(t)G1(t)
−1 G1(t)

−1 ⊗G2(t)
−1

]
.

• The map t 7→M(t)−1, t ∈ B, is Lipschitz.
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Proof. One has

Dλ(s) =
[ n∏
i=1

c1,i(s)
]
G1(s)

T =
[ n∏
i=1

c2,i(s)
]
G2(s)

T

by (1.1), hence G1(s) and G2(s) are nonsingular. Moreover,

(4.6) detM = detG1 det(G1 ⊗G2) = (detG1)
n+1(detG2)

n

by [HJ, Sect. 4.2, Problem 1]. Thus detM(s) 6= 0. Since the function t 7→
detM(t) is continuous, there exists a nontrivial ball B centered at s and
such that

|detM(t)| ≥ |detM(s)|
2

> 0

for all t ∈ B. As a consequence, M(t) is invertible at every t ∈ B. Formula
(4.5) follows at once by observing that, for t ∈ B, the matrix M(t)−1 has to
be of the form (recall (4.6))[

G1(t)
−1 0

X(t) [G1(t)⊗G2(t)]
−1

]
with X(t) satisfying

H(t)G1(t)
−1 + [G1(t)⊗G2(t)]X(t) = 0,

and finally recalling that

[G1(t)⊗G2(t)]
−1 = G1(t)

−1 ⊗G2(t)
−1

(see [HJ, Corollary 4.2.11]). This concludes the proof of the first claim. The
second one follows by observing that the entries of M are Lipschitz.

5. Whitney-type estimates

Proposition 5.1. Let s ∈ L∗ε and t ∈ A ∩ ϕ−1(Gg) be such that

(5.1) H1([s; t] \A) = 0

where [s; t] denotes the segment joining s and t. Then

‖R(0)
s (t)‖ ≤

(
sup
[s;t]
‖c1‖

)(
sup
[s;t]
‖c2‖

)
Λs‖t− s‖3

where
c1 := (c1,1, . . . , c1,n), c2 := (c2,1, . . . , c2,n)

and Λs is a constant not depending on t.

Proof. First of all, observe that:

• Since s, t ∈ ϕ−1(Gg), one has g(λ(s)) = Πϕ(s) and g(λ(t)) = Πϕ(t).
• Consider the following parametrization of [s; t]:

σ : [0, 1]→ Rn, ρ 7→ s+ ρ(t− s).
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Then the function ρ 7→ ϕ(σ(ρ)) is Lipschitz, hence differentiable almost
everywhere in [0, 1]. Moreover (5.1) implies that

(ϕ ◦ σ)′(ρ) =
n∑

i1=1

(ti1 − si1)Di1ϕ(σ(ρ)) for a.e. ρ ∈ [0, 1].

Recalling also (1.1), we obtain

R(0)
s (t) = Πϕ(t)−Πϕ(s)−

n∑
i=1

Dig(λ(s))[ϕ
i(t)− ϕi(s)]

− 1

2

n∑
i,j=1

D2
ijg(λ(s))[ϕ

i(t)− ϕi(s)][ϕj(t)− ϕj(s)]

=
n∑
h=1

(th − sh)
1�

0

{
ΠDhϕ(σ(ρ))−

n∑
i=1

Dig(λ(s))Dhϕ
i(σ(ρ))

−
n∑

i,j=1

D2
ijg(λ(s))[ϕ

i(σ(ρ))− ϕi(s)]Dhϕ
j(σ(ρ))

}
dρ,

that is,

(5.2) R(0)
s (t) =

n∑
h=1

(th − sh)
1�

0

c1,h(σ(ρ))Φs,h(σ(ρ)) dρ

where Φs,h denotes the Lipschitz map defined as follows:

(5.3) Φs,h := ΠG1,h −
n∑
i=1

Dig(λ(s))G
i
1,h −

n∑
i,j=1

D2
ijg(λ(s))[ϕ

i − ϕi(s)]Gj1,h.

Now, since Φs,h ◦σ is Lipschitz, it is differentiable almost everywhere in [0, 1]
and

(Φs,h ◦ σ)′ =
n∑
k=1

(tk − sk)(DkΦs,h) ◦ σ.

Moreover Φs,h(s) = 0, by (4.2). By (5.3) and recalling (1.2), we get

Φs,h(σ(ρ)) = Φs,h(σ(ρ))− Φs,h(s) =
ρ�

0

(Φs,h ◦ σ)′(5.4)

=

n∑
k=1

(tk − sk)
ρ�

0

(DkΦs,h) ◦ σ

=

n∑
k=1

(tk − sk)
ρ�

0

(c2,k ◦ σ)(Ψs,hk ◦ σ)
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where Ψs,hk is the Lipschitz map defined by

Ψs,hk := ΠHhk −
n∑
i=1

Dig(λ(s))H
i
hk

−
n∑

i,j=1

D2
ijg(λ(s)){Gi2,kG

j
1,h + [ϕi − ϕi(s)]Hj

hk}.

Observe that

Ψs,hk(s) = ΠHhk(s)−
n∑
i=1

Dig(λ(s))H
i
hk(s)−

n∑
i,j=1

D2
ijg(λ(s))G

i
2,k(s)G

j
1,h(s)

= 0

by (4.4). Hence (for all r ∈ [0, 1])

‖Ψs,hk(σ(r))‖ = ‖Ψs,hk(σ(r))− Ψs,hk(s)‖ ≤ ‖σ(r)− s‖LipΨs,hk
= r‖t− s‖LipΨs,hk
≤ ‖t− s‖Λs

with
Λs := max

h,k=1,...,n
LipΨs,hk.

Recalling (5.4), we obtain

‖Φs,h(σ(ρ))‖ ≤
(
sup
[s;t]
‖c2‖

)
Λs‖t− s‖2.

The conclusion follows at once from (5.2).

Proposition 5.2. Let s ∈ L∗ε. Then there exists a nontrivial ball B,
centered at s, such that

‖R(1)
i;s (t)‖ ≤

(
sup
[s;t]
‖c2‖

)
Σs‖t− s‖2 (i = 1, . . . , n)

for all t ∈ L∗ε ∩ B such that (5.1) is satisfied, where c2 is defined as in
Proposition 5.1, while Σs is a constant not depending on t or i.

Proof. Since s ∈ L∗ε ⊂ F , there exists a ball B as in Proposition 4.2.
Consider t ∈ L∗ε ∩B such that (5.1) is satisfied. Then (for l = 1, . . . , N − n)

[R(1)
i;s (t)]

l = Dig
l(λ(t))−Dig

l(λ(s))−
n∑
j=1

D2
ijg

l(λ(s))[ϕj(t)− ϕj(s)]

= Ri(G1(t)
−1) •Gn+l1 (t)−Ri(G1(s)

−1) •Gn+l1 (s)

−
n∑
j=1

D2
ijg

l(λ(s))[ϕj(t)− ϕj(s)]
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by Propositions 4.1 and 4.2. Moreover, if σ is the parametrization of [s; t]
defined above, the function

Π : ρ 7→ Ri(G1(σ(ρ))
−1) •Gn+l1 (σ(ρ)), ρ ∈ [0, 1],

is Lipschitz, hence differentiable almost everywhere in [0, 1]. Recalling (5.1)
and denoting by G−11 the map r 7→ G1(r)

−1 (by a convenient abuse of nota-
tion), we obtain

Π ′(ρ) =
n∑
q=1

(tq − sq){Ri(DqG
−1
1 ) •Gn+l1 +Ri(G

−1
1 ) •DqG

n+l
1 }(σ(ρ))

for a.e. ρ ∈ [0, 1]. By the well-known formula for the derivative of the inverse
matrix field (see [HJ, (6.5.7)]),

Π ′(ρ) =

n∑
q=1

(tq − sq)
{
Ri(G

−1
1 ) •DqG

n+l
1

−Ri[G−11 (DqG1)G
−1
1 ] •Gn+l1

}
(σ(ρ))

=

n∑
m,q=1

(tq − sq)
{
[G−11 ]mi DqG

n+l
1,m − [G−11 (DqG1)G

−1
1 ]mi G

n+l
1,m

}
(σ(ρ))

=
n∑

m,q=1

(tq − sq)
{
[G−11 ]mi DqG

n+l
1,m

−
n∑

h,k=1

[G−11 ]hi (DqG
k
1,h)[G

−1
1 ]mk G

n+l
1,m

}
(σ(ρ))

for a.e. ρ ∈ [0, 1]. Recalling (1.2), we get

Π ′(ρ) =
n∑

m,q=1

c2,q(σ(ρ))(t
q − sq)

{
[G−11 ]mi H

n+l
mq

−
n∑

h,k=1

[G−11 ]hiH
k
hq[G

−1
1 ]mk G

n+l
1,m

}
(σ(ρ))

for a.e. ρ ∈ [0, 1]. It follows that

(5.5) [R(1)
i;s (t)]

l =

n∑
q=1

(tq − sq)
1�

0

c2,q(σ(ρ))Θ
l
q;s(σ(ρ)) dρ

where Θlq;s : B → R is defined as

Θlq;s :=
n∑

m=1

{
[G−11 ]mi H

n+l
mq −

n∑
h,k=1

[G−11 ]hiH
k
hq[G

−1
1 ]mk G

n+l
1,m−D

2
img

l(λ(s))Gm2,q

}
.
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One has

D2
img

l(λ(s)) =
n∑

c,d=1

[G1(s)
−1 ⊗G2(s)

−1]cdimH
n+l
cd (s)

−
n∑

b,c,d,e=1

[G1(s)
−1 ⊗G2(s)

−1]cdimH
b
cd(s)[G1(s)

−1]ebG
n+l
1,e (s)

=
n∑

c,d=1

[G1(s)
−1]ci [G2(s)

−1]dmH
n+l
cd (s)

−
n∑

b,c,d,e=1

[G1(s)
−1]ci [G2(s)

−1]dmH
b
cd(s)[G1(s)

−1]ebG
n+l
1,e (s)

by Propositions 4.1 and 4.2. Hence
n∑

m=1

D2
img

l(λ(s))Gm2,q(s) =
n∑

c,d=1

[G1(s)
−1]ciH

n+l
cd (s) δdq

−
n∑

b,c,d,e=1

[G1(s)
−1]ciH

b
cd(s)[G1(s)

−1]ebG
n+l
1,e (s) δdq

=

n∑
c=1

[G1(s)
−1]ciH

n+l
cq (s)

−
n∑

b,c,e=1

[G1(s)
−1]ciH

b
cq(s)[G1(s)

−1]ebG
n+l
1,e (s),

so that
Θlq;s(s) = 0.

Moreover Θlq;s is Lipschitz, by Proposition 4.2. Then, if we define

Σs := (N − n) max
q=1,...,n

l=1,...,N−n

LipΘlq;s,

we get

|Θlq;s(σ(ρ))| = |Θlq;s(σ(ρ))−Θlq;s(s)| ≤
Σs

N − n
ρ‖t− s‖ ≤ Σs

N − n
‖t− s‖

for all q = 1, . . . , n, all l = 1, . . . , N−n and all ρ ∈ [0, 1]. From (5.5) it finally
follows that

‖R(1)
i;s (t)‖ ≤

N−n∑
l=1

|[R(1)
i;s (t)]

l| ≤
(
sup
[s;t]
‖c2‖

)
Σs‖t− s‖2.

The estimate of the second order remainder term is established in the
following result, an immediate consequence of Proposition 4.2 and (4.1).
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Proposition 5.3. Let s ∈ L∗ε. Then there exists a nontrivial ball B,
centered at s, such that

‖R(2)
ij;s(t)‖ = ‖D

2
ijg(λ(t))−D2

ijg(λ(s))‖ ≤ Γs‖t− s‖ (i, j = 1, . . . , n)

for all t ∈ L∗ε ∩B, where Γs is a constant not depending on t or i, j.

6. Proof of Theorem 2.5. As pointed out in Section 3.1, our task
amounts to proving that ϕ(L∗ε) is (Hn, n) rectifiable of class C3 (for all
ε > 0).

For each positive integer h, define Γε,h as the set of s ∈ L∗ε such that

(6.1) ‖R(0)
s (t)‖ ≤ h‖λ(t)− λ(s)‖3

and

(6.2) ‖R(1)
i;s (t)‖ ≤ h‖λ(t)− λ(s)‖

2, ‖R(2)
ij;s(t)‖ ≤ h‖λ(t)− λ(s)‖

for all i, j = 1, . . . , n and all t ∈ L∗ε satisfying

‖t− s‖ ≤ 1/h.

Proposition 6.1. One has⋃
h

Γε,h = L∗ε.

Proof. The inclusion
⋃
h Γε,h ⊂ L∗ε is obvious. In order to prove the

opposite inclusion, consider s ∈ L∗ε and let U and V be as in Remark 2.4.
Observe that

‖t− s‖ = ‖(λ|U)−1(λ(t))− (λ|U)−1(λ(s))‖(6.3)

≤ Lip(λ|U)−1 ‖λ(t)− λ(s)‖
for all t ∈ U .

Since s ∈ A′, there exists a nontrivial ball B centered at s such that

B ⊂ U, Ln(B \A) = 0.

By shrinking, if need be, we may also assume that B is as in the claims of
Propositions 5.2 and 5.3.

We now recall the following fact, proved in [D5]: given a null-measure
subset Z of Rn and s ∈ Rn, one has H1(Z ∩ [s; t]) = 0 for a.e. t ∈ Rn.

For Z := B \A, we get

H1([s; t] \A) = H1(Z ∩ [s; t]) = 0

for a.e. t ∈ B. Then Proposition 5.1 yields

‖R(0)
s (t)‖ ≤ C‖t− s‖3

for a.e. t ∈ B ∩ ϕ−1(Gg), where C does not depend on t. By continuity we
get

‖R(0)
s (t)‖ ≤ C‖t− s‖3
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for all t ∈ B ∩ ϕ−1(Gg). Recalling (6.3) we conclude that

‖R(0)
s (t)‖ ≤ C0‖λ(t)− λ(s)‖3, C0 := C[Lip(λ|U)−1]3,

for all t ∈ B ∩ ϕ−1(Gg). Analogously, we can use Propositions 5.2 and 5.3,
and (6.3), to deduce the existence of C1 and C2 which do not depend on t
and are such that

‖R(1)
i;s (t)‖ ≤ C1‖λ(t)− λ(s)‖2 (i = 1, . . . , n),

‖R(2)
ij;s(t)‖ ≤ C2‖λ(t)− λ(s)‖ (i, j = 1, . . . , n)

for all t ∈ L∗ε ∩B. Hence s ∈ Γε,h provided h is large enough.

From Proposition 6.1 it follows that

ϕ(L∗ε) =
⋃
h

ϕ(Γε,h),

hence it will be enough to verify that

(6.4) ϕ(Γε,h) is (Hn, n) rectifiable of class C3

for all ε and h.
To prove this, we first consider a countable measurable covering {Ql}∞l=1

of Γε,h such that diamQl ≤ 1/h for all l, and define

Fl := λ(Γε,h ∩Ql).
If ξ, η ∈ Fl, then there exist sequences {sk}, {tk} ⊂ Γε,h ∩Ql such that

lim
k
λ(sk) = ξ, lim

k
λ(tk) = η.

By (6.1) and (6.2), for all k,

‖R(0)
sk

(tk)‖ ≤ h‖λ(tk)− λ(sk)‖3

and

‖R(1)
i,sk

(tk)‖ ≤ h‖λ(tk)− λ(sk)‖2, ‖R(2)
ij,sk

(tk)‖ ≤ h‖λ(tk)− λ(sk)‖
for all i, j = 1, . . . , n. Letting k →∞, we obtain∥∥∥∥g(η)− g(ξ)− n∑

i=1

Dig(ξ)(η
i − ξi)− 1

2

n∑
i,j=1

D2
ijg(ξ)(η

i − ξi)(ηj − ξj)
∥∥∥∥

≤ h‖η − ξ‖3,∥∥∥Dig(η)−Dig(ξ)−
n∑
j=1

D2
ijg(ξ)(η

j − ξj)
∥∥∥ ≤ h‖η − ξ‖2 (i = 1, . . . , n)

and
‖D2

ijg(η)−D2
ijg(ξ)‖ ≤ h‖η − ξ‖ (i, j = 1, . . . , n)

for all ξ, η ∈ Fl. By the Whitney extension theorem [St, Ch. VI, §2.3], each
g|Fl can be extended to a map in C2,1(Rn,RN−n). Then the Lusin type result
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of [F, §3.1.15] implies that ϕ(Γε,h ∩ Ql) is (Hn, n) rectifiable of class C3.
Finally, (6.4) follows by observing that

ϕ(Γε,h) =
⋃
l

ϕ(Γε,h ∩Ql).
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