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Distribution of values at 1 of symmetric power L-functions
of Maass cusp forms

by

Yingnan Wang (Shenzhen) and Xuanxuan Xiao (Macau)

1. Introduction. The distribution of values at s = 1 of symmetric
power L-functions of Maass cusp forms was first investigated by Luo [12] who
considered the case of symmetric square L-functions of Maass forms with
motivation from spectral deformation theory. Luo’s work was extended to
symmetric power L-functions of holomorphic cusp forms with large square-
free levels in [13], [14], [15], [16], [3] and [1]. Inspired by [1] and [2], Lau
and Wu [9, 10] investigated the distribution of values at s = 1 of symmetric
power L-functions of holomorphic cusp forms in the weight aspect.

In this paper we consider the distribution of values at s = 1 of sym-
metric power L-functions of Maass cusp forms in the weight aspect. Similar
results can be found in Xiao [20], Lau–Wu [9, 10], Liu–Royer–Wu [11] and
Lamzouri [7] for holomorphic cusp forms. Although we use similar meth-
ods (the probability model proposed by Cogdell and Michel in [1]), we have
to overcome the extra difficulties arising from the absence of the General-
ized Ramanujan Conjecture (GRC). Our main idea is to use the result of
Sarnak (see Lemma 3.1) to count the number of Maass forms which have
“exceptional” Hecke eigenvalues (those not in the interval [−2, 2]) and find

two dense subsets H+,1
T,symm(η) and H∗T,symm(η) (see (3.1) and (5.1) for the

definitions) satisfying weak forms of GRC for small primes and the General-
ized Riemann Hypothesis (GRH). Moreover, in order to find the moments of
L(1, symm uj) (Proposition 4.1), we use a truncated version of the Kuznetsov
trace formula (see Lemma 2.2).

Let us begin with the setting of Maass cusp forms. Let Γ = SL2(Z) and H
be the open upper half-plane in C. Denote by C(Γ\H) the space spanned by
the Maass cusp forms for Γ . Let ∆ be the non-Euclidean Laplace operator

2010 Mathematics Subject Classification: 11F03, 11F67.
Key words and phrases: L-function, Maass cusp form, Montgomery–Vaughan’s conjecture.
Received 4 August 2015; revised 6 April 2016.
Published online 5 October 2016.

DOI: 10.4064/aa8248-5-2016 [321] c© Instytut Matematyczny PAN, 2016



322 Y. N. Wang and X. X. Xiao

and Tn be the nth Hecke operator, n ∈ N. Then there exists a complete
orthonormal basis {uj : j ≥ 0} for C(Γ\H) with

∆uj = (1/4 + t2j )uj and Tnuj = λj(n)uj ,

where 0 < t1 ≤ t2 ≤ · · · . We know (Weyl’s law) that

(1.1) r(T ) = #{j : 0 < tj ≤ T} = 1
12T

2 +O(T log T ).

Moreover, λj(n) ∈ R, and GRC states that for any prime p and j ≥ 1,

|λj(p)| ≤ 2.

The above inequality is out of reach at present and the best result to date
has been established by Kim and Sarnak [5], who proved that for any prime
p and j ≥ 1,

(1.2) |λj(p)| ≤ pθ + p−θ

where θ = 7/64.

It is well-known that there exist two parameters αuj (p) and βuj (p) such
that

αuj (p) + βuj (p) = λj(p) and αuj (p)βuj (p) = 1.

For m ∈ N, the symmetric mth power L-function of uj is defined by

(1.3) L(s, symm uj) =
∏
p

m∏
k=0

(1− αuj (p)m−2kp−s)−1 =

∞∑
n=1

λsymm uj (n)n−s

for Re s � 1. For m = 1, 2, 3, 4, the above Dirichlet series converges ab-
solutely for Re s > 1, and L(s, symm uj) is the L-function attached to a
cuspidal automorphic form of GLm+1(Q). Moreover, L(s, symm uj) can be
analytically continued to the entire complex plane and satisfies a functional
equation for m = 1, 2, 3, 4. In this paper we are interested in the behavior
of {L(1, symm uj) : tj ≤ T} as T →∞.

In fact, L(1, symm uj) is expected to behave very similarly to the values
at s = 1 of symmetric mth power L-functions of holomorphic cusp forms
under GRC. Similarly to [9, Theorem 3], we can see that under GRC and
GRH, for m = 1, 2, 3, 4 and tj ≤ T ,

(1.4) {1 + o(1)}(2B−m log2 T )−A
−
m

≤ L(1, symm uj) ≤ {1 + o(1)}(2B+
m log2 T )A

+
m

where logn is the n-fold iterated logarithm and the constants A±m and B±m
are given by
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(1.5)


A+
m = m+ 1, B+

m = eγ (m = 1, 2, 3, 4),

A−m = m+ 1, B−m = eγζ(2)−1 (m = 1, 3),

A−2 = 1, B−2 = eγζ(2)−2,

A−4 = 5/4, B−4 = eγB−4,∗,

and B−4,∗ is an absolute constant given in [9, (1.16)]. Here γ is the Euler
constant. On the other hand, Wang [19, Theorem 1.3] proved unconditionally
that as T → ∞, there exist uj1 , uj2 with tj1 , tj2 ≤ T such that for m =
1, 2, 3, 4,

L(1, symm uj1) ≥ {1 + o(1)}(B+
m log2 T )A

+
m ,(1.6)

L(1, symm uj2) ≤ {1 + o(1)}(B−m log2 T )−A
−
m .(1.7)

Thus the inequality (1.4) is sharp up to the constant 2 if it is unconditionally
true. However, it is not known yet whether one can unconditionally obtain
tight upper and lower bounds as in (1.4).

In this paper we prove the following unconditional result which indicates
that as T →∞, for almost all tj ≤ T , the magnitude of L(1, symm uj2) lies

between those of (log2 T )−A
−
m and (log2 T )A

+
m .

Theorem 1.1. Let m = 1, 2, 3, 4 and T be large enough. For any fixed
η ∈ (0, 10−5) and all uj ∈ H∗T,symm(η) (see (5.1) for the definition), we have

(1.8) (log2 T )−A
−
m � L(1, symm uj)� (log2 T )A

+
m .

Remark 1.2. Here H∗T,symm(η) ⊂ {j : 0 < tj ≤ T} is defined by (5.1),
and

lim
T→∞

|H∗T,symm(η)|
r(T )

= 1

by (5.3). In other words, H∗T,symm(η) is dense in {j : 0 < tj ≤ T} as T →∞.
Moreover, for any uj ∈ H∗T,symm(η), λj(p) has a good bound for small
primes p, and L(1, symm uj) has a large zero free region for m = 1, 2, 3, 4 (by
the definition of H+

T,symm(η) in (2.1)). Therefore, H∗T,symm(η) satisfies weak

forms of GRC and GRH.

Next we estimate the size of the exceptional set for which (1.6) or (1.7)
holds and consider the distribution functions

F+
T (t, symm) =

1

r(T )

∑
tj≤T

L(1,symm uj)>(B+
mt)

A+
m

1,

F−T (t, symm) =
1

r(T )

∑
tj≤T

L(1,symm uj)<(B−mt)−A
−
m

1.
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These functions are believed to satisfy the following analogue of Montgo-
mery–Vaughan’s first conjecture for symmetric power L-functions associated
to Maass cusp forms: for each m ∈ Z, there exist positive constants T0 =
T0(m) and c1 > c2 such that for T > T0,

(1.9) e−c1(log T )/log2 T ≤ F±T (log2 T, symm) ≤ e−c2(log T )/log2 T .
Concerning the upper bound of (1.9), Wang [19, Theorem 1.4] proved that
for m = 1, 2, 3, 4 and any ε > 0, there are positive constants c = c(ε) and
T0 = T0(ε) such that

F±T (log2 T + r, symm) ≤ exp

(
−c(r + 1)

log T

(log2 T )(log3 T )2(log4 T )2

)
for T ≥ T0 and log ε ≤ r ≤ (9− ε) log2 T .

In order to investigate the lower bound of (1.9), just as Liu, Royer and
Wu [11], we consider the weighted distribution functions for Maass cusp
forms, defined by

F±T (t, symm) :=
(∑
tj≤T

ω(j)
)−1 ∑

tj≤T
L(1,symmuj)R(B±mt)±A

±
m

ω(j),

where

ω(j) =
π2

T 2
· 2

L(1, sym2 uj)
.

It is proved in [4] that

(1.10) L(1, sym2uj)� (log T )−1,

and so

(1.11) ω(j)� log T

T 2
.

Another main result of this paper is as follows.

Theorem 1.3. Let m = 1, 2, 3, 4. Then there is a positive constant c3
such that

F±T (t, symm) = exp

(
− et−A ±m

t

{
1 +O

(
1

t

)})
uniformly for T →∞ and

t ≤ log2 T − 2 log3 T − log4 T − c3,
where A ±m are constants depending only on m defined in (6.1) and (6.2).

On noting (1.11) and

(1.12)
∑
tj≤T

ω(j) = 1 +Oε(T
−1+ε)

by Lemma 2.2, Theorem 1.3 immediately implies the following corollary.
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Corollary 1.4. Let m = 1, 2, 3, 4. There are positive constants c4 and
T1 such that

F±T (log2 T − 2 log3 T − log4 T, symm) ≥ exp

(
−c4

log T

(log2 T )3(log3 T )

)
for T ≥ T1.

Remark 1.5. Compared to the result on weighted distribution functions
for holomorphic cusp forms, the domain of validity in Theorem 1.3 is slightly
worse. It is closely related to the domain of validity of the result on moments
in Proposition 4.1.

2. Preliminaries. One of our main tools is the following density theo-
rem.

Theorem 2.1 ([19, Theorem 1.1]). Let m = 1, 2, 3, 4 and r ≥ 1. Let
N(α,H, symm uj) be the number of zeros ρ = β + iγ of L(s, symm uj) with
β ≥ α and 0 ≤ γ ≤ H. Then for any ε > 0,∑

tj≤T
N(α,H, symm uj)�ε,r H

1+1/rT
8((m+1)(m+r+1)+64)(1−α)

17−16α
+ε

uniformly for 15/16 + ε ≤ α ≤ 1 and H ≥ 1. The implied constant depends
on ε and r only.

Theorem 2.1 allows us to find a dense subset of {j : tj ≤ T} as T →∞
such that a weak form of GRH is satisfied. Let s = σ+ iτ and m = 1, 2, 3, 4.
For any η ∈ (0, 10−5), define

(2.1)
H+
T,symm(η) = {j : 0 < tj ≤ T and L(s, symm uj) 6= 0, s ∈ S},

H−T,symm(η) = {j : 0 < tj ≤ T and j /∈ H+
T,symm(η)},

where S = {s : σ ≥ 1− η, |τ | ≤ 100T η} ∪ {s : σ ≥ 1}. By Theorem 2.1 with
r = 1, we have

|H−T,symm(η)| ≤
∑

uj∈H−T,symm (η)

N(1− η, 100T η, symm uj)(2.2)

≤
∑

0<tj≤T
N(1− η, 100T η, symm uj)

� T 8η((m+1)(m+2)+66).

Hence, by Weyl’s law (1.1),

(2.3) |H+
T,symm(η)| = r(T ) +O(T 8η((m+1)(m+2)+66))

for m = 1, 2, 3, 4 and η ∈ (0, 10−5).
Another main tool is the following truncated Kuznetsov trace formula

(see [6, Theorem 6] or [8, Lemma 3.1]).
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Lemma 2.2 (Kuznetsov). Let m,n be positive integers. Then for arbi-
trarily small ε > 0,∑

tj≤T

2λj(m)λj(n)

L(1, sym2 uj)
=
T 2

π2
δm,n +O

(
T 1+ε(mn)7/64+ε + (mn)1/4+ε

)
,

where δm,n is the Kronecker symbol.

Remark 2.3. Here we have used the relation
|ρj(1)|2
coshπtj

= 2
L(1,sym2 uj)

,

where ρj(1) is the first Fourier coefficient of uj .

3. Treatment of “exceptional” Hecke eigenvalues. Although
H+
T,symm(η) satisfies a weak form of GRH, some difficulties arise from the ab-

sence of the generalized Ramanujan conjecture. In fact, the proof of Lemma
3.3 below indicates that these difficulties are caused by small primes. Thus
we have to consider the number of uj ∈ H+

T,symm(η) such that |λj(p)| > 2

for small primes (see (3.2) below). In this direction, the first result was due
to Sarnak [17].

Lemma 3.1 (Sarnak). Let p be a fixed prime. Then

#{j : tj ≤ T and |λj(p)| ≥ a ≥ 2} � T
2− log(a/2)

log p ,

where the implied constant is absolute.

Applying Lemma 3.1, we divide H+
T,symm(η) into two parts. For any η ∈

(0, 10−5], define

(3.1) H+,1
T,symm(η) =

{uj ∈ H+
T,symm(η) : 2015−1 ≤ |αuj (p)| ≤ 2015 for all p ≤ (log T )8/η}

and

H+,2
T,symm(η) = H+

T,symm(η) \H+,1
T,symm(η).

Then by Lemma 3.1,

(3.2) |H+,2
T,symm(η)| � T

2− η log (2015/2)
8 log2 T (log T )8/η.

Combining (3.2) with (2.3), we get

(3.3) |H+,1
T,symm(η)| = r(T ) +O

(
T
2− η log (2015/2)

8 log2 T (log T )8/η
)
.

Therefore, H+,1
T,symm(η) is also dense in {j : tj ≤ T} as T → ∞ and sat-

isfies weak forms of GRH and GRC. Then we can get good estimates of
L(s, symm uj) in a certain region near the line Re s = 1 for uj ∈ H+,1

T,symm(η)
and m = 1, 2, 3, 4.
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For m = 1, 2, 3, 4, define

Λsymm uj (n)

=

{
[αuj (p)

mν + αuj (p)
(m−2)ν + · · ·+ αuj (p)

−mν ] log p if n = pν ,

0 otherwise.

For uj ∈ H+
T,symm(η), following the arguments in [19, pp. 216–217], we can

define the logarithm logL(s, symm uj) in S and have the absolutely conver-
gent series

(3.4) logL(s, symm uj) =
∞∑
n=2

Λsymm uj (n)

ns log n
(σ > 1).

Moreover, for s = σ + iτ , σ > σ0 = 1− η and |τ | ≤ 100T η,

(3.5) logL(s, symm uj)�
log T

σ − σ0
,

where the implied constant is absolute.

Lemma 3.2. Let η ∈ (0, 10−5] be fixed, σ0 = 1 − η, m = 1, 2, 3, 4 and
uj ∈ H+

T,symm(η). Let s = σ + iτ. Then

(3.6) logL(s, symm uj) =
∞∑
n=2

Λsymm uj (n)

ns log n
e−n/H +R

uniformly for 3 ≤ H ≤ T η, σ0 < σ ≤ 3/2 and |τ | ≤ H, where

(3.7) R�η H
−(σ−σ0)/2(log T )/(σ − σ0)2.

Proof. It is well-known that for c > 0,

(3.8) e−1/y =
1

2πi

�

(c)

Γ (z)yz dz.

Combining (3.8) with (3.4) yields

(3.9)

∞∑
n=2

Λsymm uj (n)

ns log n
e−n/H

=
1

2πi

2+i∞�

2−i∞
Γ (z − s) logL(z, symm uj)H

z−s dz.

We shift the line of integration to the path C consisting of the straight lines
joining

κ− i∞, κ− i2H, σ1 − i2H, σ1 + i2H, κ+ i2H, κ+ i∞,

where κ := 23/16 + 1/logH and σ1 := (σ + σ0)/2. By the residue theorem,
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∞∑
n=2

Λsymm uj (n)

ns log n
e−n/H = logL(s, symm uj)

+
1

2πi

�

C
Γ (z − s) logL(z, symm uj)H

z−s dz.

By (3.5), the integral over C is

� Hσ1−σ log T

σ − σ0

�

|y|≤3H

|Γ (σ1 − σ + iy)| dy +Hκ−σ
�

|y|≥2H

|Γ (κ− σ + iy)| dy

+
log T

σ − σ0

κ�

σ1

Hx−σ|Γ (x− σ + i(2H − τ))| dx

� Hσ1−σ log T

(σ − σ0)2
+Hκ−σ

�

|y|≥2H

|y − τ |κ−σ−1/2e−π|y−τ |/2 dy

+
log T

σ − σ0

κ�

σ1

H2(x−σ)−1/2e−πT/2 dx

� H−(σ−σ0)/2 log T

(σ − σ0)2
.

Lemma 3.3. Let η∈(0, 10−5] be fixed, m=1, 2, 3, 4 and uj∈H+,1
T,symm(η).

Then

(3.10) logL(s, symm uj)�η
H2α

α logH
+ log2H

uniformly for H = (log T )4/η, σ > 1− α > 1− 1
2η and |t| ≤ (log T )4/η.

Proof. In fact, we have only to consider 1 − 1
2η < σ ≤ 3/2. Taking

H = (log T )4/η in Lemma 3.2, we have

(3.11) logL(s, symm uj)�η

∑
p

|λsymm uj (p)|
pσ

e−p/H + 1

�η

∑
p≤H2

|λsymm uj (p)|
pσ

e−p/H +
∑
p>H2

|λsymm uj (p)|
pσ

e−p/H + 1

�η

∑
p≤H2

1

pσ
+
∑
p>H2

1

pσ−7/64
e−p/H + 1�η

∑
p≤H2

1

pσ
+
∑
p>H2

e−p/H + 1.

Hence we may assume 1− 1
2η < σ < 1 and by [18, Lemma 3.2] or [9, (3.20)],

the first sum in (3.11) is∑
p≤H2

1

pσ
� H2(1−σ)

(1− σ) logH
+ log2H.
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By partial summation, the second sum in (3.11) is∑
p>H2

e−p/H � 1

H

∞�

H2

xe−x/H dx� 1.

4. Moments of L(1, symm uj). For θ ∈ C, m ∈ N and x ∈ C satisfying
|x|max0≤`≤m |ei(m−2`)θ| < 1, we denote

(4.1)

g(θ) := diag[eiθ, e−iθ],

symm[g(θ)] := diag[eimθ, ei(m−2)θ, . . . , e−imθ],

D(x, symm[g(θ)]) := det(I − x· symm[g(θ)])−1

=
∏

0≤`≤m
(1− ei(m−2`)θx)−1.

And for z ∈ C, m ∈ N and ν ≥ 0, define λz,νm [g(θ)] by

(4.2) D(x, symm[g(θ)])z =
∑
ν≥0

λz,νm [g(θ)]xν (|x| max
0≤`≤m

{|ei(m−2`)θ|} < 1).

Then

(4.3)
λ1,1m [g(θ)] = tr(symm[g(θ)]) =

sin[(m+ 1)θ]

sin θ
,

logD(x, symm[g(θ)]) = tr(symm[g(θ)])x+O
(
x2 max

0≤`≤m
|ei(m−2`)θ|2

)
for |x|max0≤`≤m |ei(m−2`)θ| < 1. We denote αuj (p) = eiθj(p) where θj(p) ∈ C.
Then

(4.4) λj(p
m) =

sin[(m+ 1)θj(p)]

sin θj(p)
= tr(symm[g(θj(p))]) = λ1,1m [g(θj(p))].

By (4.1) and (1.3), we have

L(s, symmuj)
z =

∏
p

D(p−s, symm[g(θj(p))])
z,

and it admits a Dirichlet series

L(s, symmuj)
z =

∑
n≥1

λzsymmuj (n)n−s (σ > 1).

Define

(4.5) M z
symm =

∏
p

2

π

π�

0

D(p−1, symm[g(θ)])z sin2 θ dθ.

Another main tool is the following analogue of [9, Proposition 6.1].
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Proposition 4.1. Let η ∈ (0, 10−5) be fixed. Then there exist positive
constant δ = δ(η) and c = c(η) such that∑

uj∈H+,1
T,symm (η)

ω(j)L(1, symm uj)
z = M z

symm +Oη
(
e−δ log T/(log2 T )

2)
uniformly for

|z| ≤ c log T

(log2 T )2 log3 T
.

Remark 4.2. To prove Proposition 4.1, we need six lemmas which are
analogous to [9, Lemmas 6.1–6.6] with similar proofs. The main difference
is that we use a truncated version of the Kuznetsov trace formula. Here we
give detailed proofs of these six lemmas for the sake of completeness. In our
proposition above, the moment is defined in the dense subset H+,1

T,symm(η)

where the proper upper bound for logL(s, symmuj) in Lemma 3.3 is needed.

Lemma 4.3. For m ∈ N, z ∈ C and integer ν > 0, we have

(4.6) λzsymmuj (p
ν) =

∑
0≤ν′≤mν

µz,ν
m,ν′

λj(p
ν′),

where

(4.7) µz,νm,ν′ =
2

π

π�

0

λz,νm [g(θ)] sin[(ν ′ + 1)θ] sin θ dθ.

Furthermore,

(4.8)

µz,1m,ν′ = zδ(m, ν ′) (0 ≤ ν ′ ≤ m),

|µz,νm,ν′ | ≤
(

(m+ 1)|z|+ ν − 1

ν

)
(0 ≤ ν ′ ≤ mν),

where δ(a, b) is 1 for a = b and 0 otherwise.

Proof. The proof is very similar to the proof of [9, Lemma 6.1] with
obvious modifications and so we omit it.

Lemma 4.4. Let m,n ∈ N and z ∈ C. Then

(4.9)
∑
tj≤T

ω(j)λzsymm uj (n) = λzsymm(n) +Om,ε
(
T−1+εnm/4+εrzm(n)

)
,

where λzsymm(n) and rzm(n) are the multiplicative functions defined by

(4.10) λzsymm(pν) = µz,νm,0, rzm(pν) = (mν + 1)

(
(m+ 1)|z|+ ν − 1

ν

)
.

Furthermore there is a constant c = c(m) such that

(4.11)
∑
n≤t

rzm(n)�m t[log(wt)]zm−1ec|z| log2(|z|+3)
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uniformly for t ≥ 1 and z ∈ C, where zm = (m+1)2z∗ and z∗ is the smallest
integer n such that n ≥ |z|.

Proof. The proof follows the method of [9, Lemma 6.2] by using the
Kuznetsov trace formula of Lemma 2.2 instead of the Petersson trace for-
mula.

For notational convenience, we set

(4.12) ωzsymmuj (x) =

∞∑
n=1

λzsymmuj (n)

n
e−n/x.

Lemma 4.5. Let m ∈ N, x ≥ 3 and z ∈ C. Then for any ε > 0,∑
tj≤T

ω(j)ωzsymmuj (x) =
∞∑
n=1

λzsymm(n)

n
e−n/x

+Om
(
T−1+εxm/4+ε[(zm + 1) log x]zm

)
.

Proof. By the definition of ωzsymmf (x) and (4.9), we have∑
tj≤T

ω(j)ωzsymmuj (x) =
∑
tj≤T

ω(j)
∞∑
n=1

λzsymmf (n)

n
e−n/x

=

∞∑
n=1

e−n/x

n

∑
tj≤T

ω(j)λzsymmf (n)

=

∞∑
n=1

λzsymm(n)

n
e−n/x

+O
(
T−1+ε

∞∑
n=1

n−1+m/4+εe−n/xrzm(n)
)
.

Integrating by parts, with (4.11) we obtain
∞∑
n=1

n−1+m/4+εe−n/xrzm(n) =

∞�

1−
t−1+m/4+εe−t/x d

∑
n≤t

rzm(n)

�m ec|z| log2(|z|+3)
∞�

1

[log(3t)]zm

t1−m/4−ε
e−t/x

(
1 +

t

x

)
dt.

On the other hand,
x�

1

[log(3t)]zm

t1−m/4−ε
e−t/x

(
1 +

t

x

)
dt� xm/4+ε(log x)zm ,

∞�

x

[log(3t)]zm

t1−m/4−ε
e−t/x

(
1 +

t

x

)
dt� xm/4+ε

∞�

1

um/4+εe−u[log(3ux)]zm du
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� xm/4+ε(log x)zm
zm∑
ν=0

(
zm
ν

)∞�
1

um+νe−u du

� xm/4+ε[(zm + 1) log x]zm .

Lemma 4.6 ([9, Lemma 6.4]). Let m ∈ N, z ∈ C and define z′m :=
(m+ 1)|z|+ 3. Then there exists a constant c = c(m) > 0 such that

(4.13)
∑
n

|λzsymm(n)|
nσ

≤ exp

(
cz′m

(
log2 z

′
m +

z′m
(1−σ)/σ − 1

(1− σ) log z′m

))
for any σ ∈ (1/2, 1]. Further

(4.14)
∑
n

λzsymm(n)

n
=
∏
p

2

π

π�

0

D(p−1, symm[g(θ)])z sin2 θ dθ.

Lemma 4.7 ([9, Lemma 6.5]). Let m ∈ N, σ ∈ [0, 1/3), x ≥ 3 and z ∈ C.
There exists a constant c = c(m) such that

∞∑
n=1

λzsymm(n)

n
e−n/x

= M z
symm +O

(
x−σ exp

{
cz′m

(
log2 z

′
m +

z′m
σ/(1−σ) − 1

σ log z′m

)})
.

The implied constant depends on m only.

Lemma 4.8. Let η∈(0, 10−5] be fixed, m=1, 2, 3, 4 and uj∈H+,1
T,symm(η).

Then

L(1, symm uj)
z = ωzsymm uj (x) +Oη

(
(x−1/log2 T + xc|z|e−(log T )

4
)ec|z| log3 T

)
.

Proof. Note that

ωzsymm uj (x) =
1

2πi

�

(1)

L(s+ 1, symm uj)
zΓ (s)xs ds.

Shift the line of integration to the path C consisting of the straight lines
joining

κ1 − i∞, κ1 − iH, −κ2 − iH, −κ2 + iH, κ1 + iH, κ1 + i∞,
where κ1 := 1/log x, κ2 := 1/log2 T and H := (log T )4. Then

ωzsymm uj (x) = L(1, symm uj)
z +

1

2πi

�

C
L(s+ 1, symm uj)

zΓ (s)xs ds.

By using Lemma 3.3 and (3.5), we get

1

2πi

�

C
L(s+ 1, symm uj)

zΓ (s)xsds�η x
−κ2ec|z| log3 T

�

|y|≤H

|Γ (1− κ1 + iy)| dy

+ ec|z| log3 T
κ1�

−κ2

|Γ (1 + α+ iH)|dα+ ec|z| log T
�

|y|>H

|Γ (1 + κ1 + iy)| dy,

which implies the result by the Stirling formula.
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Now we are ready to prove Proposition 4.1. We have

(4.15)
∑

uj∈H+,1
T,symm (η)

ω(j)L(1, symm uj)
z

=
∑

uj∈H+,1
T,symm (η)

ω(j)ωzsymm uj (x) +Oη(R1),

where
R1 =

(
x−1/log2 T + xc|z|e−(log T )

4)
ec|z| log3 T .

Here we have used∑
uj∈H+,1

T,symm (η)

ω(j) ≤
∑
tj≤T

ω(j) = 1 +Oε(T
−1+ε)

by (1.12).
On the other hand, for x ≥ 3 and z ∈ C, we have

ωzsymm uj (x) =
1

2πi

�

(1)

L(s+ 1, symm uj)
zΓ (s)xsds� 1000|Re z|x

�

(1)

|Γ (s)| ds

� 1000|Re z|x.

Thus, by (1.11), (2.2) and (3.2),∣∣∣ ∑
uj∈H+,2

symm (1;η)

ω(j)ωzsymm uj (x)
∣∣∣� x1000|Re z|e

− log T
log2 T

∣∣∣ ∑
uj∈H−T,symm (η)

ω(j)ωzsymm uj (x)
∣∣∣� x1000|Re z|T 100η−2 log T.

Therefore,∑
uj∈H+,1

T,symm (η)

ω(j)L(1, symm uj)
z =

∑
tj≤T

ω(j)ωzsymm uj (x) +Oη(R2),

where

R2 = R1 + x1000|Re z|e
− log T

log2 T .

Hence by Lemmas 4.5 and 4.7,∑
uj∈H+,1

T,symm (η)

ω(j)L(1, symm uj)
z = M z

symm +Oη(R3),

where

R3 = R2 + T−1+εxm/4+ε[(zm + 1) log x]zm

+ x−σ exp

{
c3z
′
m

(
log2 z

′
m +

(z′m)σ/(1−σ) − 1

σ log z′m

)}
.
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Take ε = 10−5, σ = 1/log(|z|+ 8) and x = e
log T

10 log2 T . It is easy to verify that
there are positive constants c and δ depending at most on η such that the
error term is � e−δ log T/(log2 T )

2
uniformly for |z| ≤ c log T

(log2 T )
2 log3 T

.

5. Proof of Theorem 1.1. The key point here is to establish an ana-
logue of [9, (8.3)]. However, we may have |λj(p)| > 2, i.e. θj(p) /∈ [0, π] for
some j and prime p due to the absence of GRC. Therefore, we have to control
the contribution of these possible “exceptional” Hecke eigenvalues. To this
end, we introduce a new dense subset of {j : tj ≤ T}: for any η ∈ (0, 10−5],
define

(5.1) H∗T,symm(η) ={
uj ∈ H+

T,symm(η) :

(
1 +

1

log3 T

)−1
≤ |αuj (p)|≤ 1 +

1

log3 T
,

∀p ≤ (log T )8/η
}

with H+
T,symm(η) defined by (2.1). Then by Lemma 3.1,

(5.2) |H+
T,symm(η) \H∗T,symm(η)| � T

2− η

16(log2 T )(log3 T )2 (log T )8/η.

Thus by (2.3),

(5.3) |H∗T,symm(η)| = r(T ) +O
(
T
2− η

16(log2 T )(log3 T )2 (log T )8/η
)
.

By Lemma 3.2 with η ∈ (0, 10−5] being fixed and H = (log T )16/η, we see
that for uj ∈ H∗T,symm(η),

logL(1, symm uj) =

∞∑
n=2

Λsymm uj (n)

ns log n
e−n/H + o(1).

By the definition of H∗T,symm(η) and Lebesgue’s dominated convergence the-
orem, we have∑

p

∑
ν≥2

Λsymm uj (p
ν)

pν log pν
(e−p

ν/H − e−νp/H)→ 0 (T →∞).

Following the arguments in [9, p. 468], we get

(5.4) logL(1, symm uj) =
∑
p≤H

logD(p−1, symm[g(θj(p))]) + o(1).

Let θ±m,p ∈ [0, π] be determined by

(5.5)

{
D(p−1, symm[g(θ+m,p)]) = maxθ∈[0,π]D(p−1, symm[g(θ)]),

D(p−1, symm[g(θ−m,p)]) = minθ∈[0,π]D(p−1, symm[g(θ)]).
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Then (see [9, (7.3)])

A±m = max
θ∈[0,π]

±tr(symm[g(θ)]) = ±tr(symm[g(θ±m)]),(5.6)

B±m = exp

{
γ0 +

1

A±m

∑
p

(
± logD(p−1, symm[g(θ±m,p)])−

A±m
p

)}
,(5.7)

where γ0 is a constant satisfying∑
p≤t

1

p
= log2 t+ γ0 +O

(
1

log t

)
.

Next we will divide the summation on the right-hand side of (5.4) into
two parts,

(5.8)
( ∑

p≤H
θj(p)∈[0,π]

+
∑
p≤H

θj(p)/∈[0,π]

)
logD(p−1, symm[g(θj(p))]).

If uj ∈ H∗T,symm(η) and θj(p) /∈ [0, π], then θj(p) ∈ i(0, 1/log3 T ] ∪ π +
i(0, 1/log3 T ] andD(x, symm[g(θj(p))]) is real by its definition in (4.1). More-
over, it is easy to deduce that∑

p≤H
θj(p)/∈[0,π]

logD(p−1, symm[g(θj(p))])

≤
∑
p≤H

θj(p)/∈[0,π]

logD(p−1, symm[g(i/log3 T )]).

Combining the above formula with (4.3), we get∑
p≤H

θj(p)/∈[0,π]

logD(p−1, symm[g(θj(p))])

≤
∑
p≤H

θj(p)/∈[0,π]

(
tr(symm[g(i/log3 T )])

p
+O

(
1

p2

))
.

Noting that (see (1.5) and the definition of symm[g(θ)] in (4.1))

tr(symm[g(i/log3 T )]) = tr(symm[g(0)]) +O

(
1

log3 T

)
= A+

m +O

(
1

log3 T

)
,

we deduce that∑
p≤H

θj(p)/∈[0,π]

logD(p−1, symm[g(θj(p))]) ≤
∑
p≤H

θj(p)/∈[0,π]

(
A+
m

p
+O

(
1

p log3 T
+

1

p2

))

=
∑
p≤H

θj(p)/∈[0,π]

(
tr(symm[g(θ+m,p)])

p
+
A+
m − tr(symm[g(θ+m,p)])

p

+O

(
1

p log3 T
+

1

p2

))
.
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By using (4.3) and [9, (8.4)], we obtain

(5.9)
∑
p≤H

θj(p)/∈[0,π]

logD(p−1, symm[g(θj(p))])

≤
∑
p≤H

θj(p)/∈[0,π]

(
logD(p−1, symm[g(θ+m,p)]) +

A+
m − tr(symm[g(θ+m,p)])

p

+O

(
1

p log3 T
+

1

p2

))

=
∑
p≤H

θj(p)/∈[0,π]

(
logD(p−1, symm[g(θ+m,p)]) +O

(
1

p log3 T
+

1

p2

))
.

For the other direction, if m = 2, 4 and θj(p) ∈ i(0, 1/log3 T ] ∪ π +
i(0, 1/log3 T ], then D(p−1, symm[g(θj(p))]) > 1. On the other hand, it is
easy to see that

D(p−1, symm[g(θ−m,p)]) ≤ 1.

Therefore, for m = 2, 4,

(5.10)
∑
p≤H

θj(p)/∈[0,π]

logD(p−1, symm[g(θj(p))])

>
∑
p≤H

θj(p)/∈[0,π]

logD(p−1, symm[g(θ−m,p)]).

If m = 1, 3, then by the definition of D(x, symm[g(θ)]) in (4.1), it is easy
to see that∑

p≤H
θj(p)/∈[0,π]

logD(p−1, symm[g(θj(p))])

≥
∑
p≤H

θj(p)/∈[0,π]

logD(p−1, symm[g(π + i/log3 T )]).

Combining the above formula with (4.3), we get∑
p≤H

θj(p)/∈[0,π]

logD(p−1, symm[g(θj(p))])

≥
∑
p≤H

θj(p)/∈[0,π]

(
tr(symm[g(π + i/log3 T )])

p
+O

(
1

p2

))
.
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Noting that for m = 1, 3 (see (1.5) and the definition of symm[g(θ)] in (4.1)),

tr(symm[g(π + i/log3 T )]) = −tr(symm[g(0)]) +O

(
1

log3 T

)
= A−m +O

(
1

log3 T

)
,

we infer that

(5.11)
∑
p≤H

θj(p)/∈[0,π]

logD(p−1, symm[g(θj(p))])

≥
∑
p≤H

θj(p)/∈[0,π]

(
A−m
p

+O

(
1

p log3 T
+

1

p2

))

=
∑
p≤H

θj(p)/∈[0,π]

(
tr(symm[g(θ−m,p)])

p
+
A−m − tr(symm[g(θ−m,p)])

p

+O

(
1

p log3 T
+

1

p2

))
=

∑
p≤H

θj(p)/∈[0,π]

(
logD(p−1, symm[g(θ−m,p)]) +

A−m − tr(symm[g(θ−m,p)])

p

+O

(
1

p log3 T
+

1

p2

))
=

∑
p≤H

θj(p)/∈[0,π]

(
logD(p−1, symm[g(θ−m,p)]) +O

(
1

p log3 T
+

1

p2

))
.

Here we have applied (4.3) in the third step and applied [9, (8.4)] in the last
step.

Combining (5.9), (5.10), (5.11), (5.4) and (5.5), we obtain an analogue
of [9, (8.3)]:

(5.12)
∑
p≤H

logD(p−1, symm[g(θ+m,p)]) +O(1) ≥ logL(1, symm uj)

≥
∑
p≤H

logD(p−1, symm[g(θ−m,p)]) +O(1).

The arguments in [9, p. 469] yield∑
p≤H

logD(p−1, symm[g(θ±m,p)]) = ±A±m log(B±m logH) +O(1).

Then Theorem 1.1 follows plainly.
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6. Proof of Theorem 1.3. To prove Theorem 1.3, we follow Xiao’s
method [20] which is a variant of the idea of Lamzouri [7] . In order to get
a better error term, the method needs a little more careful calculations to
give a good estimation of logM±rsymm (see [20, Lemma 7.2]). Since the case
of Maass cusp forms is similar to that of holomorphic cusp forms, we just
sketch the proof here.

Define

h+m(t) = log

(
2

π

π�

0

exp

(
t

m+ 1

m∑
j=0

cos(θ(m− 2j))

)
sin2 θ dθ

)
,

h−m(x)

=


log

(
2

π

π�

0

exp

(
−tr(symm[g(θ)])

m+ 1
x

)
sin2 θ dθ

)
if x < 1,

log

(
2

π

π�

0

exp

(
−tr(symm[g(θ)])

m+ 1
x

)
sin2 θ dθ

)
− A−m
m+ 1

x if x ≥ 1.

Define also

A +
m = 1 +

1�

0

(h+m(t)/t2) dt+

∞�

1

((h+m(t)− t)/t2) dt,(6.1)

A −m = 1 +

∞�

0

h−m(u)

u2
du+ log

m+ 1

A−m
.(6.2)

Set

F±T (t) :=
∑
tj≤T

L(1,symmuj)R(B±mt)±A
±
m

ω(j), F±,∗T (t) :=
∑

uj∈H+,1
T,symm (η)

L(1,symmuj)R(B±mt)±A
±
m

ω(j).

Then for some constant cη depending on η we have

(6.3) F±T (t) = F±,∗T (t) +O(exp(−cη log T/log2 T )).

Following the method of Xiao [20, Section 7], for any t ≤ log2 T − 2 log3 T −
log4 T − c5, we can get

F+,∗
T (t) = exp

(
−e

t−A +
m

t

{
1 +O

(
1

t

)})
.

Together with (6.3) and (1.12) the estimate for F+
T (t, symm) follows. A sim-

ilar estimate holds for F−T (t, symm).
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19 (2007), 703–753.

[17] P. Sarnak, Statistical properties of eigenvalues of the Hecke operators, in: Analytic
Number Theory and Diophantine Problems (Stillwater, 1984), Progr. Math. 70,
Birkhäuser, Basel, 1987, 321–331.

http://dx.doi.org/10.1007/s00039-003-0438-3
http://dx.doi.org/10.5802/aif.2076
http://dx.doi.org/10.2307/2118543
http://dx.doi.org/10.1090/S0894-0347-02-00410-1
http://dx.doi.org/10.1070/SM1981v039n03ABEH001518
http://dx.doi.org/10.1112/plms/pdp050
http://dx.doi.org/10.1016/j.jnt.2011.05.014
http://dx.doi.org/10.1007/s002080100244
http://dx.doi.org/10.5802/jtnb.609


340 Y. N. Wang and X. X. Xiao

[18] G. Tenenbaum et J. Wu, Moyennes de certaines fonctions multiplicatives sur les
entiers friables, J. Reine Angew. Math. 564 (2003), 119–167.

[19] Y. Wang, A density theorem and extreme values of automorphic L-functions at one,
Acta Arith. 170 (2015), 199–229.

[20] X. Xiao, Distribution of values of symmetric power L-functions at the edge of the
critical strip, J. Number Theory 164 (2016), 223–268.

Yingnan Wang
College of Mathematics and Statistics
Shenzhen University
Shenzhen, Guangdong 518060, P.R. China
E-mail: ynwang@szu.edu.cn

Xuanxuan Xiao
Faculty of Information Technology

Macau University of Science and Technology
Avenida Wai Long, Taipa, Macau
E-mail: xiaoxuan.uhp@gmail.com

http://dx.doi.org/10.4064/aa170-3-1
http://dx.doi.org/10.1016/j.jnt.2015.11.025

	1 Introduction
	2 Preliminaries
	3 Treatment of ``exceptional" Hecke eigenvalues
	4 Moments of L(1,`39`42`"613A``45`47`"603Asymmuj)
	5 Proof of Theorem 1.1
	6 Proof of Theorem 1.3
	References

