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Existence and uniqueness of solutions for a quasilinear
evolution equation in an Orlicz space

ZHENG ZHOU (Xiamen) and FEI FANG (Beijing)

Abstract. We consider the following quasilinear evolution equation in an Orlicz space:
w, = div(a(|Vu)Vu) + f(z, t,u),

where a € C*(R) and f € C*(£2 x [0,T] x R). We use the difference method to transform
the evolution problem to a sequence of elliptic problems. Then by making some uniform
estimates for these elliptic problems, we obtain the existence of global solutions for the
evolution problem. Uniqueness is also proved.

1. Introduction. Let 2 C RN be a bounded domain with Lipschitz con-
tinuous boundary df2. Consider the following quasilinear evolution equation:

(1.1) up = div(a(|Vu|)Vu) + f(z,t,u), z€2,0<t<T,
‘ U|1"T =0, U|t:0 = Uo,

where I'r = 002 x [0,T], a € C*(R) and f € C1(2 x [0,T] x R). When
a(t) = |t|P~2, problem is the well known evolution p-Laplace equation.
In recent years, there have been a large number of papers on the existence,
uniqueness and regularity of solutions of the evolution p-Laplace equation
(see [D|[Z1],[Z2] and the references therein). For the p(x, t)-Laplace equation

uy = div(|Vu|P@) 2V u) + f(z,t,u)

the authors of [AS] established the existence and uniqueness results with
the exponent p(x,t) satisfying the so-called logarithmic Holder continuity
condition. In our main result, there is no need to assume logarithmic Hoélder
continuity. Recently, the authors of [LGYC] studied the p(z, t)-Laplace equa-
tion and adopted the difference method and some new techniques to obtain
the existence and uniqueness of solutions.
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In this paper, problem will be studied in an Orlicz—Sobolev space
setting. The corresponding elliptic problem in an Orlicz—Sobolev space has
been considered in recent years. The reader is referred to [BMR], [F'T, [FZul
GLMS| RR2| and the references therein for more results on the existence
and regularity of solutions.

The function P (see Section 2) is allowed to belong to a larger class,
which includes the special cases appearing in physical models, for instance:

(1) nonlinear elasticity: P(t) = (1 +#3)7 — 1, v > 1/2;

(2) plasticity: P(t) = t*(log(1+1))?, a > 1, 8 > 0;

(3) generalized Newtonian fluids: P(t) = Xg s (sinh ! s)P ds, 0<a <1,
B> 0.

For details, see [BAH. [FL, [FO, [EN].

The outline of this paper is the following: In Section 2, we present some
necessary preliminary knowledge on Orlicz—Sobolev spaces, and the main
result. In Section 3, we prove the existence of weak solutions to some differ-
ence equations related to problem . Section 4 is devoted to proving the
global existence and uniqueness of solutions to problem .

2. Preliminaries and the main result. Asin [CM,[CGMS| [FINJ [TF],
we can construct an Orlicz—Sobolev space setting for problem ([1.1]). Let the
function

a(|t))t, t#0,
2.1 t) =
2.1) ey i={ oV 170
be an increasing homeomorphism from R onto itself (such functions are
called Young or N-functions). If we set

P(t) = \p(s)ds, P(t) = |p~'(s)ds,
0 0

then P and P are complementary N-functions (see [AF, [RRI, RR2]).
In order to construct an Orlicz—Sobolev space setting for problem (|1.1),
we impose the following conditions on p(t):

(po) a€CY0,00), a(t)>0 fort>D0,
() o1
2 = inf —=% < p* := —
i PR R ST R <
L () tp'(t)
1 <a” :=inf <at:=su < 00.
(p2) 20 p() S =0 p(t)

Under condition (p1), the function P(t) satisfies the Ag-condition, i.e.
P(2t) < kP(t), t>0,
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for some constant k£ > 0 (see [AF], p. 265]). Under conditions (pp) and (p1),
the Orlicz space LY coincides with the set of (equivalence of classes of)
measurable functions « : {2 — R such that

(2.2) S P(|u]) dx < oo.
Q
The space LT (§2) is a Banach space endowed with the Luxemburg norm
ulp = inf{k >0: | P(lul/k) do < 1}.
Q2

We shall denote by W (£2) the corresponding Orlicz—Sobolev space with
the norm

[ullwrp(g) == lulp + [Vulp.

We denote by WOI’P(Q) the closure of C$° in WHP(2).

Denote
Np~
_— if N >p~
(23) e
N+p~ _ . _
Tp lfNSp .

In this paper, the following equivalent norm on W& ’P(Q) will be used:
ul| = inf{k >0: | P(IVul/k) de < 1}.
19
The reader is referred to [AF, RR2] for more details on Orlicz—Sobolev
spaces. In the proofs we shall use the following results.

LeEMMA 2.1 (see [AELRR2]). Under conditions (po) and (p1), the spaces
LY (92), W(}’P(Q) and WHP(82) are separable and reflevive Banach spaces.

LEMMA 2.2. Under conditions (po), (p1) and (p2):
(1) if 0<t<1, then P(1)t*" < P(t) < P(1)tP~

(2) if t > 1, then P(1)t?” < P(t ) P(1 )tp*

LEMMA 2.3 (see [FIN]). Let p(u) =\, P(u)dx. Then:

(1) if fulp < 1. then [uf?) < p(u) < Julfy
(2) if lulp > 1, then [ufp < p(u) < |ul}p

(3) if 0<t<1, thent*" P(u) < P(t )<tp P(u);

(4) if t > 1, then t? P(u) < P(tu) < t* P(u).

LEMMA 2.4 (see [GLMS, RR2]). Assume that A(t) and A(t) are com-
plementary N -functions. We have

(1) Young inequality: uv < A(u) + A(v);

(2) Holder inequality: |\, u(z)v(z) dz| < 2lulalul 4
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(3) A(A(u)/u) < Au);
(4) Au(Au(w)/u) < Auu).

REMARK 2.1. Since problem (|1.1)) has inhomogeneous nonlinearities,
Lemmas [2.1 will be used to overcome the nonhomogeneity.
DEFINITION 2.1. A function w is said to be a weak solution of (|1.1)) if

*uc L2(QT)7 f(7 ',’LL) € Ll(QT)7 Dlu € LP(QT)a
e u=0o0n 9 x (0,7) in the sense of traces,

(2.4) I (“85;: — a(|Vu|)Vu - Vo + fcp) drdt =0
Qr

for all ¢ € C§5°(Qr) and
o u=0on 0 x (0,7) in the sense of traces,

(2.5) lim é(u(m, t) — ug(x)) dz =0

for all ¢ € C3°(Qr), where Qr = 2 x (0,T).
Next we assume the following condition:
(A)  FeCU@x[0,T]xR) and |f(5,t,2)] < Col(w,t) +]2I°)

where ¢ >0, ¢ € L"(2 x (0,T7)),r> (N +p~)/p~,and Cp >0, a > 0 are
constants.
Our main result is the following.

THEOREM 2.1. Let ug € L>®(£2) N Wol’P(Q), suppose (A) holds, and
assume that

(B) a<p —1 (ora=p —1 with 2 sufficiently small),
where |§2| denotes the Lebesgue measure of §2. Then for any T > 0, there
exists a unique weak solution u of (1.1)) in the Orlicz—Sobolev sense such
that

w € Lo(Qr) NL=(0,T; Wy (2)),  w € L*(2 x (0,T)).

REMARK 2.2. If the assumption in (B) that (2 is sufficiently small is
replaced by the assumption that Cp is sufficiently small in (A), then the
conclusions of Theorem 2.1 still hold.

3. Difference equation. Consider the difference equation correspond-

ing to problem (L.I)):
1 1 (i+1)h
1y { Rl =V V) £ £ | S dn zen

uilon =0, 1=1,2,...,
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Set
u 1 (i+1)h
(3.2) Fi(x,u) = S <h S flz,T,9) d7'> ds,
Uj—1 ih
(3.3) P(u) = | P(1Vul)dz, Vue Wy"(92),
2
and
(3.4) Wi (u) = | P(|Vu))dz — | F'(z,u)dx
(0] 2
+21h§2(u—uz~_1)2d:c, i:1,2,...,

which is the functional corresponding to (3.1]), where h > 0 is a constant.

LEMMA 3.1 (see [FIN|, IGLMS]). The functional P € Cl(WOI’P(Q),R) is
convex and sequentially weakly lower semicontinuous, and
P(u)¢ = | p(Vu)Vodz, Vu,ée Wy " (02).
2
Moreover, the mapping P’ : W&’P(Q) — Wol’P(_Q)* is a bounded homeomor-
phism, and is of type (ST), that is,

(3.5)  wup, —u and limsup P (un)(up, —u) <0

n—oo

imply that w, — u in W&’P(Q).

LEMMA 3.2. Assume (A) and (B) hold, and u;—1 € LP (£2). Then the
functional ' (u) achieves its minimum on the set

(3.6) S =Wy (9).

Proof. We will show that 1*(u) satisfies the conditions which ensure the
existence of a minimum on S.

STEP 1. S is weakly closed.

By Lemma we know that VVD1 P(2) is a reflexive Banach space, and
thus by Mazur’s theorem it is weakly closed.

STEP 2. v'(u) satisfies the coerciveness conditions.

By condition (A) we have

‘ 1 (i+1)h
(3.7 Yi(w) > | P(|Vul)dz — Cp | (h (ERD) dT) lu — u;_1| dz
(9] 2 ih

1
a+1 o ja+l Y
- rSZ(M + w1 %) dx + o7 !SZ(U ui—1)° dx.
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We first estimate the second term on the right-hand side. Denote r; =
(N+p7)/p~ <rand ro = (N+p~)/N. By condition (A) and Holder’s
inequality, we obtain

| DR
(3.8) L =Cy S <h S o(x,T) d7‘> |lu —u;—1|dzx
N ih
1 (i+1)h r1 1/r1 1/r2
<y <S <h o(z,T) dT) da:) <S lu — ui_ﬂ”)
2 h Q
(i+1)h 1/r1
1 . -\ /72
SC(hS S ¢1(m,r)d7'dx> (S |u — ;1] 2)
2 ih 2

< Cllu = i1l () < Cllullpr2(2) + lwi-1llLr2 (@)
Notice that ry < p; for N > p~, so by Young’s inequality we get
I < ellull i g + Cllicll ) + €O < ellull i + CE).

By the imbedding inequality and Poincaré’s inequality, for all N > 1,

LP+ (£2)

1
(3.9) L < Cellullw,r(£2) + C(e) < § \ P(|Vul) dz + C.
2

Next, we estimate I = {,(|u[*™" + |u;—1|*™!) dz in two cases.

(i) « < p~ — 1, hence « + 1 < p~ < p,. By Young’s inequality and
Poincaré’s inequality, it is easy to show that

(3.10) I =Cy \([ul*™ + uia[*T) do < e | jul’” de+ C
9] 9}
1 1
< | [Vul” de+C < 1 | P(|Vul) dz + C.

(0] 9]
(ii) @« = p~ — 1 and |2| is sufficiently small. Using Poincaré’s inequality
and Young’s inequality, we get
(3.11) Iy =Cy \([uf” + uia ") dz < Cy | [ufP” do+C
9] n
g VulP” dz+C < < | P(|Vul) dz + C.
9]
Combining the estimates (3.7)—(3.11]), we get
1

P > ¢ | POV = C(2) 2 (5luhrg - (@) = oo.
2

AM»—*

1
4

STEP 3. ¢'(u) is weakly lower semicontinuous.
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By Lemma we know that |, P(|Vu|) dz is convex and weakly lower
semicontinuous. Now, consider the functional

I(u) = — S Fi(z,u)dz + % S(u —uj_q)?dz.
2 9]

Since v; — v in WOI’P, for any 0 < € < p~ we have vy — v in Wol’pi_e. By
the Sobolev compact imbedding theorem, we easily see that v; — v in LP<,

where
N(p~ —
(p 2 if N >p —e
Pt = N—(p~—¢)
N+ -

(p”—¢€) IfN<p —e

For € small enough, we have pf > max{r/r — 1, 2}. Invoking (A) we may
prove that I is weakly lower semicontinuous, so the functional 9(u) is
weakly lower semicontinuous. By the above results and a standard argu-
ment (see [B]), we know that 1)?(u) achieves its minimum on S. =

LEMMA 3.3. Assume (A) and (B) hold and u;_1 € LP (£2). Then there
exists a weak solution u; of (3.1) such that u; € Wol’P(Q).

Proof. For 0 < e <1 and n € C3°, we have u; = en € S, and so

g(€) == (ui + en) = ' (w;) = g(0), g(—€) = ¢ (us — en) > ¥’ (u;) = g(0).
Therefore

fm 9990 0 99 =90)
e—0,e>0 —€ e—0,e>0 €
Plugging in the definition of g, we get
1
S E(ul — uj—1)ndz
9}
| GHDh
=— S a(|Vu;|)Vu; - Vndx + S (h S [z, 7, u;) d7'>77dx.
2 9] ih

Thus u; is a weak solution of (3.1)). =

4. Global existence of weak solutions. First, we assume that
Ih<T<({+1)h,
where [ is an integer. Define u" : £2 x [0, 00) — R such that
(4.1) ul(-t) =wu; forte[ih, (i+1)h),i=0,1,...,1,

where u; is a solution obtained in Lemma We will prove that a subse-
quence of u” converges and the limiting function is a solution of (I.1]).
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Denote
(12) 00 = (ot — ) — (1)
- %(ui —wi)() fort€fih, (i+1)h),i=0,1,...
0 for t € [0, h),
Define
1(i+1)h
(4.3) W (z,t) = - | fle,rui(x)dr, telih,(i+1)h),i=0,1,...
ih
1(i+1)h
(4.4) oW (z,t) = - | o 7)dr, t e [ih,(i+1)h),i=0,1,...
ih

It can be proved easily by using Holder’s inequality and (A) that

(A7) [t ) < Co(@™) + [u”]?).

and

(4.5) W dedt < || ¢"dudt,
Qr Qr

when ¢ € L"(Qr) with r given in (A).

7l7

7l7

In the following, we will estimate the maximum norm of the solution by

adapting the method of [LGYC], [Z1].

LEMMA 4.1. Let (A) and (B) hold, and uy € L>°(£2) N Wol’P(Q). Then
for any integer 1 < q < oo, there is a constant C(q) > 0 independent of h

such that
[u"|| Lar1(gr) < Clq),  Vh >0,

Proof. Let uy = max{0,u} and suppose [[ug||re(p) < k. Multiplying

(3.1) by (u; — k)% and integrating over §2 we get
1

(4.6) h S(Uz - k‘)(erl) dx +pq S P(|Vug)) (u; — k,)z:l da
Q N
1 —
< h S(Ui - k:)Serl) dr +q S a(|Vui]) (u; — k)% 'V, - Vu, di
@ N
= % S(Uz — k)i(ui—l —k)dz + S(ul _ k)z_f(h) (z,ih) dz
« 02
< % S(uz — k)% (ui—1 — k)4 da + S(uZ _ k)if(h) (2, ih) dz.
Q 2
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By Young’s inequality,

q (g+1)
(ui — k)% (w1 — k)4 < s T(ws = k)T + .

Invoking (4.6)), we deduce that

@7) | = R de+paa + 1) § PVl (s — ) de
02

> =
| )

<\ S i =0T dr + (g +1) [(wi = 0 f P (@,ih) de, i=1,... 0
02 02

Summing over i in (£.7) and considering the definition of u”, we have

(I+1)h
@8) (@ -uderpa@+1) | (VP @ k) de
2 h 2
(I+1)h
SS(uh—k‘)fH)( t)dr +p q(g+1) S SP\Vuh\ (u —k:)?[ld:z
(9} h 2
(I+1)h
<o -k ™de+@+1) | [@ K5 ® deat
(9} h
(1+1)
=(@q+1) | (@=L fMdvdt = (¢+1)L,
h
where t € [h, (I + 1)h).
Denote

(k) = [{(z,t) € 2 x (0,1 +1)h) : u" > k}|.
By (A'), we have

(+1)h (I4+1)h
49 Li<C | (@'-mnidedt+Co | (W= k)1 ¢" dodt.
h 2 h 2

Since o < p~ —1,1i.e., ¢+ a < g+p~ —1, by Holder’s inequality, Poincaré’s
inequality and Young’s inequality we get

(+1D)h
(4.10) | =kt dedt
h
(I+1)h gta
<c | (S (uh — k)T ! dac) gy
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(+1)h gtp” -1 gta
<cqe) | (g V" — k), 7 P d:v) T gy
hoo0
(I+1)h
<c | [IvaP @ - kY de+ Q).
hoQ
Similarly, by Holder’s inequality and (A’), we have
(I+1)h
(4.11) | @ = k)5 e™ dat
hoQ
(I+1)h e (DR .
< ( |t —rym dacdt) /ql( [ {®)e dxdt) o
hoQ ho 0
LA 1 1 /g
|Q|( S S q+p—+ (Q+)dacdt>
hoQ
where
+p -1+ 5 (g+1
P v+
q
+p  —1+5:(q+1) p +N
q2 = arr (q ) < b —i__ <.
——1+2(qg+1) p

Using the imbedding theorem (see [LSU, [Z1]) and Young’s inequality, we
see that

(I4+1)h
(4.12) | @ = k)G e™ duat
h 2

(H'l)h gtp —1
SC( sup S(uh—k)’fl dx + S S‘V(uh—k);f_
e(h(+1)h) 5 P

<C sup S(uh - k)EfH)(.?t) dx
te(h,(I+1)h)

(+1)h gtp— —1
+c | S(V(uh—km* dz dt + C(|Qr|)
h 2

=C sup S(uh - I~::)S?H)(.7 t)dx
te(h,(I+1)h) [
(l+1)
S | 1w (@ — k)t dr + C(Qr ).
2
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Choose the coefficients small enough in Young’s inequalities so that (4.9)—

(4.12)) can be absorbed in (4.8). Then we get

(4.13) sup | (u" — k)Y (1) de < C(1Qr).
t€(0,(I+1)h) o

If « =p~ — 1 and |£2] is sufficiently small, then by the Poincaré inequality,
in (4.10), C|2] — 0 as |£2] — 0. We can also derive (4.13]). Similarly, we

may prove

sup  [(—u" = )Y (1) dz < C(Qr).
t€(0,(1+1)h) ¢,

Thus ||uh||Lq+1(QT) < C(q), where C(q) is independent of h. m

COROLLARY 4.1.

(4+1)h
(4.14) \ \P(vVu|)dedt < C.
h 2

Proof. Multiplying (3.1) by (u;)" and integrating over §2, taking the
same procedure as (4.6)—(4.8]), we get
(I+1)h
(4.15) sup  \WMi(t)de+2p | | P(Vu|)do
te(h,(+1)h) ¢ P
(I+1)h
< sup S(uh) (-, t)dx + 2 S Sp (|[Vu"))|Vu"| dx
te(h,(+1)h) ;) p
(1+1)h
< {(uo)3 () dz + S [ (") ™ da dt
Q Q
(1+1)h
<C+Co | N(@a,m) + ) (") du dt
h
(+1)h 1 (DR . re1
<c+Co | Vot nraea) (| [T dwdr)
h

2 h 2

(I4+1)h
+C | \wretdedt<C
h
where the last inequality holds by Lemma Similarly, the corollary holds
for —u. m

In order to obtain a uniform estimate of the maximum norm of the
solution, we need the following propositions.
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PROPOSITION 4.1 (see [D]). Let {Y,}, n=0,1,2,..., be a sequence of
positive numbers satisfying

Y41 < BOVY, A

where B,b > 1 and § > 0 are given numbers. If Yo < B=1/8p~ 1/62 then Y,
converges to zero as n — oo.

PROPOSITION 4.2 (see [D]). Let k,p > 1 and consider the Banach spaces
Vo' (82r) = L=(0, T3 LX(92)) N LP(0,T5 Wy ™ (£2),
equipped with the norm

[ullvrr(or) = esssup[lo(, D)k + [[Dv]lp,0r-
o<t<T

Then there exists a constant v depending only upon N,p,k such that for
k.,p
every v € V" (£2r),

/N
SS lv(x,t)|9dedt < ~9 SS |Dv(z,t)|P dz dt - (ess sup S |v(:v,t)|kdx>p ,
Qr Qr o<t<T n
where ¢ = p(N + k)/N.

LEMMA 4.2. Let the assumptions of Lemma hold. Then there is a
constant My > 0 depending only on T, |2|, N,p~, 7, |uol| Lo () such that

| (Qp) < M1, Vh > 0.
Proof. Let k > 1 be chosen so that [[ug||p(2) <k, and set

(I+1)h
o= sup  \@"-k3(t)dz+ | {|V@" = k) dedt
te(h,(I+1)h) 0
Take ¢ = 1 in ({4.8). Then by (A'),
(I+1)h
(4.16) Ty < cl( I (@™ ) (" — k)y dedt + u(k)).
0 0
By Lemma [4.1| and Holder’s inequality,
(I+1)h (I4+1)h . 1
(1) | fewt — k) dvdt <o | [ —w)IT dedt) T
ST e ( 1><0—Nf2 ) N
T r— p P - NN
<G[( | Jwr-mit T dedr) 00N
0 -~ . o
- (k) <r—1><p—N+2p—>} "
(I+1)h

p_ N+2p— N r—1 N

= § f R dwdt) T )T R
(9]
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By Proposition and Young’s inequality, we can derive from (4.17)) that

(I+1)h B - .
(4.18) ( S S(uh B k)j_ fin dmdt) p—N]izp_
0
(I+1)h L
h - h 2 N | p—Nitop—
= CSVC][( §) §2|V(“ —k)+ P dwdt) (Offi(slﬁ%hé(u —k)2 d:c) }p ’
(I+1)h N
- 04[( S S IV (u" — k)P dxdt) N+p
0 n
P N+4p~
: ( ess sup (uh _ k)%r da:) N+p‘} p— N+2p—
0<t<(I+1)h o
(I+1)h . o
<G4 K §) !Sz‘v(“h — k)4 dx dt> + (0<etS<S(Slillj)h é}(uh — k)2 da;)} P N+2p

where v is as in Proposition depending on N, p~, and ¢ = %.
Combining (4.17) and (4.18)), we get

(l-l—l)h N+p~—

(119§ [0 k) dedt < O T )T
0
Also, by Lemma [4.1] and (4.17), we have
(I+1)h
(4.20) (uh — k) du dt
(1 Sty )
((l+§ S )T_l ((lJrSl)hS . >l/r
< ’LL — T 1d1‘dt T (u )ardl‘dt
0 0 b
(l+1)h r r—1
305( | S(uh—k);jd:ndt) .
0 N

N+p— re1

< Cod N -M(k)T‘ﬁ.

Substituting (4.17] into , we obtain

N+tp r—1 N

Ji < C7J]:_N+2p_ ,LL(k) TP N+ 4 C7,u(k).
By Young’s inequality,

p~ (r—N-2)

(4.21) Jp < Cy (M(/{)l—‘rrN(p*—lHr:n* + 'u(k))
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Notice that, for all 1 < k; < ko,

(I+1)h
(k2 — k1) p(ke) = S S (ko — k1) dx dt
0 D(k2)
((+1)h
< | | @r—k)sduat
0 D(kz)
(t+ Dk ~ N+2N __ N N
3( S S (uh—kl)i N dxdt)f””*” u(ke) NN
0 D(k2)
That is,
(4.22)
N (+1Dh pN42N N
(ko — k1) p(kg)p~N+2N < ( S S (uh o k:1)+ N da:dt)p N+2N
0 D(k2)

N+tp—
< CoJf

p~ (r—N-2) Ntp—

e ()

< Cho (M(’ﬁ)H

where Cg is a constant depending only on N, p~, |£2| and T
If we take ko = HuOHLoo(_Q) +7(>1)and k; = ||U0HLoo(_Q) + 1, then

_N C _p (r=N-=2) N+p~
p(kg)p~N+2N < — 101 <((T+ 1)9)1+7.N(p——1)+rp— + (T + 1)|Q|)P N+2p~

j—
Hence, there exists a constant jo > 1 depending on N,p~, |§2|, T, r such that

p(ke) <1 for j > jo.

We take k, = M(2—2""), n = 0,1,2,..., where M > luol oo (2) + Jo
is a constant. Using Proposition and following a similar procedure to
[LGYC, Z1], we may prove that

w(kn) -0 asn— oo.
Thus, ||uh||Loo(QT) <2M =:Mj. =
LEMMA 4.3. Let the assumptions of Lemma[4.2) hold. Then for any in-
teger 1 <1 <1, we have
1 (+1D)h
423) < | V10U Pdzdt + | P(Vu(x,1h)]) de < | P(|Vuol) da.
Q

2
0 [0 [0
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Proof. Since u;,uj—1 € S, and w; is the minimum point of ¢ (u), we have
¥(u;) < (u;—1) and so

1 2
22h|u, wi—1| da:—i—})PﬂVu,])dx
u; 1(i+1)h )
<\ P(Vuia)de+ | | (h | f(m,T,s)dT)dsdx, i=1,...,0
0 2ui—1 ih

Summing over ¢, we obtain

l
SO s — w1 [P d+ | P(Vg]) da

i=1 2h (9}
I o | DA
< S P(|Vug|) dz + Z S S <h S f(z,T,9) dT) dsdz.
k0] =1 Quj_1 ih
By (A) and Young’s inequality, we have
ui o (DR
S S (h S flx,7,38) d7‘> dsdz
2 ui—1 ih
1 2
< R . < - P . .
< CS lui — ui—1|de < 0 S |ui — ui—1|* dx +4Ch
Q 17
Thus
I 1 :
(4.24) o | lui — wia [P dzdt + | P(|Vug(z, b)) dz
=1 Q Q

< | P(|Vuo|) dz + 4CT.
2

The conclusion follows by the definition of u". =

Define a new auxiliary function:

wh(.j):{(t/h —iyug + [1 = (t/h — Dui—1, t€ [ih,(i+1Dh), i=1,...,1,

ug, t e [0, h)
By Lemma we may prove that (see [LGYC])
T
(4.25) ||l =" dzdt -0, h—o0.
0

LEMMA 4.4. Let the assumptions of Lemma [£.3] hold. Then there exists
a subsequence of {u"}, still denoted by {u"}, and a function u such that,
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as h — 0,
(4.26) u = uin L3H(Qr),
(4.27) vu A vu in LY(Qr),
(4.28) ATMuh B gtMy in L2(Qr),
(4.29) W s u ae in Qp.
Proof. By Lemma and Young’s inequality, for any ¢ € (0, (I + 1)h),
+/2

(4.30) (VIva ¢ n2az)” ™~ <o [ val(, P

Q Q

<\ P(Vu"(,))<C
Q

for [Vul(-,)| < 1, and
_

(4.31) (g |Vuh(-,t)|2dx)p < c ||V (0P
(0] 2
< [ POV () < C
(0]

for |[Vu"(-,t)| > 1. By Poincaré’s inequality, we have

T
(4.32) | § (1)) dwdt < CT.
0

Therefore, by Lemma there exists a subsequence of u” (not relabeled)
and a function u such that

(4.33) u" 2w in L2(Qr),
(4.34) Vu" 2 Vu in LP(Qr).
Since

Vu' = (Vu; — Vui_1)(t/h — i) + Vui_1, telfih,(i+1)h),i=1,...,1,

by Corollary (@25) and the above, we know that w” and Vw" are
uniformly bounded in L?(Q7). Since
=Y u; —ui—1), te€lih,(i+1)h),i=1,...,1,

hy, — g(=h) h_{
(") =1, Le [0,h),

by Lemma we have (w”); € L?(Qr). Combining the above estimates, we
find that there exists a subsequence of w” (not relabeled) and a function .
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such that
wh 5w, in LQ(QT),
Vo' A Vu, in L}(Qr),
O Mwh X (u,),  in L*(Qr).

By Lemma and ([£.25), we get u, = u, thus " — w in L?(Qr), and
u s uae inQr. m

REMARK 4.1. We know from Lemma {4.3| that u € L>(0, T} Wol’P(_Q)).
LEMMA 4.5. Let the assumptions of Lemma [£.2] hold. Then

(4.35) P = fu) i LYQr) as h— 0.
Proof. This can be proved much as in [LGYC]. =

Proof of Theorem 2.1. STEP 1. We will prove that there exists a subse-
quence such that

(4.36) a(|Vu" ("), 2 a(|Vul)us, in LP(Qr).

By Lemma we have u" € LY (Qr) and Vu" 2 Vu in LT (Qr). Hence
for any ¢ € C§°(Qr),

T
437\ | ga(|Vut) V" (VP — Vu) du dt
00 T
h
<ept || ¢P(|vvi|)|vuh — V| da dt
P(|Vuh
<" | g Ve - vl

< opt|Vu|p|Vu" — Vulp — 0,

and similarly
T

(4.38) S S pa(|Vu|)Vu - (Vul — Vu) dz dt — 0.
00

Notice that

(4.39) (a(|Vuh|)Vuh —a(|Vu|)Vu) - V(u" - u)
1
| % [a(|sVu" + (1 — 8)Vu])(sVu" + (1 — 8) V)] V(uh — u)
0
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d (|sVu' 4 (1 — s)Vu|)|sVu" 4 (1 — 5)Vu|
a(|sVul + (1 — s)Vul)] |V(u" —u)*ds
>a” ia |sVul + (1 — s)Vu|)|V(u" — ) ds
Combining ({4.37] 0-, we get
(4.40) }lli_%g!x?d)ia(]sVuh + (1 — s)Vu|) ds |V(uh — w)|? dzdt = 0.

Since limy,_ SOT SQS a(|sVul + (1 — 8)Vu|)dsdz dt < C and
(441)  la(|Vu")(")s, — a(|Vul)ug,|

a(|sVu + (1 — s)Vu|)[s(u)s, + (1 — s)uy,] ds

O ey = O ey

s ]

[d(]sVu" + (1 — s)Vul)|sVu" + (1 — 5)Vy|

+a(]sVu + (1 — s)Vu|)|V (u" — u) ds‘
1
<ata(|sVu + (1 - 5)Vu|) - V(0" = u)| ds,
0
we obtain

T
(4.42) mqa (V) (1), a(]Vu|)uzi]dxdt‘
0N

<
“

Thus (4.36) is derived.
STEP 2. For each ¢ € C{°(Qr) and any constant 7 € [0,T], we have
#(-,7) € C5°(£2). Hence, by Lemma [3.2]
S Ml p(x,7) de = S a(|Vu;|)\Vu;Vo(x,7)dx + S FMo(x, 7) da.
Q Q 2

Integrating over 7 and invoking Lemmas [£.4] and and Corollary [4.1] we
may prove that u is a weak solution of (L.1)).

!

1/2

[ 6§ la(sVet + (1 - )Vl ds - [V — u)?)
2

1/2
a(|sVul + (1 — s)Vul) ds dx dt) — 0.

OMH O ey
Ot » D=

| o
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Now we prove that u satisfies the initial condition ([2.5)).
For problem (3.1)), taking a test function ¢ € Ce(12), we get

(i+1)h
(443)  V(wi—wi)ddr+ | |a(|Vu)VuiVéda
Q ih 02
(i+1)h
:S( S f(x,7,u,-)d7’>(;~5dx, 1=1,2,....
2 ih
Summing over ¢, we obtain
(I+1)h
(4.44) Vu—up)pde=— | |a(|Vu"))Vu"Vdrdt
Q ho 2
(I+1)h
+ S S(f($,7’, uM) ¢ dz dt,
ho Q2

where [ is an integer. Then by Hélder’s inequality and the boundedness of
|Vu"|p, we have
(I+1Dh
(4.45) ‘ | {a(ve)vu'véde dt‘ < sup |V | a(|Vu")) | Vu| da dt
h 2 n

- \VZTLL -
= sup [Vl | () 1 dde < sup |V
9] 9]

P(|Vu")
[Vl
where § > 0 is a constant depending only on p~ and p™. By the differentia-

bility of f, we have

P(|Vu"))

-1ldxdt
Var]

< 2pT sup |Vl

- 1p < C|V"|p|1]p < C(IR)’,
P

(I+1)h
(4.46) ‘ | {r@m uh)éd:gdt‘ < ().
h

If [h < 1, there exists a constant d > 0 depending on p~ and p™ such that
V(i = wi1)ddz < C(Ih)%.

2
Thus
(4.47) sup H(uh(x,t) —up)pdz| < Ot
te[h,(I4+1)h)
For t € [0, h), y

S(uh(x,t) —up)pdr = 0.
i)

Letting h — 0, we get (2.5).
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STEP 3. Finally, we prove the uniqueness of solution. Let u,v be two
solutions of ([1.1)). Taking u — v as a test function, we obtain

% [ (- )2 do + [ [a(|Vu)) Y — a(IVo]) Vo]V (4 — v) da dr
2 Q¢
= SS (f(z,7,u) — f(f,7,v))(u—v)dxdr.
Q1

Since [a(|Vu|)Vu—a(|Vv])Vo]V(u—v) > 0 and u, v are bounded, and since
f € O, we have

S(u—v)de < CSS(u—v)de.

n Q1
Obviously, Gronwall’s inequality implies that u = v.

The proof is complete. m
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