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Polynomial estimates on real and complex Lp(µ) spaces

by

Marios K. Papadiamantis and Yannis Sarantopoulos (Athens)

Abstract. In his commentary to Problem 73 of Mazur and Orlicz in the Scottish
Book, L. A. Harris raised the following natural generalization: Let X be a Banach space,
let k1, . . . , kn be nonnegative integers whose sum is m and let c(k1, . . . , kn;X) be the
smallest number with the property that if L is any symmetric m-linear mapping of one
real normed linear space into another, then |L(xk11 . . . xknn )| ≤ c(k1, . . . , kn;X)‖L̂‖, where

L̂ is the m-homogeneous polynomial associated to L. In this paper, we give estimates in
the case of a real Lp(µ) space using three different techniques and we get optimal results
in some special cases.

1. Introduction and notation. If X is a Banach space over K, K = R
or C, we let Ls(mX,K) denote the Banach space of all continuous symmetric
m-linear forms L : Xm → K with the norm

‖L‖ = sup{|L(x1, . . . , xm)| : ‖x1‖ ≤ 1, . . . , ‖xm‖ ≤ 1}.
For simplicity, we write Ls(mX) in place of Ls(mX,K). A function P : X→K
is a continuous m-homogeneous polynomial if there is a continuous symmet-
ric m-linear form L : Xm → K for which P (x) = L(x, . . . , x) for all x ∈ X.

In this case it is convenient to write P = L̂. We let P(mX) denote the Ba-
nach space of all continuous m-homogeneous polynomials P : X → K with
the norm

‖P‖ = sup{|P (x)| : ‖x‖ ≤ 1}.
We write L(xk11 . . . xknn ) as shorthand for L(x1, . . . , x1, . . . , xn, . . . , xn) where
each xi appears ki times for 1 ≤ i ≤ n, and k1 + · · ·+ kn = m.

It is known [2, Proposition 1.8] that if L ∈ Ls(mX) and L̂ is the associated
polynomial, then

‖L‖ ≤ mm

m!
‖L̂‖
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and the constant mm/m! is best possible (see [2, Example 1.39]). This is the
answer to Problem 73 of Mazur and Orlicz [13].

L. A. Harris in his commentary to Problem 73 raised the following nat-
ural generalization:

Let X be a Banach space, let k1, . . . , kn be nonnegative integers whose
sum is m and let c(k1, . . . , kn;X) be the smallest number with the property
that if L is any symmetric m-linear mapping of one real normed linear space
into another, then

|L(xk11 . . . xknn )| ≤ c(k1, . . . , kn;X)‖L̂‖.

Following the definition of the polarization constant introduced by S. Di-
neen [2], we define

c(X) = lim sup
m→∞

c(k1, . . . , kn;X)1/m,

which describes how the constant behaves asymptotically. This notation will
be used only in the case where x1, . . . , xn are norm-one vectors with disjoint
supports.

It is shown in [5, Theorem 1] that if only complex normed spaces are
considered, then

(1.1) c(k1, . . . , kn;X) =
k1! · · · kn!

kk11 · · · k
kn
n

mm

m!
.

In the case of real normed linear spaces L. A. Harris has proved in [6, Corol-
lary 7] (see also [10], [12]) that

(1.2) |L(xk11 . . . xknn )| ≤
√

mm

kk11 · · · k
kn
n

‖L̂‖

for all nonnegative integers k1, . . . , kn with k1 + · · ·+ kn = m.

It was also established by L. A. Harris (see [5, Theorem 6]) that in the
case of complex Lp-space, 1 ≤ p ≤ ∞, one has

‖L‖ ≤
(
mm

m!

)|p−2|/p
‖L̂‖

when m is a power of 2. An improved estimate was given in [11, Theorem 2]
by Y. Sarantopoulos, but it holds for a small range of p’s. In the case of real
or complex Lp(µ), for 1 ≤ p ≤ m′, 1/m+ 1/m′ = 1, he showed that

(1.3) ‖L‖ ≤ mm/p

m!
‖L̂‖.

L. A. Harris has also proved the following:
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Lemma 1.1 ([5, Theorem 1]). Let 1 ≤ p ≤ ∞ and L ∈ Ls(m`p,C). If
x1, . . . , xn are norm-one vectors in `p with disjoint supports, then

|L(xk11 . . . xknn )| ≤ k1! · · · kn!mm/p

k
k1/p
1 · · · kkn/pn m!

‖L̂‖

for all nonnegative integers k1, . . . , kn with k1 + · · ·+ kn = m.

Notice that (1.1) follows from the above estimate for p = 1, since every
Banach space is isometric to a quotient of `1. The following example shows
that the constant in Lemma 1.1 is best possible.

Example 1.2. For any real or complex `p space and x = (xi) ∈ `p, let

L̂ ∈ P(m`p) with L̂(x) = x1 · · ·xm. Take ej , j = 1, . . . ,m, to be the jth
coordinate vector of `p and define

y1 = k
−1/p
1 (e1 + · · ·+ ek1),

yi = k
−1/p
i (ek1+···+ki−1+1 + · · ·+ ek1+···+ki), i = 2, . . . , n.

Notice that y1, . . . , yn are unit vectors in `p with disjoint supports. Moreover,
we can easily check (see [11, Example 1]) that

|L(yk11 . . . yknn )| = k1! · · · kn!mm/p

k
k1/p
1 · · · kkn/pn m!

‖L̂‖.

In the next two sections we provide some estimates of the constant
c(k1, . . . , kn;Lp(µ)), first for complex Lp(µ)-spaces and then for real ones.
In the complex case, we choose (xi) to be a seminormalized unconditional
basic sequence, which gives the case of xi’s, i = 1, . . . , n, having disjoint
supports as a particular case. In general, the real case is more difficult. Con-
sequently, we shall tackle this problem by using three different techniques,
where x1, . . . , xn are norm-one vectors with disjoint supports. The first tech-
nique is standard, using a well known polarization formula, while the second
depends on a generalization of Clarkson’s inequality (see [14]). The third one
uses Hoeffding’s inequality, which was particularly useful in [9] in order to
get a lower bound on the radius of analyticity of a power series. The values
for the constant c(k1, . . . , kn;Lp(µ)) obtained by the third technique are the
worst with few exceptions, but asymptotically this technique gives better
results.

Each technique will also be used to obtain corresponding estimates for
a seminormalized unconditional basic sequence (xi) with appropriate addi-
tional constants. In the last section we thoroughly explain why and when
each technique is useful. It seems reasonable to approach the problem using
the type and cotype of the space, but the estimates for these constants are
far from optimal.
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2. The complex case. Recall that the nth Rademacher function rn
is defined on [0, 1] by rn(t) = sign sin 2nπt. Furthermore, for every natural
number n ≥ 2, the generalized Rademacher functions (sj) are defined induc-
tively as follows (see [1]): Let a1, . . . , an be the complex nth roots of unity.
For j = 1, . . . , n let Ij = ((j − 1)/n, j/n) and let Ij1,j2 denote the j2th open
subinterval of length 1/n2 of Ij1 (j1, j2 = 1, . . . , n). Proceeding like this, it
is clear how to define the interval Ij1,...,jk for any k. Now s1 : [0, 1] → C
is defined by setting s1(t) = aj for t ∈ Ij , where 1 ≤ j ≤ n. There is no
harm in setting sk(t) = 1 for all endpoints t. We shall need the following
polarization formula (see [1]):

L(x1, . . . , xm) =
1

m!

1�

0

sm−11 (t) · · · sm−1m (t)L̂
[ m∑
i=1

si(t)xi

]
dt,

which can be generalized using the multinomial theorem and [1, Lemma 1]
to get

Lemma 2.1. Let the scalar field be C, X a vector space and L ∈ Ls(mX).
If x1, . . . , xn ∈ X, then

L(xk11 . . . xknn ) =
k1! · · · kn!

m!

1�

0

sm−k11 (t) · · · sm−knn (t)L̂
( n∑
i=1

si(t)xi

)
dt

for all nonnegative integers k1, . . . , kn with k1 + · · ·+ kn = m.

Khinchin’s inequality states that for every 0 < p < ∞, there are 0 <
Ap ≤ Bp <∞ such that for all n ∈ N and all scalars a1, . . . , an,

Ap

( n∑
i=1

|ai|2
)1/2

≤
∥∥∥ n∑
i=1

airi

∥∥∥
Lp
≤ Bp

( n∑
i=1

|ai|2
)1/2

,

where Bp depends not only on p but also on n, and from [8, Theorem &
Corollary 3] is given by

Bp(n) =


(
	1
0 |
∑n

i=1 ri|p dt)1/p

n1/2
if p ≥ 3,

(
	1
0 |
∑n

i=1 ri|p dt)1/p

n1/p
if 2 ≤ p < 3.

Notice that this estimate for Bp also holds for the generalized Rademacher
functions.

Definition 2.2. Let 0 < K <∞. A sequence (xi) in a Banach space X
is a K-unconditional basic sequence if for all n, all scalars a1, . . . , an and all
choices of εi = ±1, ∥∥∥ n∑

i=1

εiaixi

∥∥∥ ≤ K∥∥∥ n∑
i=1

aixi

∥∥∥.
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Definition 2.3. A sequence (xi) in a Banach space X is called semi-
normalized if infi ‖xi‖ > 0 and supi ‖xi‖ <∞.

If φ ∈ Lp(µ), 2 < p < ∞ and φ > 0 almost everywhere, we set dµφ =
φpdµ and define Uφf = f/φ for f ∈ Lp(µ). By the Radon–Nikodým theorem,
Uφ is an isometry of Lp(µ) onto Lp(µφ). From [3, Proposition 3.4] we have

Proposition 2.4. Let (fi) be a seminormalized K-unconditional basic

sequence in Lp(µ), 2 < p <∞. If for every φ > 0 with
	1
0 φ(t)p dt = 1,

Cφ =
( ∞∑
i=1

‖Uφfi‖
2p(p−2)
L2(µφ)

)(p−2)/2p
<∞,

then (fi) is equivalent to the usual basis of `p and for all n and all a1, . . . , an
we have

(2.1)
∥∥∥ n∑
i=1

aifi

∥∥∥ ≤ KBpC( n∑
i=1

|ai|p
)1/p

,

where Bp is the Khinchin constant and C = supCφ <∞.

Proposition 2.5. Let 2 < p < ∞ and let L ∈ Ls(mLp(µ),C). Suppose
(xi) is a seminormalized K-unconditional basic sequence in Lp(µ) and for

every φ > 0 with
	1
0 φ(t)p dt = 1,

Cφ =
( ∞∑
i=1

‖Uφxi‖
2p(p−2)
L2(µφ)

)(p−2)/2p
<∞.

Then (xi) is equivalent to the usual basis of `p and for all nonnegative inte-
gers k1, . . . , kn with k1 + · · ·+ kn = m we have

|L(xk11 . . . xknn )| ≤ (KBpC)m
k1! · · · kn!mm/p

k
k1/p
1 · · · kkn/pn m!

‖L̂‖,

where Bp is the Khinchin constant and C = supCφ <∞.

Proof. Using Lemma 2.1 and Proposition 2.4, we have∣∣∣∣kk1/p1 · · · kkn/pn

mm/p
L(xk11 . . . xknn )

∣∣∣∣
=

∣∣∣∣L((k1m
)k1/p

xk11 . . .

(
kn
m

)kn/p
xknn

)∣∣∣∣
=

∣∣∣∣k1! · · · kn!

m!

1�

0

sm−k11 (t) · · · sm−knn (t)L̂

( n∑
i=1

(
ki
m

)1/p

si(t)xi

)
dt

∣∣∣∣
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≤ k1! · · · kn!

m!
‖L̂‖

1�

0

∥∥∥∥ n∑
i=1

(
ki
m

)1/p

si(t)xi

∥∥∥∥m
p

dt

≤ (KBpC)m
k1! · · · kn!

m!
‖L̂‖

1�

0

( n∑
i=1

ki
m

)m/p
dt

= (KBpC)m
k1! · · · kn!

m!
‖L̂‖.

Remark 2.6. If in Proposition 2.5 we choose x1, . . . , xn to have disjoint
supports, then we get Harris’ result of Lemma 1.1.

3. The real case

3.1. Using weights. If ri(t) = sign sin 2iπt is the ith Rademacher func-
tion on [0,1], we shall need the following well known polarization formula
([2, Corollary 1.6], see also [11, Lemma 2]):

L(x1, . . . , xm) =
1

m!

1�

0

r1(t) · · · rm(t)L̂
[ m∑
i=1

ri(t)xi

]
dt,

which is generalized by the next result.

Lemma 3.1. If X is a vector space over K, L ∈ Ls(mX) and x1, . . . , xn
∈ X, then

L(xk11 . . . xknn )

=
1

m!

1�

0

r1(t) · · · rm(t)L̂
( k1∑
i=1

ri(t)x1 + · · ·+
m∑

i=m−kn+1

ri(t)xn

)
dt

for all nonnegative integers k1, . . . , kn with k1 + · · ·+ kn = m.

Theorem 3.2. Let 1 ≤ p ≤ ∞ and let L ∈ Ls(mLp(µ),R). If x1, . . . , xn
are norm-one vectors in Lp(µ) with disjoint supports, then

(3.1) |L(xk11 . . . xknn )| ≤ kk11 · · · kknn
m!

nm/p‖L̂‖

for all nonnegative integers k1, . . . , kn with k1 + · · ·+ kn = m.

Proof. From Lemma 3.1 we have

|L(xk11 . . . xknn )|

≤ kk11 · · · kknn
m!

‖L̂‖
1�

0

∥∥∥∥ k1∑
i=1

ri(t)
x1
k1

+ · · ·+
m∑

i=m−kn+1

ri(t)
xn
kn

∥∥∥∥m
p

dt.
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But

1�

0

∥∥∥∥ k1∑
i=1

ri(t)
x1
k1

+ · · ·+
m∑

i=m−kn+1

ri(t)
xn
kn

∥∥∥∥m
p

dt

≤
1�

0

[(
1

k1

∣∣∣∣ k1∑
i=1

ri(t)

∣∣∣∣)p + · · ·+
(

1

kn

∣∣∣∣ m∑
i=m−kn+1

ri(t)

∣∣∣∣)p]m/p dt ≤ nm/p,
and (3.1) follows.

Remark 3.3. For k1 = · · · = kn = 1, the upper bound of c(k1, . . . , kn; `p)
from Lemma 1.1 and the lower bound from Theorem 3.2 give the same
estimate mm/p/m!.

Since by Stirling’s formula m! ∼
√

2πmm+1/2e−m, the constant of The-
orem 3.2 gives asymptotically c(Lp(µ)) = n1/pe.

Using (2.1) in the proof of Theorem 3.2, we get the following estimate
for a seminormalized unconditional basic sequence (xi) with appropriate
additional constants.

Proposition 3.4. Let 2 < p < ∞ and let L ∈ Ls(mLp(µ),R). Suppose
(xi) is a seminormalized K-unconditional basic sequence in Lp(µ) and for

every φ > 0 with
	1
0 φ(t)p dt = 1,

Cφ =
( ∞∑
i=1

‖Uφxi‖
2p(p−2)
L2(µφ)

)(p−2)/2p
<∞.

Then (xi) is equivalent to the usual basis of `p and for all nonnegative inte-
gers k1, . . . , kn with k1 + · · ·+ kn = m we have

|L(xk11 . . . xknn )| ≤ (KBpC)m
kk11 · · · kknn

m!
nm/p‖L̂‖,

where Bp is the Khinchin constant and C = supCφ <∞.

Now, we compare some values of c(k1, . . . , kn;Lp(µ)) obtained from The-
orem 3.2 with the corresponding ones already known from (1.2).

Examples 3.5. (a) For m = 8, c(1, . . . , 1, 2;L8(µ)) ' 0.0007, while (1.2)
gives 2048.

(b) c(1, 1, 2;L8(µ)) ' 0.29, while (1.2) gives 8.

(c) c(1, 1, 6;L4(µ)) ' 10.4, while (1.2) gives 19.

(d) For m = 8, c(1, . . . , 1, 2;L2(µ)) ' 0.24, while (1.2) gives 2048.
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3.2. Using Clarkson’s inequalities. If a1, . . . , an ∈ C, from [14, The-
orem 5] we have Clarkson type inequalities(1�

0

∣∣∣ n∑
i=1

ri(t)ai

∣∣∣λ dt)1/λ ≤ ( n∑
i=1

|ai|λ
)1/λ

if 0 < λ ≤ 2,

(1�
0

∣∣∣ n∑
i=1

ri(t)ai

∣∣∣λ dt)1/λ ≤ ( n∑
i=1

|ai|λ
′
)1/λ′

if 2 ≤ λ <∞,

where λ′ = λ/(λ− 1) is the conjugate exponent of λ.

Theorem 3.6. Let 1 ≤ p ≤ ∞ and let L ∈ Ls(mLp(µ),R). If x1, . . . , xn
are norm-one vectors in Lp(µ) with disjoint supports, then

|L(xk11 . . . xknn )| ≤ c(k1, . . . , kn;Lp(µ))‖L̂‖
for all nonnegative integers k1, . . . , kn with k1 + · · ·+ kn = m, where

c(k1, . . . , kn;Lp(µ)) =


(kp−11 + · · ·+ kp−1n )m/p

m!
if p ≥ m,

n(m−p)/p(km−11 + · · ·+ km−1n )

m!
if p ≤ m.

Proof. From Lemma 3.1 we have

|L(xk11 . . . xknn )| ≤ ‖L̂‖
m!

1�

0

∥∥∥ k1∑
i=1

ri(t)x1 + · · ·+
m∑

i=m−kn+1

ri(t)xn

∥∥∥m
p
dt

≤ ‖L̂‖
m!

1�

0

(∣∣∣ k1∑
i=1

ri(t)
∣∣∣p + · · ·+

∣∣∣ m∑
i=m−kn+1

ri(t)
∣∣∣p)m/p dt.

Let p ≥ m. Then m/p ≤ 1 and by Hölder’s inequality

|L(xk11 . . . xknn )|≤ ‖L̂‖
m!

(1�
0

∣∣∣ k1∑
i=1

ri(t)
∣∣∣p dt+ · · ·+

1�

0

∣∣∣ m∑
i=m−kn+1

ri(t)
∣∣∣p dt)m/p

≤ (k
p/p′

1 + · · ·+ k
p/p′
n )m/p

m!
‖L̂‖ (since p ≥ 2)

=
(kp−11 + · · ·+ kp−1n )m/p

m!
‖L̂‖.

Let p ≤ m. Then m/p ≥ 1 and by Hölder’s inequality

|L(xk11 . . . xknn )|

≤ nm/p‖L̂‖
m!

1�

0

(
1

n

∣∣∣ k1∑
i=1

ri(t)
∣∣∣p + · · ·+ 1

n

∣∣∣ m∑
i=m−kn+1

ri(t)
∣∣∣p)m/p dt
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≤ nm/p‖L̂‖
m!

1�

0

1

n

(∣∣∣ k1∑
i=1

ri(t)
∣∣∣m + · · ·+

∣∣∣ m∑
i=m−kn+1

ri(t)
∣∣∣m) dt

=
n(m−p)/p‖L̂‖

m!

(1�
0

∣∣∣ k1∑
i=1

ri(t)
∣∣∣m dt+ · · ·+

1�

0

∣∣∣ m∑
i=m−kn+1

ri(t)
∣∣∣m dt)

≤ n(m−p)/p(k
m/m′

1 + · · ·+ k
m/m′
n )

m!
‖L̂‖ (since m ≥ 2)

=
n(m−p)/p(km−11 + · · ·+ km−1n )

m!
‖L̂‖.

Remark 3.7. For k1 = · · · = kn = 1, the upper bound of c(k1, . . . , kn; `p)
from Lemma 1.1 and the lower bound from Theorem 3.6, in the case p ≥ m,
give the same estimate mm/p/m!.

Notice that the constant of Theorem 3.6 gives asymptotically c(L∞(µ))
= e and c(Lp(µ)) = n1/pe for 1 ≤ p <∞.

Using (2.1) in the proof of Theorem 3.6, we get the following estimate
for a seminormalized unconditional basic sequence (xi) with appropriate
additional constants.

Proposition 3.8. Let 2 < p < ∞ and let L ∈ Ls(mLp(µ),R). Suppose
(xi) is a seminormalized K-unconditional basic sequence in Lp(µ) and for

every φ > 0 with
	1
0 φ(t)p dt = 1,

Cφ =
( ∞∑
i=1

‖Uφxi‖
2p(p−2)
L2(µφ)

)(p−2)/2p
<∞.

Then (xi) is equivalent to the usual basis of `p and for all nonnegative inte-
gers k1, . . . , kn with k1 + · · ·+ kn = m we have

|L(xk11 . . . xknn )| ≤ c(k1, . . . , kn;Lp(µ))‖L̂‖.
Here

c(k1, . . . , kn;Lp(µ)) =


(KBpC)m

(kp−11 + · · ·+ kp−1n )m/p

m!
if p ≥ m,

(KBpC)m
n(m−p)/p(km−11 + · · ·+ km−1n )

m!
if p ≤ m,

where Bp is the Khinchin constant and C = supCφ <∞.

Now, we compare some values of c(k1, . . . , kn;Lp(µ)) obtained from The-
orem 3.6 with the corresponding ones already known from (1.2).

Examples 3.9. (a) c(4, 4;L8(µ)) ' 0.81, while (1.2) gives 16.
(b) c(1, 3;L4(µ)) = 1.16̄, while (1.2) gives 3.08.
(c) c(1, 1, 2;L4(µ)) = 0.416̄, while (1.2) gives 8.
(d) c(4, 4;L2(µ)) ' 6.5, while (1.2) gives 16.
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(e) c(1, 3;L2(µ)) = 2.3̄, while (1.2) gives 3.08.
(f) c(1, 1, 2;L2(µ)) = 1.25, while (1.2) gives 8.

3.3. Using Hoeffding’s inequality. Let (R,M, λ) be the Lebesgue
measure space and let E ∈M. If f is a measurable function on E, we define
its distribution function λf : (0,∞)→ [0,∞] by

λf (a) = λ({x ∈ E : |f(x)| > a}),
where λ denotes Lebesgue measure. From [4], we have:

Proposition 3.10. If λf (a) <∞ for every a > 0 and φ is a nonnegative
Borel function on (0,∞), then

�

E

φ ◦ |f | dλ = −
∞�

0

φ(a) dλf (a).

That is, the integrals of functions of |f | on E can be reduced to Lebesgue–
Stieltjes integrals.

The case we are interested in is φ(a) = ap, which gives

�

E

|f |p dλ = −
∞�

0

ap dλf (a).

Integrating the right hand side by parts, we obtain

(3.2)
�

E

|f |p dλ = p

∞�

0

ap−1λf (a) da.

The validity of this calculation becomes clear if we note that apλf (a) → 0
as a → 0 and a → ∞ (since λf is strictly decreasing). In the following
proposition the function f will be of the form f(t) = r1(t) + · · · + rk(t),
k ∈ N. Therefore, we need to find an upper bound for

λf (x) := λk(x) = P (|r1(t) + · · ·+ rk(t)| ≥ x).

This will be accomplished by using Hoeffding’s inequality (see [7, Theo-
rem 2]): If X1, . . . , Xk are independent random variables with ai ≤ Xi ≤ bi
for every i = 1, . . . , k and with mean µ, then for all x > 0,

P (Xk − µ ≥ x) ≤ e−2k2x2/
∑k
i=1(bi−ai)2 .

Since in our case ai = −1, bi = 1 and µ = 0 for every i, it follows that

P (r1(t) + · · ·+ rk(t) ≥ x) = P

(
r1(t) + · · ·+ rk(t)

k
≥ x

k

)
≤ e−2k2(x/k)2/4k = e−x

2/2k.

Hence,

(3.3) λk(x) = P (|r1(t) + · · ·+ rk(t)| ≥ x) ≤ 2e−x
2/2k.
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Recall that the double factorial of a positive integer n is defined by

n!! =

{
n · (n− 2) · · · 5 · 3 · 1 if n is odd,

n · (n− 2) · · · 6 · 4 · 2 if n is even.

Lemma 3.11. If n ∈ N, then

Γ

(
n

2

)
=


2

n
2−n/2n!! if n is even,
√

2π

n
2−n/2n!! if n is odd.

Proof. If n is even, then

n!! = 2n/2Γ

(
n

2
+ 1

)
⇔ n!! = 2n/2

n

2
Γ

(
n

2

)
⇔ Γ

(
n

2

)
=

2

n
2−n/2n!!.

If n is odd, then

n!! = π−1/22n/2+1/2Γ

(
n

2
+ 1

)
⇔ n!! =

√
2

π
2n/2

n

2
Γ

(
n

2

)
⇔ Γ

(
n

2

)
=

√
2π

n
2−n/2n!!.

If p > 0, [p] denotes the integer part of p.

Theorem 3.12. Let 1 ≤ p ≤ ∞ and let L ∈ Ls(mLp(µ),R). If x1, . . . , xn
are norm-one vectors in Lp(µ) with disjoint supports, then

|L(xk11 . . . xknn )| ≤ c(k1, . . . , kn;Lp(µ))‖L̂‖

for all nonnegative integers k1, . . . , kn with k1 + · · ·+ kn = m, where

(3.4) c(k1, . . . , kn;Lp(µ)) =


(
√

2π [p]!!
∑n

i=1 k
[p]/2
i )m/[p]

m!
if p ≥ m,

n(m−p)/p
√

2πm!!
∑n

i=1 k
m/2
i

m!
if p ≤ m.

Proof. From Lemma 3.1 we have

|L(xk11 . . . xknn )| ≤ ‖L̂‖
m!

1�

0

∥∥∥ k1∑
i=1

ri(t)x1 + · · ·+
m∑

i=m−kn+1

ri(t)xn

∥∥∥m
p
dt

≤ ‖L̂‖
m!

1�

0

(∣∣∣ k1∑
i=1

ri(t)
∣∣∣p + · · ·+

∣∣∣ m∑
i=m−kn+1

ri(t)
∣∣∣p)m/p dt.

Let p ≥ m. Since p ≥ [p] ≥ m and m/[p] ≤ 1, using Hölder’s inequality we
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have

|L(xk11 . . . xknn )| ≤ ‖L̂‖
m!

1�

0

(∣∣∣ k1∑
i=1

ri(t)
∣∣∣[p] + · · ·+

∣∣∣ m∑
i=m−kn+1

ri(t)
∣∣∣[p])m/[p] dt

≤ ‖L̂‖
m!

(1�
0

∣∣∣ k1∑
i=1

ri(t)
∣∣∣[p] dt+ · · ·+

1�

0

∣∣∣ m∑
i=m−kn+1

ri(t)
∣∣∣[p]dt)m/[p].

Therefore, from (3.2) and (3.3) we get

|L(xk11 . . . xknn )|

≤ ‖L̂‖
m!

(
[p]

∞�

0

x[p]−1λk1(x) dx+ · · ·+ [p]

∞�

0

x[p]−1λkn(x) dx
)m/[p]

≤ ‖L̂‖
m!

(
[p]

∞�

0

x[p]−12e−x
2/2k1 dx+ · · ·+ [p]

∞�

0

x[p]−12e−x
2/2kn dx

)m/[p]
=
‖L̂‖
m!

(
[p](2k1)

[p]/2Γ

(
[p]

2

)
+ · · ·+ [p](2kn)[p]/2Γ

(
[p]

2

))m/[p]
=

(
[p]2[p]/2Γ ([p]/2)

∑n
i=1 k

[p]/2
i

)m/[p]
m!

‖L̂‖.

Now, an application of Lemma 3.11 yields

(3.5) |L(xk11 . . . xknn )| ≤


(2[p]!!

∑n
i=1 k

[p]/2
i )m/[p]

m!
‖L̂‖ if [p] is even,

(
√

2π [p]!!
∑n

i=1 k
[p]/2
i )m/[p]

m!
‖L̂‖ if [p] is odd.

Let p ≤ m. Using Hölder’s inequality and (3.2), (3.3), we get

|L(xk11 . . . xknn )|

≤ nm/p‖L̂‖
m!

1�

0

(
1

n

∣∣∣ k1∑
i=1

ri(t)
∣∣∣p + · · ·+ 1

n

∣∣∣ m∑
i=m−kn+1

ri(t)
∣∣∣p)m/p dt

≤ nm/p‖L̂‖
m!

1�

0

1

n

(∣∣∣ k1∑
i=1

ri(t)
∣∣∣m + · · ·+

∣∣∣ m∑
i=m−kn+1

ri(t)
∣∣∣m) dt

≤ n(m−p)/p‖L̂‖
m!

(
m

∞�

0

xm−1λk1(x) dx+ · · ·+m

∞�

0

xm−1λkn(x) dx
)

≤ n(m−p)/p‖L̂‖
m!

(
m

∞�

0

xm−12e−x
2/2k1 dx+ · · ·+m

∞�

0

xm−12e−x
2/2kn dx

)
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=
n(m−p)/p‖L̂‖

m!

(
m(2k1)

m/2Γ

(
m

2

)
+ · · ·+m(2kn)m/2Γ

(
m

2

))
=
n(m−p)/pm2m/2Γ (m/2)

∑n
i=1 k

m/2
i

m!
‖L̂‖.

An application of Lemma 3.11 yields

(3.6) |L(xk11 . . . xknn )| ≤


n(m−p)/p 2m!!

∑n
i=1 k

m/2
i

m!
‖L̂‖ if m is even,

n(m−p)/p
√

2πm!!
∑n

i=1 k
m/2
i

m!
‖L̂‖ if m is odd.

Finally, the estimate (3.4) follows from (3.5) and (3.6).

Observe that in the real case the constant of Theorem 3.12 leads to
c(L∞(µ)) =

√
e, which is the best known asymptotic estimate and indepen-

dent of n. Additionally, c(Lp(µ)) = n1/p
√
e for 1 ≤ p < ∞. By Lemma 1.1,

the best asymptotic estimate for complex L∞(µ) spaces is 1.
Using (2.1) in the proof of Theorem 3.12, we get the following estimate

for a seminormalized unconditional basic sequence (xi) with appropriate
additional constants.

Proposition 3.13. Let 2 < p <∞ and let L ∈ Ls(mLp(µ),R). Suppose
(xi) is a seminormalized K-unconditional basic sequence in Lp(µ) and for

every φ > 0 with
	1
0 φ(t)p dt = 1,

Cφ =
( ∞∑
i=1

‖Uφxi‖
2p(p−2)
L2(µφ)

)(p−2)/2p
<∞.

Then (xi) is equivalent to the usual basis of `p and for all nonnegative inte-
gers k1, . . . , kn with k1 + · · ·+ kn = m we have

|L(xk11 . . . xknn )| ≤ c(k1, . . . , kn;Lp(µ))‖L̂‖,
where

c(k1, . . . , kn;Lp(µ)) =


(KBpC)m

(
√

2π [p]!!
∑n

i=1 k
[p]/2
i )m/[p]

m!
if p ≥ m,

(KBpC)m
n(m−p)/p

√
2πm!!

∑n
i=1 k

m/2
i

m!
if p ≤ m.

Once again Bp is the Khinchin constant and C = supCφ <∞.

Now, we compare some values of c(k1, . . . , kn;Lp(µ)) obtained from The-
orem 3.12 with the corresponding ones already known from (1.2).

Examples 3.14. (a) c(2, 58, 140;L180(µ)) ' 17.42 × 1027, while (1.2)
gives 27.14× 1027.

(b) c(2, 58, 140;L200(µ)) ' 15.42× 1027, while (1.2) gives 27.14× 1027.
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4. Conclusion. In this section we shall explain when each of the above
techniques is useful, but the “rules” we are about to give are not strict, since
for any fixed values of m and p there is a large variation for the values of
n, ki, i = 1, . . . , n.

First of all, note that when 1 ≤ p ≤ m′ and 1/m+ 1/m′ = 1, inequality
(1.3) gives better estimates than any of these techniques.

Case p = m. If n is very small and the ki’s are (approximately) equal,
we get the best estimates from Theorem 3.6 (Example 3.9a).

If n is very small and the ki’s have a large variation, Theorem 3.6 is
best suited for very small values of m (Example 3.9b), but inequality (1.2)
remains the best for larger m’s.

If n is relatively large (not necessarily close to m), the best estimates
are obtained from Theorem 3.6 for very small m’s (Example 3.9c) and from
Theorem 3.2 for larger m’s (Example 3.5a).

Case p > m. For fixed m, as p increases, only the estimates of The-
orem 3.2 decrease, therefore for large p ’s we get the best estimates from
Theorem 3.2 (Example 3.5b). If p is not very large (i.e. close to m), the
“rules” of the case p = m hold.

Case p < m. If n is very small and the ki’s are (approximately) equal,
we prefer Theorem 3.6 (Example 3.9d). For large m’s and very small p’s, we
get the best estimates from inequality (1.2).

If n is very small and the ki’s have a large variation, the best estimates
are derived from (1.2) in most cases and sometimes Theorems 3.2 (Example
3.5c) and 3.6 (Example 3.9e) will do the job.

If n is relatively large (not necessarily close to m), Theorem 3.2 is the
one we need (Example 3.5d), with few exceptions for very small values of m
where the results from Theorem 3.6 are better (Example 3.9f).

Finally, observe that Theorem 3.12 gives the best known asymptotic
estimate, which is independent of n and is obtained in the case of L∞(µ).
Additionally, it is useful in both cases p ≥ m and p < m for very large values
of m and p, when n ≥ 3 (but not close to m) and the ki ’s are neither equal
nor have a very large variation (Examples 3.14a, 3.14b).
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