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Fourier coefficients of theta functions at
cusps other than infinity
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Joseph Hundley (Buffalo, NY) and Qiao Zhang (Fort Worth, TX)

1. Introduction. In this paper, we use the adelic theory to study the
Fourier coefficients of twisted theta functions at different cusps, and in par-
ticular prove a conjecture of Goldfeld and Gunnells on their absolute values.

1.1. Fourier coefficients of integral-weight automorphic forms.
The theory of Fourier expansions of automorphic forms at various cusps goes
back to [Ro66] and [Ma83]. In sharp contrast to the rich theory for Fourier
coefficients at infinity, the known results for the Fourier coefficients at finite
cusps are very limited. For example, as far as we know, the problem of ex-
tending the Deligne bound on the Fourier coefficients to cusps other than
infinity, with effective constants, is still unsolved. Using Fricke involutions,
Asai [As76] gives an explicit formula of these Fourier coefficients for new-
forms of Γ0(N) when N is squarefree. This result was later generalized by
Kojima [Ko79] to the case of N = 4q for some prime q, and Asai’s reasoning
may be applied to any cusp which is related to infinity by a Fricke involution.
A general explicit formula in terms of the corresponding adelic Whittaker
function was presented in [GH11, Vol. 1]. In the works of Goldfeld, Hundley
and Lee [GHL15], [Hu14] this description was used to address the question
of multiplicativity at finite cusps.

The Fourier coefficients at cusps other than infinity are also of interest
from the representation-theoretic point of view. Recall from [AL70] that for
the sequence of p-power Fourier coefficients at infinity of a newform, there
are essentially three possibilities, corresponding to whether the level N of
the newform satisfies p2 |N , p ‖N or p - N. As described in [Ca73], these
correspond to different possibilities for the local component at p of the corre-
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sponding automorphic representation. If p2 - N, then the isomorphism class
of this representation of GL(2,Qp) is completely determined by the level,
character, and if p - N, the eigenvalue of the Hecke operator Tp. On the
other hand, if p2 |N, then a wide range of representations is possible. Some
of these possibilities can be distinguished from one another using Fourier
coefficients at infinity of the original newform and all of its twists, but dis-
tinct supercuspidal representations cannot be distinguished in this way (see
[BH06, Proposition 27.2]). On the other hand, given the Fourier coefficients
of a modular form at all the cusps, one can compute all values of the Whit-
taker function attached to the corresponding adelic automorphic form, hence
each local Whittaker function [GH11, Vol. 1, Theorem 4.13.3]. As the rep-
resentation generated by the local Whittaker function at p is a model for
the local constituent of the automorphic representation, this is, in principle,
enough information to determine the representation completely. It would
be interesting to see whether this heuristic argument can be made into an
effective algorithm.

A first few steps in using adelic methods to study Fourier coefficients
at various cusps were taken in [GHL15], [Hu14], where the multiplicative
relations satisfied by these coefficients were studied. A next natural problem
is to advance from integral weight to half-integral weight automorphic forms,
and this is one of the motivations for our work. In this paper, we focus on
the simplest and most fundamental types of such automorphic forms: theta
functions. Because of a connection between such functions and the Weil
representation, we are able to obtain formulae which are much more explicit
and amenable to computer implementation (for example) than the formulae
obtained in the integer-weight case. In this regard, our results are much
stronger than a simple generalization of the formula presented in [GH11,
Vol. 1].

1.2. Theta functions and their Fourier coefficients. The theory of
theta functions has a long history, going back to Jacobi, and has a broad
range of applications throughout various branches of mathematics (see, for
example, [Mu07]).

In number theory, theta functions may be used to study representation
numbers of quadratic forms (see [Iw97, Chapter 11]), or to shed light on
the Shimura correspondence between modular forms of integral weights and
those of half-integral weights (see [Shm73] [Shn75], [KS93] and [Wa81]).
Moreover, in 1976, Serre and Stark [SS77] answered a question of Shimura,
by showing that theta functions actually span the space of all modular forms
of weight 1/2 for Γ0(N).

An important development in the theory of theta functions was their
interpretation in terms of a representation of the metaplectic group. This
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point of view goes back to [We64]. It leads naturally to a vast generalization
of the Shimura correspondence, known as the theta correspondence, as well
as a local analogue in the representation theory of groups over local fields.
(See the survey article [Pr98] and its references.) For GL(2), the theory was
significantly explicated by [Ge76], using explicit results of [Ku69]. The results
of Serre and Stark were explained from this point of view by Gelbart and
Piatetski-Shapiro [GPS80].

In this paper, we study the Fourier coefficients of modular forms of
weight 1/2. Let Γ be a discrete group; for simplicity, we may assume that
−1 ∈ Γ . Let f(z) be a modular form of weight 1/2 with respect to Γ . Then
SL2(R) acts on f(z) via the weight-1/2 slash operator

∣∣Hol

1/2
, as defined in

Section 2.2. To define the Fourier coefficients of f(z) at a cusp a, one must
choose a suitable “scaling” matrix, namely a matrix σa ∈ SL(2,R) which
maps ∞ to a and conjugates the stabilizer of a in Γ to the stabilizer of ∞
in SL(2,Z). It is known that the function f

∣∣Hol

1/2
σa has a Fourier expansion

supported on some additive shift of the integers:

f
∣∣Hol

1/2
σa(z) =

∞∑
n=0

Af (σa, n+ κ)e2πi(n+κ)z

for some constant κ = κf,a ∈ Q∩[0, 1), called the cusp parameter of f(z) at a
and actually depending only on the multiplier system of f(z). We refer to the
above coefficients Af (σa, n+ κ) as the Fourier coefficients of f at a, defined
relative to σa. We note that the values of Af (σ, n+ κ) depend on the choice
of σ, as addressed by Lemma 2.10, but their absolute values |Af (σ, n+ κ)|,
especially their nonvanishing property, are independent of this choice.

More specifically, we will investigate the Fourier coefficients of theta func-
tions. Each theta function which we consider is a modular form of weight 1/2
for the group Γ0(N) for a suitable value of N. Their multiplier systems are
described in [Iw97], and it is not difficult to check that the resulting cusp pa-
rameters are trivial at all cusps. Our investigation was prompted and guided
by some numerical computations and conjectures of Dorian Goldfeld and
Paul Gunnells.

Let χ12 =
(
12
·
)
be the primitive Dirichlet character modulo 12. Then the

twisted modular theta function

θχ12(z) =
∞∑

n=−∞
χ12(n)e

2πin2z

is a modular form of weight 1/2 and level 576. Goldfeld and Gunnells com-
puted the Fourier coefficients of θχ12 , and discovered that (for suitable scaling
matrices) the sequence of its Fourier coefficients at every finite cusp was sim-
ply a scalar multiple of the sequence of the Fourier coefficients at infinity.
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For the cusps which can be transported to infinity by a Fricke involution,
this is expected, in view of the results of [As76] (see also [Ko79]). For the
other cusps, the result is more surprising.

Goldfeld and Gunnells also considered the Fourier coefficients of the theta
functions of higher levels. Motivated by their numerical computations, they
proposed the following conjecture.

Conjecture 1.1 (Goldfeld–Gunnells). Let χ12 be the primitive Dirich-
let character modulo 12 defined above, let χ5 be the unique nontrivial even
Dirichlet character modulo 5, and consider the modular form

θχ5χ12(z) =
∞∑

n=−∞
χ5(n)χ12(n)e

2πin2z

of weight 1/2 and level 14400. Let a = u/w ∈ Q with u,w ∈ Z relatively
prime to each other and w | 14400, and let σa ∈ SL(2,R) be any scaling
matrix for a. Then:

(1) Aθχ5χ12 (σa, n) = 0 unless n is a perfect square relatively prime to 12;
(2) if 5 - w or 52 |w, then

|Aθχ5χ12 (σa, n
2)| =

{
2 if gcd(60, n) = 1,
0 if gcd(60, n) > 1;

(3) if 5 ‖w and gcd(12, n) = 1, then |Aθχ5χ12 (σa, n
2)| depends only on

the image of n2 in Z/5Z; more precisely,

|Aθχ5χ12 (σa, n
2)| =

{
2a if 5 - n,
4b if 5 |n

(if u/w ≡ ±1/5 (mod 5)),

|Aθχ5χ12 (σa, n
2)| =

{
2b if 5 - n,
4a if 5 |n

(if u/w ≡ ±2/5 (mod 5)),

where

a =
2√
5
sin

4π

5
=

√
(10− 2

√
5)/5

2
≈ 0.52573,

b =
2√
5
sin

2π

5
=

√
(10 + 2

√
5)/5

2
≈ 0.85065.

Remark 1.2. As we discussed before, the fact that |Aθχ5χ12 (σa, n
2)| is

independent of the choice of σa is an easy consequence of Lemma 2.10.
This conjecture was further extended by Gunnells. Let p ≥ 5 be a prime

and χp (mod p) a nontrivial even character. Then he proposed analogous
conjectures about |Aθχ12χp (σa, n

2)|. In particular, in the delicate case that
p ‖w, he predicted that the full sequence (|Aθχ12χp (σa, n

2)|)∞n=1 is determined
by a subsequence of length (p + 1)/2. As a ranges over all the finite cusps,
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Gunnells predicts that only p − 1 distinct sequences should appear, each
consisting of zeros of explicit integer polynomials. These p − 1 sequences
come in two classes. For each class there is an element corresponding to zero,
and then a cycle of (p − 1)/2 other values. As n runs through the nonzero
squares modulo p, the sequence (|Aθχ12χp (σa, n

2)|) runs through this cycle.
It may start at any point in the cycle, and this accounts for the total of p−1
possibilities.

The desire to understand and to prove the conjecture of Goldfeld and
Gunnells forms another motivation for our present paper. In particular, we
explain their observations as special cases of our main theorem.

1.3. Main results and discussion of the Goldfeld–Gunnells con-
jecture. In this paper, we consider the theta functions twisted by certain
Dirichlet characters, and use the adelic method to study their Fourier co-
efficients at cusps other than infinity. This work is motivated both by the
previous results about integral weight modular forms, and by the computa-
tions and conjectures of Goldfeld and Gunnells on theta functions. Our main
result, in its crudest form, is as follows (a detailed description can be found
in Section 7).

Theorem 1.3. Let M ≥ 1 and let χM (mod M) be an even Dirichlet
character. Assume that either M itself or M/2 is a squarefree integer. Let
a be a finite cusp, and let σa ∈ SL(2,R) be any scaling matrix for a. Then
θχM

∣∣Hol

1/2
σa(z) is a linear combination of the twisted theta functions

{θχd(z) : d |M , χd is a Dirichlet character modulo d}.

In particular, if AθχM (σa, n) be the nth Fourier coefficient of θχ at a with
respect to the scaling matrix σa, then AθχM (σa, n) = 0 unless n is a perfect
square.

In the rest of this section, we illustrate how our results can be used
to explain the computations of Goldfeld and Gunnells and to prove their
conjecture.

For the twisted theta function θχ12 , Goldfeld and Gunnells’ observation,
that (for suitable scaling matrices) the sequence of its Fourier coefficients
at every finite cusp was simply a scalar multiple of the sequence of the
Fourier coefficients at infinity, suggests an adelic explanation. More precisely,
it indicates that the theta function θχ12 may correspond to an element of the
Weil representation which is fixed, up to scalars, by a group which acts
transitively on the cusps. In Example 7.10 we prove this with an explicit
description of this scalar factor.

For the theta function θχ12χp of higher twists, in Example 7.6 we again
produce a group which acts transitively on the cusps. It no longer fixes the
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one-dimensional space spanned by our element of the Weil representation.
Instead, it fixes a finite-dimensional space containing it, and this permits us
to obtain explicit results concerning the Fourier coefficients at all the cusps.

For illustration, we consider the special case that p = 5 and explicitly
establish the relevant conclusions in Conjecture 1.1. As in Conjecture 1.1,
χ5 is the unique primitive Dirichlet character modulo 5, and

θχ5χ12(z) =
∞∑

n=−∞
χ5(n)χ12(n)e

2πin2z

is a modular form of weight 1/2 and level 14400. Since the weight-1/2 slash
operator (see Section 2.2) does not define a right action of SL(2,R) but of
its double cover S̃L(2,R), it turns out to be more convenient to work with
not Γ0(14400) but

Γ (120) =

(
1

120

)
SL(2,Z)

(
1

1/120

)
.

As a conjugate of SL(2,Z) this group obviously acts transitively on the
cusps, and it is easily verified that it provides a scaling matrix for every cusp
relative to Γ0(14400). Now, let V be the three-dimensional complex vector
space spanned by θχ5χ12 , θχ0

5χ12
and θ(5)χ12 , where χ0

5 is the principal Dirichlet
character modulo 5, and

θ(5)χ12
(z) = θχ12(z)− θχ0

5χ12
(z) =

∞∑
n=−∞
5|n

χ12(n)e
2πin2z.

Then Theorem 7.7 constructs a map M : Γ (120) → GL(3,C) such that
(1.4)[

θχ5χ12

∣∣Hol

1/2
σ θχ0

5χ12

∣∣Hol

1/2
σ θ

(5)
χ12

∣∣Hol

1/2
σ
]
= [θχ5χ12 θχ0

5χ12
θ
(5)
χ12 ] ·M(σ−1)

for all σ ∈ Γ (120). As in the case of the half-integral weight slash opera-
tor, we emphasize that M is not a homomorphism but satisfies the twisted
multiplicativity

M(σ1)M(σ2) ∼M(σ1σ2),

where we use ∼ to denote an equality between the two sides up to multi-
plication by a complex number of absolute value 1. The behavior of M is
perhaps better understood by working with a metaplectic covering group.
This point of view is presented in the body of the paper.

The formula (1.4) enables us to recover the Fourier coefficients of the
twisted theta function Aθχ5χ12 (σ,m), provided one can compute M(σ−1)
explicitly. In order to obtain an explicit formula for M , it is helpful to work
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with one prime at a time. If p is a prime, let

K(120)
p =

(
1

120

)
SL(2,Zp)

(
1

1/120

)
.

Clearly, Γ (120) ≤ K
(120)
p for each p. In Section 4 we explicitly construct the

local component Mp : K
(120)
p → GL(3,C) at every prime p; in particular,

these local maps satisfy the twisted multiplicativity

Mp(σ1)Mp(σ2) ∼Mp(σ1σ2).

As we specialize the computations therein to this particular situation, we
can show that Mp is trivial unless p = 2, 3, 5, and that the images of M2 and
M3 are both the scalar matrices in GL(3,C) of absolute value 1. Hence, as
we combine this observation with the product decomposition of the map M
in Section 5, we have M ∼M5 : K

(120)
5 → GL(3,C).

We now describe briefly how these results may be used to verify the
Goldfeld–Gunnells conjecture regarding θχ5χ12 . As a scaling matrix for the
cusp a = u/w, where u,w ∈ Z with gcd(u,w) = 1 and w | 14400, we choose

σa :=

(
120u/t r/120

120w/t s

)
where we write t = gcd(w, 120) and choose r, s ∈ Z so that 120us− rw = t.

If 25 |w, then in K(120)
5 we have the decomposition

σ−1a =

(
1 −rt/(14400u)

1

)(
−t/(120u)

−120u/t

)

·
(

1/5

−5

)(
1 w/(25u)

1

)(
1/5

−5

)
;

if 25 - w, then in K(120)
5 ,

σ−1a =

(
1 −st/(120w)

1

)(
1/5

−5

)(
24w/t

t/24w

)(
1 −u/w

1

)
.

In either case, we may apply direct computations via the twisted multiplica-
tivity and Example 4.24. For convenience, write

va =

{
− rt

14400u if 25 |w,
− st

120w if 25 - w,

and choose α ∈ R so that eiα = e5(va), where ep : Qp → C× is the usual
additive character as defined in (4.2).
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In the simple case that either 5 - w or 25 |w, we have

M(σ−1a ) ∼

 cosα ∗ ∗
i sinα ∗ ∗

0 ∗ ∗

 ,

so (1.4) implies that

θχ5χ12

∣∣Hol

1/2
σa ∼ (cosα)θχ5χ12 + i(sinα)θχ0

5χ12
,

Aθχ5χ12 ,a(σa, n
2) ∼ 2χ12(n)

(
χ5(n) cosα+ iχ0

5(n) sinα
)
.

Hence

|Aθχ5χ12 ,a(σa, n)| = 2|χ5(n)χ12(n)|
√

cos2 α+ sin2 α

=

{
2 if gcd(60, n) = 1,
0 if gcd(60, n) > 1.

The case 5 ‖w is more complicated. Write v′a = −2πu/w, and as above
choose β ∈ R so that eiβ = e5(v

′
a). Then direct computation gives

M(σ−1a ) ∼

 (sinα sinβ)/
√
5− χ5(24w/t) cosα cosβ ∗ ∗

−i(cosα sinβ)/
√
5− iχ5(24w/t) sinα cosβ ∗ ∗

4i(sinβ)/
√
5 ∗ ∗

 ,

so (1.4) implies that

θχ5χ12

∣∣Hol

1/2
σa ∼

(
sinα sinβ√

5
− χ5

(
24w

t

)
cosα cosβ

)
θχ5χ12

− i
(
cosα sinβ√

5
+ χ5

(
24w

t

)
sinα cosβ

)
θχ0

5χ12

+
4i sinβ√

5
θ(5)χ12

.

For 5 |n, we have

Aθχ5χ12 (σa, n
2) ∼ 8i sinβ√

5
χ12(n),

|Aθχ5χ12 (σa, n
2)| = 8|χ12(n)|√

5
|sinβ| = 8|χ12(n)|√

5

∣∣∣∣sin(2πu

w

)∣∣∣∣.
For 5 - n, we have

Aθχ5χ12 (σa, n
2) ∼ 2

(
sinα sinβ√

5
− χ5

(
24w

t

)
cosα cosβ

)
χ5(n)χ12(n)

− 2i

(
cosα sinβ√

5
+ χ5

(
24w

t

)
sinα cosβ

)
χ12(n),
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|Aθχ5χ12 (σa, n
2)| = 2|χ12(n)|

((
sinα sinβ√

5
− χ5

(
24w

t

)
cosα cosβ

)2

+

(
cosα sinβ√

5
+ χ5

(
24w

t

)
sinα cosβ

)2)1/2

= 2|χ12(n)|
√

sin2 β

5
+ cos2 β

= 2|χ12(n)|
√

1

5
sin2

2πu

w
+ cos2

2πu

w
.

Hence, if gcd(n, 12) = 1, then in the case u/w ≡ ±1/5 (mod 5) we have

|Aθχ5χ12 (σa, n
2)| =

{
2
√

1
5 sin

2 2π
5 + cos2 2π

5 = 4√
5
sin 4π

5 if 5 - n,
8√
5
sin 2π

5 if 5 |n,

while in the case u/w ≡ ±2/5 (mod 5) we have

|Aθχ5χ12 (σa, n
2)| =

{
2
√

1
5 sin

2 4π
5 + cos2 4π

5 = 4|χ(n)|√
5

sin 2π
5 if 5 - n,

8√
5
sin 4π

5 if 5 |n.

This verifies the Goldfeld–Gunnells Conjecture 1.1 for the Fourier coefficients
of θχ5χ12 .

1.4. Organization of the paper. In Section 2 we review the classi-
cal theory of the theta functions which we shall study. In Sections 3 and 4
we develop the relevant theory of local metaplectic groups and Weil repre-
sentations, including the explicit formulae which are crucial for our aims in
this paper. In Section 5 we review the relevant notions regarding the global
metaplectic group. In Section 6 we define adelic theta functions correspond-
ing to the classical counterparts reviewed in Section 2. The main theorems
are proved in Section 7.

It may be noted that in this paper we have restricted attention to theta se-
ries attached to even Dirichlet characters whose conductors are either square-
free or equal to four times an odd squarefree number. However, it seems that
the method extends to other characters in a natural way. We hope to return
to this in future work.

2. The classical theory

2.1. The scaling matrices. Let H denote the upper half-plane. We
shall make use of the classical action of SL(2,R) on H by fractional linear
transformations:(

a b

c d

)
· z = az + b

cz + d

((
a b

c d

)
∈ SL(2,R), z ∈ H

)
.
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Let a be a cusp for Γ0(N). Write Γa for the stabilizer of a in Γ0(N).
Choose γ ∈ SL(2,Z) with γ∞ = a. Then

γ−1Γaγ ⊂ Γ∞ =

〈(
−1

−1

)
,

(
1 1

1

)〉
.

Moreover, γ−1Γaγ contains
(−1

−1
)
. It follows that

γ−1Γaγ =

〈(
−1

−1

)
,

(
1 ma

1

)〉
for a unique positive integer ma, called the width of a (relative to Γ0(N)).
Note that the matrix

ga = γ

(
1 ma

1

)
γ−1

is independent of the choice of γ, as the elements
(
1 ma

1

)
and

(
1 −ma

1

)
are

not conjugate in SL(2,R). Hence Γa = 〈−I, ga〉.
Now choose σ ∈ SL(2,R) such that

σ · ∞ = a, σ

(
1 1

1

)
σ−1 = ga.

Following [Iw97], we refer to σ as a “scaling matrix” for a. Clearly, σ is unique
up to an element of the centralizer of

(
1 1
0 1

)
in SL(2,R), which is the subgroup{(

ε εt

ε

)
: ε ∈ {±1}, t ∈ R

}
.

If a =∞, then ma = 1, ga =
(
1 1
1

)
, and one can take σ to be the identity

matrix.
If a = u/w ∈ Q, then

ma =
N

gcd(w2, N)
, ga = I2 +

N

gcd(w2, N)
·
(
−uw u2

−w2 uw

)
.

As for the scaling matrix, a common choice is

σ0a =

(
u
√
N/gcd(w2, N)

w
√
N/gcd(w2, N) 1/(u

√
N/gcd(w2, N))

)
.

If N =M2, this simplifies to

(2.1) σ0a =

(
uM/gcd(w,M)

wM/gcd(w,M) gcd(w,M)/(uM)

)
.

This choice, however, is not suitable for our purpose. Instead, we would like
to have our scaling matrix in a particular conjugate of SL(2,Z).
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For any integer M , let

(2.2) Γ (M) :=

(
1

M

)
SL(2,Z)

(
1

1/M

)
.

Lemma 2.3. Let M ≥ 1, and let a = u/w ∈ Q be a cusp for Γ0(M2).
Then there exists a scaling matrix σ of a that lies in Γ (M). Explicitly, choose
r′, s′ ∈ Z with

uMs′ − r′w = gcd(M,w),

and write t = gcd(M,w); then we may take the scaling matrix

(2.4) σa =

(
1

M

)(
uM/t r′

w/t s′

)(
1

1/M

)
=

(
uM/t r′/M

Mw/t s′

)
∈ Γ (M).

Proof. This follows from direct computations.

Remark 2.5. To illustrate the relation between the usual choice of scal-
ing matrices and our choice, we have

σa = σ0a

(
1 r′t/(M2u)

1

)
.

In particular, the condition σ ∈ Γ (M) determines r′ uniquely modulo uM/t,
so the quantity r′t/(M2u) is uniquely determined modulo 1/M.

Lemma 2.6. Under the notation in Lemma 2.3, we have the decomposi-
tions

σ−1a =

(
1 −s′t/wM

1

)(
t/wM

−wM/t

)(
1 −u/w

1

)
,(2.7)

σ−1a =

(
1 −r′t/(M2u)

1

)(
−t/(uM)

−uM/t

)
(2.8)

·
(

1/M

−M

)(
1 w/(uM2)

1

)(
1/M

−M

)
.

Proof. This follows from direct computations.

Remark 2.9. Let p |M and

K(M)
p :=

(
1

M

)
SL(2,Zp)

(
1

1/M

)
.

The merit of the above lemma is that it gives an explicit decomposition of
σ−1 within the group K

(M)
p . More precisely, if vp(w) ≤ vp(M), then each

matrix in (2.7) is an element of K(M)
p , while if vp(w) = 2 and vp(M) = 1,
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each matrix in (2.8) is an element of K(M)
p . Here and throughout, vp denotes

the p-adic valuation.

2.2. The slash operators. We define the map j : SL(2,R) × H → H
by

j

((
a b

c d

)
, z

)
= cz + d

((
a b

c d

)
∈ SL(2,R), z ∈ H

)
.

It satisfies the cocycle condition

j(γ1γ2, z) = j(γ1, γ2 · z)j(γ2, z).
We also define j(γ, z) = j(γ, z)/|j(γ, z)|. Observe that

j

((
y1/2 xy−1/2

y−1/2

)(
cos θ − sin θ

sin θ cos θ

)
, i

)
= j

((
cos θ − sin θ

sin θ cos θ

)
, i

)
= eiθ

for all x, y, θ ∈ R with y > 0.
For g ∈ SL(2,R) and f : H → C, define(
f
∣∣Hol

1/2
g
)
(z) = j(g, z)−1/2f(g · z),

(
f
∣∣Maa

1/2
g
)
(z) = j(g, z)−1/2f(g · z).

Here, the square roots are defined to be the principal value, having an
argument in (−π/2, π/2). If µ(f) is the function defined by [µ(f)](z) =
f(z) Im(z)1/4, then for every g ∈ SL(2,R) we have

µ
(
f
∣∣Hol

1/2
g
)
= µ(f)

∣∣Maa

1/2
g.

Observe that although j and j are cocycles, their square roots are not,
because of the discontinuity of the principal value.

2.3. Modular forms of weight 1/2. Let f be a modular form of weight
1/2 and multiplier ϑ for Γ0(N), as in [Iw97, §§2.6, 2.7]. Thus for every
γ =

(
a b
c d

)
∈ Γ0(N) we have

f
∣∣Hol

1/2
γ = ϑ(γ)

(
c

d

)
εdf,

where
(
c
d

)
denotes the quadratic residue symbol as defined in [Shm73] and

εd =

{
1 if d ≡ 1 (mod 4),
i if d ≡ 3 (mod 4).

At every cusp a, let κ = κf,a be the unique (rational) solution in [0, 1) to
the equation e2πiκ = ϑ(ga). Then the function e−2πiκf,azf

∣∣Hol

1/2
σa is periodic

of period 1 (see [Iw97, p. 43]), and the Fourier coefficients of f at a relative
to σ are the coefficients Af (σ, n+ κf,a) in its Fourier expansion:(

f
∣∣Hol

1/2
σ
)
(z) =

∞∑
n=0

Af (σ, n+ κf,a)e
2πi(n+κf,a)z.
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Lemma 2.10. We have

Af

(
σ

(
ε

ε

)
, n+ κf,a

)
= Af (σ, n+ κf,a)ϑ

(
ε

ε

)
,

Af

(
σ

(
1 t

1

)
, n+ κf,a

)
= Af (σ, n+ κf,a)e

2πi(n+κf,a)t.

Proof. This is obvious; for example, the latter comes immediately from

∞∑
n=0

Af

(
σ

(
1 t

1

)
, n+ κf,a

)
e2πi(n+κf,a)z =

(
f
∣∣Hol

1/2
σ

(
1 t

1

))
(z)

=
(
f
∣∣Hol

1/2
σ
)
(z + t) =

∞∑
n=0

Af (σ, n+ κf,a)e
2πi(n+κf,a)(z+t).

2.4. The classical theta functions. Let χ (modM) be an even Dirich-
let character. Then the classical twisted theta function (cf. [Iw97, §10.5])

(2.11) θχ(z) =

∞∑
n=−∞

χ(n)e2πin
2z (z ∈ H)

is a cusp form of weight 1/2 and level 4M2, and we have

θχ(γz) = χ(d)χc(d)ε
−1
d (cz + d)1/2θχ(z)

(
γ =

(
a b

c d

)
∈ Γ0(4M2)

)
.

In other words,(
θχ
∣∣Hol

1/2
γ
)
(z) = χ(d)χc(d)ε

−1
d θχ(z) (γ ∈ Γ0(4M2)).

In this paper, we consider the special cases that either M or M/2 is a
squarefree integer, and study the Fourier coefficients of θχ at different cusps.
The main result is Theorem 7.7.

3. Local metaplectic groups

3.1. Local metaplectic groups. Let Qv be one of the completions
of Q. Thus Qv = Q∞ = R or Qv is the p-adic numbers Qp for some prime p.
The Hilbert symbol on Qv will be denoted by ( , )v. As in [Ge76], we define
the cocycle

βv : SL(2,Qv)× SL(2,Qv)→ {±1},
(g1, g2) 7→

(
x(g1), x(g2)

)
v

(
−x(g1)x(g2), x(g1g2)

)
v
s(g1)s(g2)s(g1g2),
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where

x

(
a b

c d

)
=

{
c if c 6= 0,
d if c = 0,

s

(
a b

c d

)
=

{
(c, d)v if v <∞, cd 6= 0 and ord(c) is odd,
1 otherwise.

In particular, in the Borel subgroup it simplifies to

βv

((
a1 b1

d1

)
,

(
a2 b2

d2

))
= (a1, d2)v,

and over SL(2,R) it simplifies to

(3.1) β∞(g1, g2) =
(
x(g1), x(g2)

)
∞
(
−x(g1)x(g2), x(g1g2)

)
∞.

We may then define a double cover of SL(2,Qv), denoted S̃L(2,Qv) and
consisting of the set SL(2,Qv)× {±1} equipped with the operation

(3.2) (g1, ζ1)(g2, ζ2) :=
(
g1g2, βv(g1, g2)ζ1ζ2

)
.

The function pr : S̃L(2,Qv) → SL(2,Qv) given by pr(g, ζ) = g is a homo-
morphism.

3.2. Generators for SL(2,Zp) and its preimage

Lemma 3.3. The group Kp = SL(2,Zp) is generated by

(3.4)
{(

1

−1

)}
∪
{(

1 x

1

)
: x ∈ Zp

}
.

Proof. Write Hp for the subgroup of SL(2,Zp) generated by (3.4). Then
Hp contains

(
1
x 1

)
for each x. Since(

1 x− 1

1

)(
1

1 1

)(
1 −x−1

x

1

)(
1

−x 1

)
=

(
x

x−1

)
for all x ∈ Z×p , it follows that Hp contains all the diagonal elements, and
hence all the upper- and lower-triangular elements, of Kp.

Now consider an arbitrary element
(
a b
c d

)
of Kp. Note that either c or d

is a unit. If d is a unit, then b/d and bc/d are both in Zp, and we have(
a b

c d

)
=

(
1 b/d

1

)(
1/d

c d

)
∈ Hp.

If c is a unit, then a/c and d/c are both in Zp, and we have(
a b

c d

)
=

(
1 a/c

1

)(
−1/c

c

)(
1 d/c

1

)
∈ Hp.
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3.3. The real metaplectic group. In our study of the real metaplectic
group S̃L(2,R), the basic tools are the metaplectic analogue of the classical
Iwasawa decomposition and the corresponding slash operator. Recall that

SL(2,R) = B+(R)× SO2(R),
where

B+(R) =
{(

y1/2 xy−1/2

y−1/2

)
: y ∈ (0,∞), x ∈ R

}
≤ SL(2,R).

Hence our discussion starts with the metaplectic preimage of SO2(R).
For θ ∈ R define

κθ =

(
cos θ −sin θ
sin θ cos θ

)
∈ SO2(R) ≤ SL(2,R), κ̃θ = (κ2θ, ζ(θ)),

where ζ is the unique function R→ {±1} which is periodic modulo 2π and
satisfies

ζ(θ) =

{
1 if −π/2 ≤ θ < π/2,
−1 if π/2 ≤ θ < 3π/2.

Lemma 3.5. The function θ 7→ κ̃θ is a homomorphism.

Proof. Using (3.1), one checks that

β∞(κ2θ1 , κ2θ2) = −1 ⇔
ζ(θ1 + θ2)

ζ(θ1)ζ(θ2)
= −1

on a case-by-case basis.

We denote by K̃ the set of the images κ̃θ.

Remark 3.6. If we define
√
z ′ for z∈C× so that Arg(

√
z ′)∈ [−π/2, π/2)

for all z ∈ C×, then the function S1 → S1 × {±1} defined by

eiθ 7→ κ̃θ 7→ (e2iθ, ζ(θ))

is the restriction of the map

z 7→
(
z2,

√
z2 ′

z

)
.

Observe that
√
z ′ is the principal value of the square root of z except when

z ∈ (−∞, 0).
Next we discuss the metaplectic phenomena over B+(R).
Lemma 3.7. The cocycle β∞ is trivial on B+(R) × SL(2,R) and on

SL(2,R)×B+(R).
Proof. Let

g =

(
a b

c d

)
∈ SL(2,R), g0 =

(
y1/2 xy−1/2

y−1/2

)
∈ B+(R).
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Then

gg0 =

(
∗ ∗

cy1/2 (cx+ d)y−1/2

)
, g0g =

(
∗ ∗

cy−1/2 dy−1/2

)
.

In particular,

x(g0) = y1/2 > 0, x(g0g) = x(g0)x(g), sgnx(gg0) = sgnx(g).

Hence by definition,

β∞(g, g0) =
(
x(g), x(g0)

)
∞
(
−x(g)x(g0), x(gg0)

)
∞ =

(
−x(g), x(gg0)

)
∞ = 1,

β∞(g0, g) =
(
x(g0), x(g)

)
∞
(
−x(g0)x(g), x(g0g)

)
∞ =

(
−x(g), x(g)

)
∞ = 1.

Remark 3.8. By the lemma, we have the injective homomorphism

B+(R) ↪→ S̃L(2,R), b 7→ (b, 1),

which splits the covering map. We henceforth identify B+(R) with its image
in S̃L(2,R).

Now we are ready to introduce the Iwasawa decomposition over S̃L(2,R).

Lemma 3.9. Each element g̃ of S̃L(2,R) has a unique expression as
g̃ = bκ̃ with b ∈ B+(R) and κ̃ ∈ K̃.

Proof. This follows immediately from Lemma 3.7 and the analogous
statement for SL(2,R).

Based on the above lemma, we are able to define the functions b :
S̃L(2,R)→ B+(R) and θ : SL(2,R)→ R/2πZ by

g̃ = b(g̃)κ̃θ(g̃) (g̃ ∈ S̃L(2,R)).
Lemma 3.10. For z = x+ iy ∈ H, define

bz =

(
y1/2 xy−1/2

y−1/2

)
∈ B+(R).

Then
b(g̃) = bpr(g̃)·i.

Proof. Clearly g̃·z := pr(g̃)·z is an action of S̃L(2,R) onH. The stabilizer
of i is the preimage of SO2(R), which is K̃. Hence g̃ · i = b(g̃) · i. And for
each z ∈ H, the matrix bz can be described as the unique element of B+(R)
mapping i to z.

In what follows, we shall continue to use the action of S̃L(2,R) on H by
g̃ · z := pr(g̃) · z.

Corollary 3.11. For any g̃ ∈ S̃L(2,R) and z ∈ H, there exists θ(g̃, z) ∈
R/2πZ such that g̃ · bz = bg̃·zκ̃θ(g̃,z). In particular, we have the metaplectic
Iwasawa decomposition g̃ = bg̃·iκ̃θ(g̃).
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Specifically, θ(g̃, z) = θ(g̃bz), where the latter is defined using the Iwa-
sawa decomposition as above. It is immediate from the definitions that the
function θ : S̃L(2,R)×H → R/2πZ is a cocycle, i.e.,

θ(g̃1g̃2, z) = θ(g̃1, g̃2 · z) + θ(g̃2, z).

Lastly, we discuss the slash operator of S̃L(2,R) on the functions over H.
Define j̃ : S̃L(2,R) × H → S1 by j̃(g̃, z) = eiθ(g̃,z). Clearly, j̃ is a cocycle,
since θ is.

Lemma 3.12. The cocycle j̃(g̃, z) is always a square root of j(pr(g̃), z):

j̃(g̃, z)2 = j(pr(g̃), z).

Proof. Write g̃bz = bg̃·zκ̃θ(g̃,z). Then pr(g̃)bz = bg̃·zκ2θ(g̃,z). But

j(pr(g̃), z) =
j(pr(g̃)bz, i)

j(bz, i)

and j(bz, i) = 1, so we get

j(pr(g̃), z) = j(pr(g̃)bz, i) = ei2θ(g̃,z) = j̃(g̃, z)2.

Clearly j̃(g̃, z) is the principal value of the square root of j(pr(g̃), z) if and
only if θ(g̃, z) ∈ (−π/2, π/2).

For f : H → C, we now define the slash operator(
f
∣∣∼g̃)(z) = j̃(g̃, z)−1f(g · z) = j̃(g̃, z)−1f(pr(g̃) · z) (g̃ ∈ S̃L(2,R)).

Lemma 3.13. The slash operator
∣∣∼ gives a well-defined right action of

S̃L(2,R) on the space of all functions H → C.

Proof. This follows immediately from the fact that j̃ is a cocycle.

Lemma 3.14. Let f : H → C and g ∈ SL(2,R). Then

(3.15)
(
f
∣∣∼(g, 1)) = (f ∣∣Maa

1/2
g
)
.

Proof. Clearly j̃((g, 1), z) is the principal value of the square root of
j(g, z) if and only if θ((g, 1), z) ∈ (−π/2, π/2), which in turn is equivalent to
ζ(θ((g, 1), z)) = 1.

Now in S̃L(2,R) we have

(g, 1)bz = (g, 1)(bz, 1) = (gbz, 1),

so by definition ζ(θ((g, 1), z)) = 1. This confirms that j̃((g, 1), z) is the prin-
cipal value of the square root of j(g, z). Hence(

f
∣∣∼(g, 1)) = j̃((g, 1), z)f(g · z) = j(g, z)−1/2f(g · z) =

(
f
∣∣Maa

1/2
g
)
.
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Example 3.16. Let χ (mod M) be an even Dirichlet character, and
consider the classical twisted theta function θχ as defined in (2.11). Define

θMaa
χ (x+ iy) = y1/4θχ(x+ iy).

Then for γ ∈ Γ0(4M2),

θMaa
χ (γz) = χ(d)χc(d)ε

−1
d j(γ, z)1/2θMaa

χ (z).

Hence (
θMaa
χ

∣∣∼(γ, 1))(z) = (θMaa
χ

∣∣Maa

1/2
γ
)
(z) = χ(d)χc(d)ε

−1
d θMaa

χ (z).

4. Local Weil representations

4.1. Local Weil representation. The Bruhat–Schwartz space of Qv

will be denoted S(Qv). It is the Schwartz space when v =∞, and the space
of all locally constant compactly supported functions when v is a prime.
Following [GPS80] we consider the family of representations rψv of S̃L(2,Qv)
on S(Qv), indexed by the nontrivial characters ψv of Qv, and defined by[

rψv
((

0 1

−1 0

)
, 1

)
.ϕ

]
(x) = γ(ψv)ϕ̂(x),[

rψv
((

1 b

1

)
, 1

)
.ϕ

]
(x) = ψv(bx

2)ϕ(x),

[
rψv
((

a

a−1

)
, 1

)
.ϕ

]
(x) = |a|1/2 γ(ψv)

γ(ψv,a)
ϕ(ax),

[rψv(I2, ζ)ϕ] = ζ · ϕ,

where the Fourier transform is given by

ϕ̂(x) = α(ψv)
�

Qv

ϕ(y)ψv(2xy) dy,

dy is the standard Haar measure over Qv, α(ψv) is the normalization factor
such that ̂̂ϕ(x) = ϕ(−x), ψv,a(x) = ψv(ax), and (1)

γ(ψv,a) =


e
a
|a|

πi
4 if v =∞ and ψ∞(x) = e2πix,

lim
m→−∞

α(ψv,a)
�

pmZp

ψv(ay
2) dy if v is a prime.

Remark 4.1. The constant γ(ψv,a) is an eighth root of unity. This is
obvious when v =∞, and a result of Weil otherwise (cf. [Ge76, p. 36]).

(1) Note that the formula for γ(ψv,a) in [Ge76, p. 36] contains a typo.
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Now we would like to explicitly describe the local Weil representation
with respect to the additive character

(4.2) ev(x) =

{
e2πix if v =∞,
e−2πi{x}p if v = p,

where, for every prime p, we denote by

{·}p : Qp → Q,
∞∑

n=−N
anp

n 7→
−1∑

n=−N
anp

n,

the “p-adic fractional part” of Qp.

Proposition 4.3. Let a ∈ Q×v . Then

α(ev,a) = |2a|1/2v .

Proof. If v is a finite place, say at p, then as the test function we take
ϕ(x) = 1Zp(x). By definition we have

ϕ̂(x) = α(ep,a)
�

Zp

ep(2axy) dy = α(ψp,a)1(2a)−1Zp(x),

so ̂̂ϕ(x) = α(ep,a)
2

�

(2a)−1Zp

ep(2axy) dy =
α(ep,a)

2

|2a|p
1Zp(x).

Hence by definition, α(ep,a) = |2a|1/2p .
Now consider the case v =∞. As the test function we take ϕ(x) = e−πx

2 ;
then

ϕ̂(x) = α(e∞,a)

∞�

−∞
e−πy

2+4πaixy dy = α(e∞,a)e
−4πa2x2 ,

̂̂ϕ(x) = α(e∞,a)
2
∞�

−∞
e−4πa

2y2+4aπixy dy =
α(e∞,a)

2

|2a|
e−πx

2
.

Hence again α(e∞,a) = |2a|1/2.

Next we evaluate γ(ep,a).

Proposition 4.4. Let a ∈ Zpr{0}, say with the decomposition a = αpr

for some r ∈ Z and α ∈ Z×p . Then

γ(ep,a) =



1 + i√
2
ε−1−α

(
2

−α

)r
if p = 2,

εp

(
−α
p

)
if p ≥ 3 and 2 - r,

1 if p ≥ 3 and 2 | r,
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where the factor ε−α and the Kronecker symbols involving α are evaluated
with respect to some α∗ ∈ Z such that |α− α∗|p is sufficiently small.

Proof. For m� 1 we have

γ(ep,a) = α(ep,a)
�

p−mZp

ep(ay
2) dy

= |2a|1/2p

�

p−mZp

e(−{ay2}p) dy = |2a|1/2p pm
�

Zp

e

(
−
{
ay2

p2m

}
p

)
dy

= |2|1/2p pm−r/2
�

Zp

e

(
−
{

αy2

p2m−r

}
p

)
dy

= |2|1/2p pr/2−m
∑

y∈Zp/p2m−rZp

e

(
− αy2

p2m−r

)

= |2|1/2p pr/2−m
∑

y∈Z/p2m−rZ

e

(
− αy2

p2m−r

)
.

To evaluate the inner quadratic Gauss sum, we quote the following famous
result of Gauss:

c−1∑
n=0

e

(
an2

c

)
=


εc

(
a

c

)√
c if 2 - c,

ε−1a (1 + i)

(
c

a

)√
c if a is odd and 4 | c,

0 if c ≡ 2 (mod 4).

We start with the case p = 2. Since we have assumed m � 1, the
quadratic Gauss sum becomes∑

y∈Z/22m−rZ

e

(
− αy2

22m−r

)
= ε−1−α(1 + i)

(
22m−r

−α

)
2m−r/2

= ε−1−α(1 + i)

(
2

−α

)r
2m−r/2.

Hence

γ(e2,a) =
1 + i√

2
ε−1−α

(
2

−α

)r
.

Now we assume that p 6= 2. Then the above result on quadratic Gauss
sums shows that

γ(ep,a) = εp2m−r

(
−α
p2m−r

)
= εp2m−r

(
−α
p

)r
.
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Since p2 ≡ 1 (mod 4), we have

εp2m−r = εpr =

{
1 if p ≡ 1 (mod 4) or 2 | r,
i if p ≡ 3 (mod 4) and 2 - r.

Hence

γ(ep,a) =



(
−α
p

)
if p ≡ 1 (mod 4) and 2 - r,

i

(
−α
p

)
if p ≡ 3 (mod 4) and 2 - r,

1 if 2 | r.

4.2. The real Weil representation. In this section, we consider the
real Weil representation of S̃L(2,R).

Lemma 4.5. Let φ0∞(x) = e−2πx
2. Then

re∞(κ̃θ)φ
0
∞ = e−iθφ0∞ (θ ∈ R).

Proof. We recall that

κ̃θ = (κ2θ, ζ(θ)) =

((
cos 2θ − sin 2θ

sin 2θ cos 2θ

)
, ζ(θ)

)
.

It is straightforward to verify that the lemma is valid if θ is nπ/2 for some
n ∈ Z, so we may assume henceforth that sin 2θ 6= 0.

By direct computations we have

((
1 cos 2θ

sin 2θ

1

)
, 1

)(( −1
sin 2θ

− sin 2θ

)
, 1

)((
1

−1

)
, 1

)((
1 cos 2θ

sin 2θ

1

)
, 1

)

=

((
cos 2θ − sin 2θ

sin 2θ cos 2θ

)
,−ε

)
,

where for simplicity we write ε = sgn sin 2θ. Let

f(x) = re∞
((

1 cos 2θ
sin 2θ

1

))
φ0∞(x)

= e∞

(
cos 2θ

sin 2θ
x2
)
φ0∞(x) = exp

(
−2πx2(1− i cot 2θ)

)
.
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Then

re∞(κ̃θ)φ
0
∞(x) = −εζ(θ)re∞

((
1 cos 2θ

sin 2θ

1

))
re∞

(( −1
sin 2θ 0

0 − sin 2θ

))

· re∞
((

1

−1

))
re∞

((
1 cos 2θ

sin 2θ

1

))
φ0∞(x)

= −εζ(θ)re∞
((

1 cos 2θ
sin 2θ

1

)( −1
sin 2θ 0

0 − sin 2θ

)(
1

−1

))
f(x)

= − εζ(θ)

|sin 2θ|1/2
e∞(x2 cot 2θ)

γ(e∞)2

γ(e∞,−1/sin 2θ)
f̂

(
− x

sin 2θ

)
= − εζ(θ)

|sin 2θ|1/2
e(2+ε)πi/4+2πix2 cot 2θf̂

(
− x

sin 2θ

)
=

εζ(θ)

|sin 2θ|1/2
e−επi/4+2πix2 cot 2θf̂

(
− x

sin 2θ

)
.

Now recall that if ϕz(x) = e−2πzx
2 for some z ∈ C with Re z > 0, then

ϕ̂z(x) =
1√
z
e−2πx

2/z.

In our case, we have

z = 1 + i cot 2θ =
sin 2θ − i cos 2θ

sin 2θ
=

1

|sin 2θ|
e2iθ−επi/2,

and, according to our convention,
1

z
= (sin 2θ)2(1 + i cot 2θ),

√
z =

ζ(θ)√
|sin 2θ|

eiθ−επi/4,

so
f̂(x) = ζ(θ)|sin 2θ|1/2eεπi/4−iθe−2πx2(sin 2θ)2(1+i cot 2θ).

Hence

re∞(κ̃θ)φ
0
∞(x) =

ζ(θ)

|sin 2θ|1/2
e−επi/4+2πix2 cot 2θf̂

(
− x

sin 2θ

)
=e−iθe−2πx

2
= e−iθϕ0

∞(x).

4.3. The nonarchimedean Weil representation. I. We denote the
characteristic function of Zp by φ◦p.

Lemma 4.6. If p > 2 and a ∈ Z×p , then rep,a(SL(2,Zp)) fixes φ◦p.

Proof. By Lemma 3.3, it suffices to check the assertion on the elements
of the set (3.4), which is straightforward.
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Take a nontrivial character µ : Z×p → C×, and define

φµp = µ · 1Z×p : Q×p → C.

Proposition 4.7. Let p > 2, and let

f = min{m ≥ 1 : µ(1 + pmZp) = 1}.
Then

rep
(

0 1

−1 0

)
.φµp (y) =

µ−1(2)τ(µ)

pf
φµ
−1

p (ypf ),

where

τ(µ) =

pf−1∑
i=1

(p,i)=1

µ(i)ep

(
i

pf

)
.

Proof. One may decompose φµp as a linear combination of characteristic
functions:

φµp =

pf−1∑
i=1

(p,i)=1

µ(i)1i+pfZp .

Then

rep
(

0 1

−1 0

)
.φµp (y) =

1

pf

pf−1∑
i=1

(p,i)=1

µ(i)ep(2iy)1p−fZp(y)

=
µ−1(2)

pf

pf−1∑
i=1

(p,i)=1

µ(i)ep(iy)1p−fZp(y),

where we have applied our previous results that

γ(ep) = 1, α(ep) = 1.

Obviously the right-hand side vanishes if y /∈ p−fZp.Moreover, if y /∈ p−fZ×p ,
then i 7→ ep(iy) is constant on 1 + pf−1Z, which causes the sum against µ
to vanish. Thus the support of rep

(
0 1
−1 0

)
.φµp is precisely p−fZ×p . Further,

a change of variables in i shows that

rep
(

0 1

−1 0

)
.φµp (yy

′) = µ(y′)−1rep
(

0 1

−1 0

)
.φµp (y).

It follows that the function

y 7→ rep
(

0 1

−1 0

)
.φµp

(
y

pf

)
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is a scalar multiple of φµ
−1

p , and the scalar is easily seen to be the value at
µ−1(2)τ(µ)/pf .

Corollary 4.8. With notation as before,

rep
((

0 p−f

−pf 0

))
.φµp =

(
−1
p

)f τ(µ)µ−1(2)

pf/2γ(ep,p−f )
φµ
−1

p .

Proof. By definition,

βp

((
p−f 0

0 pf

)
,

(
0 1

−1 0

))
p

= (pf ,−1)p(pf ,−pf )p = (pf , pf )p =

(
−1
p

)f
,

so in S̃L(2,Qp) we have((
p−f 0

0 pf

)
, 1

)((
0 1

−1 0

)
, 1

)
=

((
0 p−f

−pf 0

)
,

(
−1
p

)f)
.

Hence it follows immediately from Proposition 4.7 and the definition of rep
on diagonal elements that

rep
((

0 p−f

−pf 0

))
.φµp =

(
−1
p

)f
rep
((

p−f 0

0 pf

))
rep
((

0 1

−1 0

))
φµp

=

(
−1
p

)f τ(µ)µ−1(2)

pf/2γ(ep,p−f )
φµ
−1

p .

Note that µ factors through (Zp/pfZp)× ∼= (Z/pfZ)×, and that τ(µ) is
the Gauss sum of the (primitive) Dirichlet character mod pf which it induces.
Therefore, the quotient µ−1(2)τ(µ)

γ(e
p,p−f )p

f/2 is a root of unity.

4.4. The nonarchimedean Weil representation. II. Let p be a
prime, M ≥ 1, and

K(M)
p :=

(
1

M

)
SL(2,Zp)

(
1

M−1

)
.

Note that K(M)
p depends only on the p-adic valuation of M. By Lemma 3.3,

the group K(M)
p is generated by{(

1/M

−M

)}
∪
{(

1 x/M

1

)
: x ∈ Zp

}
.

In addition, let K̃(M)
p denote the preimage of K(M)

p in S̃L(2,Qp).
In this section, for each prime p and for suitable values of M, we study

a finite-dimensional subspace of S(Qp) which is invariant under the action
of K̃(M)

p . Specifically, when p = 2 we consider K̃(4)
2 and K̃

(8)
2 , and when
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p > 2 we consider K̃(p)
p . Our discussions and conclusions change dramatically

according to whether p ≥ 3 or p = 2. Hence we will consider these two cases
separately.

In order to work explicitly we introduce some notation from elemen-
tary linear algebra. If V is a complex vector space of finite dimension n,
B = (β1, . . . , βn) is an ordered basis for V, and v is a vector in V , then we
write [v]B for the coordinate vector of v relative to B. Thus

[v]B =


x1
...

xn

 ⇔ n∑
i=1

xiβi = v.

By identifying B with the row vector [β1 . . . βn], we may write this suc-
cinctly as B · [v]B = v. Similarly, if T : V → V is a linear operator, then
[T ]B ∈ Matn×n(C) is the matrix satisfying

[T ]B[v]B = [Tv]B (v ∈ V ).

4.4.1. An injection. Take a prime p and a positive integer m. Using the
canonical isomorphism Zp/pmZp ∼= Z/pmZ, we may regard every function
φ0 over Z/pmZ as a function over Zp which is constant on pmZp-cosets. We
may then extend φ0 to a function over Qp by setting it equal to zero on
Qp r Zp. This defines an injection

(4.9) ιpm : Map(Z/pmZ,C) ↪→ S(Qp)

with image

{φ ∈ S(Qp) : supp(φ) ⊂ Zp, φ(x+ pmZp) = φ(x)}.

4.4.2. The case p ≥ 3. In this section, we let p ≥ 3 and study the action
of the local Weil representations of K̃(p)

p on the p-dimensional complex vector
space

(4.10) Vp = {φ ∈ S(Qp) : supp(φ) ⊂ Zp, φ(x+ pZp) = φ(x)},
which is the image of the map ιp defined as in (4.9). Obviously, we have a
natural decomposition into the subspaces of odd and even functions

Vp = V +
p ⊕ V −p ,

where

V +
p = {φ ∈ Vp : φ(−x) = φ(x)}, V −p = {φ ∈ Vp : φ(−x) = −φ(x)}.

To construct bases for V +
p and V −p , we fix gp ∈ Z whose image in (Z/pZ)×

generates this cyclic group. For every 1 ≤ j ≤ p− 1 define the character

ψp,j : (Z/pZ)× → C×, gp 7→ e

(
j

p− 1

)
.
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We then let φψp,jp = ιp(ψp,j) ∈ S(Qp). In particular,

φ
ψp,p−1
p = 1Z×p = 1Zp − 1pZp .

Then V +
p has the ordered basis

B+
p = (φ

ψp,2
p , φ

ψp,4
p , . . . , φ

ψp,p−1
p ,1pZp)

of cardinality (p+ 1)/2, and V −p has the ordered basis

B−p = (φ
ψp,1
p , φ

ψp,3
p , . . . , φ

ψp,p−2
p )

of cardinality (p− 1)/2.

Theorem 4.11. The action of the local Weil representation r
ep
p of the

group K̃(p)
p preserves the vector spaces V +

p and V −p respectively. More pre-
cisely, write

C+
p =



ψp,2(1) ψp,4(1) · · · ψp,p−1(1) 0

ψp,2(2) ψp,4(2) · · · ψp,p−1(2) 0
...

...
. . .

...
...

ψp,2
(p−1

2

)
ψp,4

(p−1
2

)
· · · ψp,p−1

(p−1
2

)
0

0 0 · · · 0 1


,(4.12)

C−p =


ψp,1(1) ψp,3(1) · · · ψp,p−2(1)

ψp,1(2) ψp,3(2) · · · ψp,p−2(2)
...

...
. . .

...

ψp,1
(p−1

2

)
ψp,3

(p−1
2

)
· · · ψp,p−2

(p−1
2

)

 ,(4.13)

and for every γ ∈ K(p)
p write

%+p (γ) = [r
ep
p (γ)|V +

p
]B+
p
, %−p (γ) = [r

ep
p (γ)|V −p ]B−p .

Let a ∈ Z×p and b ∈ Zp. Then

%+p

(
1 b/p

1

)
= (C+

p )
−1



ep
(
b
p

)
ep
(
4b
p

)
. . .

ep
((p−1

2

)2 b
p

)
1


C+
p ,(4.14)
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%−p

(
1 b/p

1

)
= (C−p )

−1


ep
(
b
p

)
ep
(
4b
p

)
. . .

ep
((p−1

2

)2 b
p

)

C−p ,(4.15)

%+p

(
a

1/a

)
=



ψp,2(a)

ψp,4(a)

. . .

ψp,p−1(a)

1


,(4.16)

%−p

(
a

1/a

)
=


ψp,1(a)

ψp,3(a)

. . .

ψp,p−2(a)

 ,(4.17)

%+p

(
1/p

−p

)
=

1

εp
√
p



τ(ψp,p−3)ψ
−1
p,p−3(2)

. .
.

τ(ψp,2)ψ
−1
p,2(2)

−1 1

p− 1 1


,(4.18)

%−p

(
1/p

−p

)
=

1

εp
√
p


τ(ψp,p−2)ψ

−1
p,p−2(2)

. .
.

τ(ψp,1)ψ
−1
p,1(2)

.(4.19)

Remark 4.20. Let

(4.21) Bp = (φ
ψp,1
p , φ

ψp,3
p , . . . , φ

ψp,p−2
p , φ

ψp,2
p , φ

ψp,4
p , . . . , φ

ψp,p−1
p ,1pZp),

which is a natural ordering on the union B−p ∪ B+
p , and hence an ordered

basis for Vp. Then for every γ ∈ K(p)
p we write

%p(γ) =

(
%−p (γ)

%+p (γ)

)
= [r

ep
p (γ)|Vp ]Bp .

Proof of Theorem 4.11. To prove the identities (4.14) and (4.15), we may
construct alternative bases for V ±p . For every 1 ≤ i ≤ (p− 1)/2, let
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1
±
i
: Qp → C, x 7→


1 if x ∈ Zp and x ≡ i (mod p),
±1 if x ∈ Zp and x ≡ −i (mod p),
0 otherwise.

Also, we write

1
0
= 1pZp : Qp → C, x 7→

{
1 if x ∈ Zp and x ≡ 0 (mod p),
0 otherwise.

Then V +
p and V −p have the bases

A+
p = {1+

1
,1+

2
, . . . ,1+

(p−1)/2
,1

0
} and A−p = {1−

1
,1−

2
, . . . ,1−

(p−1)/2
}

respectively, and C+
p and C−p are the corresponding change-of-basis matrices,

that is,
C+
p [v]B+

p
= [v]A+

p
, C−p [v]B−p = [v]A−p .

Now (4.14) and (4.15) follow immediately from the definitions of repp and
1

0
, and 1

±
i
.

The identities (4.16) and (4.17) follow immediately from the definitions
of repp and the elements of Bp, along with the fact that for a ∈ Z×p we have

|a|p = γ(ep) = γ(ep,a) = 1.

To prove (4.18) and (4.19), note that ψ−1p,j = ψp,p−1−j for 1 ≤ j < p− 1.
Therefore, by Corollary 4.8 we have

r
ep
p

(
1/p

−p

)
φ
ψp,j
p =

(
−1
p

)
τ(ψp,j)ψ

−1
p,j (2)

p1/2γ(ep,1/p)
φ
ψp,p−1−j
p .

Further, direct calculation shows that

γ(ep,1/p) = εp

(
−1
p

)
and that

r
ep
p

(
1/p

−p

)
φ◦p =

(
−1
p

) √
p

γ(ep,1/p)
1

0
=

√
p

εp
1

0
,

r
ep
p

(
1/p

−p

)
1

0
=

(
−1
p

)
1

√
p γ(ep,1/p)

φ◦p =
1

εp
√
p
φ◦p.

Then (4.18) and (4.19) follow. The rest of the conclusion follows from these
explicit results, since the elements studied generate K(p)

p .

Example 4.22. Consider the case p = 3. Then ψ3,1 is the unique non-
trivial character modulo 3 and is odd, so %−3 is a 1× 1 matrix and so can be
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identified as a scalar function with

(4.23)



%−3

(
1 b/3

1

)
= e3

(
b

3

)
(b ∈ Z3),

%−3

(
a

1/a

)
= ψ3,1(a) (a ∈ Z×3 ),

%−3

(
1/3

−3

)
= 1.

Example 4.24. Let p = 5 and

cos5(2πx) =
1

2

(
e5(x) + e5(−x)

)
, sin5(2πx) =

1

2i

(
e5(x)− e5(−x)

)
,

where ep : Qp → C× is the usual additive character as defined in (4.2). Take
g5 = 2 as a generator of (Z/5Z)×. Then ψ5,2 is the unique primitive Dirichlet
character modulo 5. By Theorem 4.11, we have

%+5

(
1 b/5

1

)
=

 cos5(2πb/5) i sin5(2πb/5) 0

i sin5(2πb/5) cos5(2πb/5) 0

0 0 1

 (b ∈ Z5),

%+5

(
a

1/a

)
=

χ5(a)

1

1

 (a ∈ Z×5 ),

%+5

(
1/5

−5

)
=

−1 −1/
√
5 1/

√
5

4/
√
5 1/

√
5

 .

4.4.3. The case p = 2. In this section, we study the action of the lo-
cal Weil representation of SL2(Q2) on three finite-dimensional subspaces of
S(Q2).We show that each is fixed by a conjugate of the preimage of SL2(Zp).
First consider the two-dimensional space
(4.25)
V2 = V +

2 = {φ : Q2 → C : supp(φ) ⊂ Z2, φ(x+ 2y) = φ(x) ∀x, y ∈ Z2},

with ordered basis B2 = B+
2 = (1Z×2

,12Z2). For consistency, we also define
V −2 to be the set of odd elements of V2, i.e., the zero subspace {0}.

Theorem 4.26. The action of the local Weil representation re22 of K(4)
2

preserves the vector space V +
2 . More precisely, for every γ ∈ K(4)

2 write

%+2 (γ) = [re22 (γ)|V +
2
]B+

2
.
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Then

%+2

((
1 b/4

1

))
=

(
e2(b/4)

1

)
(b ∈ Z2),

%+2

((
a

1/a

))
= −iε−aI2 (a ∈ Z×2 ),

%+2

((
1/4

−4

))
=

1− i
2

(
−1 1

1 1

)
.

Proof. The proof is analogous to that of Theorem 4.11, so we omit the
details.

Next, consider the four-dimensional complex vector space

(4.27) V4 = {φ ∈ S(Q2) : supp(φ) ⊂ Z2, φ(x+ 4Z2) = φ(x)} = V +
4 ⊕ V

−
4 ,

where

V +
4 = {φ ∈ V4 : φ(−x) = φ(x)}, V −4 = {φ ∈ V4 : φ(−x) = −φ(x)}

with ordered bases

B+
4 = (φ

ψ2,2

2 ,12+4Z2 ,14+4Z2), B−4 = (φ
ψ2,1

2 )

respectively, where

ψ2,j : (Z/4Z)× → {±1}, 3 7→ (−1)j (j = 1, 2),

and φψ2,j

2 = ι4(ψ2,j) is the image under the injection (4.9) for p = m = 2.

Theorem 4.28. The action of the local Weil representation re22 of K(8)
2

preserves the vector spaces V +
4 and V −4 respectively. More precisely, for every

γ ∈ K(8)
2 write

%+4 (γ) = [re22 (γ)|V +
4
]B+

4
, %−4 (γ) = [re22 (γ)|V −4 ]B−4

.

Then

%+4

((
1 b/8

1

))
=

e2(b/8) e2(b/2)

1

 (b ∈ Z2),

%+4

((
a

1/a

))
= −iε−aI3 (a ∈ Z×2 ),

%+4

((
1/8

−8

))
=

1− i
2
√
2

 0 −1 1

−2 1 1

2 1 1

 ,
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%−4

((
1 b/8

1

))
= e2(b/8) (b ∈ Z2),

%−4

((
a

1/a

))
= −iε−aψ2,1(a) (a ∈ Z×2 ),

%−4

((
1/8

−8

))
= −1 + i√

2
.

(4.29)

Remark 4.30. Let

(4.31) B4 = (φψ2,1 , φψ2,2 ,12+4Z2 ,14Z2),

a natural ordering of B−4 ∪B
+
4 and hence an ordered basis for V4. Then for

every γ ∈ K̃(8)
2 we write

%4(γ) =

(
%−4 (γ)

%+4 (γ)

)
= [re22 (γ)|V4 ]B4 .

Proof of Theorm 4.28. The proof is analogous to that of Theorem 4.11,
so we omit the details.

5. Global metaplectic group and Weil representation

5.1. Global metaplectic group. If g = {gv}v, h = {hv}v ∈ SL(2,A),
then βv(gv, hv) = 1 for all but finitely many v (see [Ge76, Proposition 2.8]).
Set

β(g, h) =
∏
v

βv(gv, hv).

Here v runs over the places on Q. Then S̃L(2,A) is defined as SL(2,A)×{±1}
equipped with the product

(g1, ζ1)(g2, ζ2) :=
(
g1g2, β(g1, g2)ζ1ζ2

)
,

where g1, g2 ∈ SL(2,A) and ζ1, ζ2 ∈ {±1}. For each v, we have the embedding
iv : SL(2,Qv) ↪→ SL(2,A). The definition is that, for gv ∈ SL(2,Qv) and w
a place of Q, the component iv(gv)w of iv(gv) at w is gv if v = w, and the
identity matrix I2 otherwise. Now, for all w, the cocycle βw is trivial on
{I2} × SL(2,Qv) and SL(2,Qv) × {I2}, which implies that the restriction
of the global cocycle β to the image of SL(2,Qv)× SL(2,Qv) in SL(2,A) is
precisely the local cocycle βv. It follows that iv extends to an embedding
ĩv : S̃L(2,Qv) ↪→ S̃L(2,A) defined by

ĩv(g, ζ) = (iv(g), ζ) (g ∈ SL(2,Qv), ζ ∈ {±1}).
We shall also make use of the embedding

ĩdiag : SL(2,Q) ↪→ S̃L(2,A), γ 7→ (idiag(γ), sA(γ))
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as described in [Ge76, p. 23], where

sA =
∏
v

sv,

and idiag : SL(2,Q) ↪→ SL(2,A) is the diagonal embedding. We also let

ĩf(γ) = ĩ∞(γ−1, 1)̃idiag(γ) ∈ S̃L(2,A) (γ ∈ SL(2,Q)).

Observe that ĩf is not a homomorphism. Rather, it satisfies

(5.1) ĩf(γ1)̃if(γ2) = ĩf(γ1γ2) · (I2, β∞(γ−12 , γ−11 )) (γ1, γ2 ∈ SL(2,Q)).

Indeed, ĩf(γ1) commutes with ĩ∞(γ2) since either one or the other of them
has the identity matrix at each place. Hence

ĩf(γ1)̃if(γ2) = ĩf(γ1)̃i∞(γ−12 , 1)̃idiag(γ2) = ĩ∞(γ−12 , 1)̃if(γ1)̃idiag(γ2)

= ĩ∞(γ−12 , 1)̃i∞(γ−11 , 1)̃idiag(γ1)̃idiag(γ2)

= ĩ∞(γ−12 γ−11 , β∞(γ−12 , γ−11 ))̃idiag(γ1γ2)

= ĩ∞(γ−12 γ−11 , 1)̃idiag(γ1γ2)
(
I2, β∞(γ−12 , γ−11 )

)
.

Notice that

ĩf(γ) =
(
if(γ), β∞(γ−1, γ)sA(γ)

)
(γ ∈ SL(2,Q)),

where if : SL(2,Q) → SL(2,A) is the diagonal embedding at the finite
places only. By [Ge76, Proposition 2.8], the restriction of ĩp to SL(2,Zp) is
a homomorphism for p > 2 (cf. [Ge76, p. 19]). It follows that the inclusion

iS :
∏
v∈S

SL(2,Qv)×
∏
p/∈S

SL(2,Zp) ↪→ SL(2,A)

extends to a homomorphism

ĩS :
∏
v∈S

S̃L(2,Qv)×
∏
p/∈S

SL(2,Zp) ↪→ S̃L(2,A)

for any finite set S of places of Q which contains {2,∞}. The kernel of this
homomorphism is

ker ĩS =
{
(I2, εv)v∈S × (I2)p/∈S :

∏
v∈S

εv = 1
}
.

Moreover,
S̃L(2,A) =

⋃
S

im ĩS ,

with the union ranging over finite sets S of places of Q which contain {2,∞}.

5.2. Global Weil representation. The adelic Bruhat–Schwartz space
S(A) consists of all finite linear combinations of functions

∏
v ϕv, where ϕv

is in S(Qv) for all v, and ϕp = φ◦p is the characteristic function of Zp for all
but finitely many primes p.
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For any finite set S of places of Q, the injection⊗
v∈S

ϕv 7→
⊗
v∈S

ϕv ⊗
⊗
p/∈S

φ◦p

sends
⊗

v∈S S(Qv) to a subspace of S(A). The action of S̃L(2,Qv) on S(Qv)
induces an action on S(A) for all v. Moreover, the action of {I2} × {±1} ⊂
S̃L(2,Qv) is the same (scalar multiplication) for all v. By Lemma 4.6,
SL(2,Zp) fixes φ◦p for all but finitely many p. To be precise, if

ψ({xv}) =
∏
v

ev(axv)

for some a ∈ Q×, then SL(2,Zp) fixes φ◦p for all p > 2 such that a ∈ Z×p .
Take S a finite set of places containing ∞ and all primes p such that

SL(2,Zp) does not fix φ◦p, and let S̃L(2,A)S denote the subgroup of S̃L(2,A)
consisting of elements (g, ζ) with g = (gv) ∈ SL(2,A) and ζ ∈ {±1} such
that gp ∈ SL(2,Zp) for p /∈ S. Notice that S̃L(2,A) is the union of the
subgroups S̃L(2,A)S thus defined. Further, the formula[

rψS
(
ĩS((gv, ζv)v∈S × (kp, 1)p/∈S)

)]
.
[⊗
v∈S

ϕv ⊗
⊗
p/∈S

φ◦p

]
=
⊗
v

[rψv(gv, ζv)].ϕv ⊗
⊗
p/∈S

φ◦p

gives a well-defined action of S̃L(2,A)S on S(A). Taken together, these for-
mulae give a well-defined action rψ of S̃L(2,A) on S(A). In particular, let
γ ∈ SL(2,Q) and φ =

∏
v φv ∈ S(A). Choose a finite set S of places includ-

ing ∞ such that φp = φ◦p and γ ∈ SL(2,Zp) for every p 6∈ S. Then we have
the decomposition

(5.2) re(̃if(γ)).φ = sA(γ)β∞(γ−1, γ) · φ∞ ·
(∏
p∈S

rep(γ, 1).φp

)
·
(∏
p/∈S

φ◦p

)
.

6. The adelic theta functions. For any ϕ ∈ S(A) and any additive
character ψ : Q\A→ C, define

Θψad(ϕ; g̃) :=
∑
ξ∈Q

[rψ(g̃).ϕ](ξ).

It follows from [Ge76, Proposition 2.33] that
(6.1)
Θψad(ϕ; ĩdiag(γ)g̃) = Θψad(ϕ; g̃) (ϕ ∈ S(A), g̃ ∈ S̃L(2,A), γ ∈ SL(2,Q)).

The function Θψad is then an intertwining map from the representation rψ
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to the representation of S̃L(2,A) on automorphic forms by right translation,
namely

(6.2) Θψad(ϕ; g̃1g̃2) = Θψad(r
ψ(g̃2).ϕ; g̃1) (g̃1, g̃2 ∈ S̃L(2,A), ϕ ∈ S(A)).

We now construct an adelic theta function corresponding to the classical
theta functions θχ as defined in (2.11).

The first step is to define an element in S(A) corresponding to the Dirich-
let character χ. It will be useful to carry out this construction not only for
even Dirichlet characters, but for all even periodic arithmetic functions. First,
let f : Z/MZ → C be an even function which is factorizable, in the sense
that one may write f as

(6.3) f(m) =
∏
p|M

fp(m),

where fp is a function over Z/pvp(M)Z and vp(M) is the p-adic valuation
of M, i.e., the integer such that pvp(M) ‖M. Then we write φfpp = ιpvp(M)(fp)
as the function over Qp induced by fp.

Remark 6.4. Recall that φµp was previously defined for µ a character
of Z×p . Thus, if χ : (Z/pZ)× → C× is a character, then φχp can be defined
either by viewing χ as a character of Z×p and using the earlier definition, or
by extending χ by zero to a multiplicative function Z/pmZ → C and using
the above definition. However, one readily checks that the two definitions
are consistent with one another.

Recall that
φ◦∞(u) = e−2πu

2
, φ◦p = 1Zp .

Now define

φfv =

{
φ◦v if v =∞ or v -M ,
φ
fp
p if v = p |M ,

φf ({xv}v) =
∏
v

φfv (xv) ({xv}v ∈ A).

This is an element of the adelic Bruhat–Schwartz space S(A). Notice that the
individual factors fp in the factorization (6.3) are not uniquely determined.
(Each is determined only up to a nonzero scalar.) Nevertheless, φf is uniquely
determined by f. Also, the mapping f 7→ φf is linear in fp for each p. Hence
it extends linearly to the vector space of all even functions Z/MZ → C
(which is spanned by factorizable elements).

Remark 6.5. This construction may be understood conceptually as fol-
lows: the set

(6.6)
⋃

M∈Z,M>0

Map(Z/MZ,C)
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is canonically identified with C∞(Ẑ,C), where Ẑ ∼=
∏
p Zp is the profinite

completion of Z. This, in turn, is canonically identified with the set{
φ ∈ S(Af) : supp(φ) ⊂

∏
p

Zp
}
,

where Af denotes the finite adèles. Constructing an injection S(Af) ↪→ S(A)
is as simple as deciding what to put at ∞, and here we have chosen φ◦∞.
However, [Iw97, Section 10.5] suggests that an embedding using φ◦∞ is only
the correct choice for even Dirichlet characters. This is the motivation for
restricting to the even elements of the set (6.6).

Next, for every even arithmetic function f we define its associated holo-
morphic theta function

θf (z) =
∞∑

n=−∞
f(n)e2πin

2z (z ∈ H),

and its Maass form version θMaa
f (z) = y1/4θf (z). Obviously θf has a linear

dependence upon f . Notice that if f is a Dirichlet character, this recovers
the previous definition, and that for general f, the function θf is a linear
combination of theta functions attached to Dirichlet characters. Notice also
that

Aθf (I2, n) =


f(0) if n = 0,
2f(m) if n = m2 for some m 6= 0,
0 if n is not a square.

Lemma 6.7. Let z ∈ H, and let e =
∏
v ev ∈ Hom(Q \ A,C×) with ev

as in (4.2). Let M be a positive integer, and f an even arithmetic function
with period M . Then

Θead(φ
f ; ĩ∞(bz, 1)) = θMaa

f (z).

Proof. It suffices to prove the identity in the special case when f is fac-
torizable, since both sides are linear in f and factorizable functions span the
space of even arithmetic function with period M . For y > 0, we write

φfy(x) = re
(
ĩ∞

(
y1/2

y−1/2

))
φf (x).

Then by definition

Θead(φ
f ; ĩ∞(bz, 1)) =

∑
ξ∈Q

[
re
(
ĩ∞

((
1 x

0 1

)(
y1/2

y−1/2

))
, 1

)
φf
]
(ξ)

=
∑
ξ∈Q

[
re
(
ĩ∞

((
1 x

0 1

)
, 1

)
φfy

)]
(ξ) =

∑
ξ∈Q

e∞(xξ2)φfy(ξ).
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Now

φfy(x) = re∞
((

y1/2

y−1/2

))
φf∞(x∞) ·

∏
p

φfp(xp)

= y1/4φf∞(y1/2x∞) ·
∏
p

φfp(xp),= y1/4e−2πyx
2
∞
∏
p

φfp(xp),

so

Θead(φ
f ; ĩ∞(bz, 1)) = y1/4

∑
ξ∈Q

e∞(xξ2)φfy(ξ)

= y1/4
∑
ξ∈Q

e2πixξ
2
e−2πyξ

2
∏
p

φfp(ξ).

For every ξ ∈ Q, direct computations show that∏
p

φfp(ξ) =

{
0 if ξ 6∈ Z,
f(ξ) if ξ ∈ Z.

Hence

Θead(φ
f ; ĩ∞(bz, 1)) = y1/4

∑
n∈Z

f(n)e2πixn
2−2πyn2

= y1/4
∑
n∈Z

f(n)e2πin
2(x+iy) = θMaa

f (x+ iy).

Theorem 6.8. We have

Θead(φ
f ; ĩ∞(g̃∞)) =

(
θMaa
f

∣∣∼g̃)(i) (g̃∞ ∈ S̃L(2,R)).

Proof. Let g̃∞ ∈ S̃L(2,R). Then in Corollary 3.11 we have shown the
Iwasawa decomposition

g̃∞ =

(
y1/2 xy−1/2

y−1/2

)
κ̃θ = bx+iyκ̃θ

for some x ∈ R, y > 0 and θ ∈ R. In particular, j̃(g̃∞, i) = eiθ. Hence

Θead(φ
f ; ĩ∞(g̃∞)) =

∑
ξ∈Q

[re(̃i∞(g̃∞))φf ](ξ) =
∑
ξ∈Q

[re(̃i∞(bx+iy))r
e∞(κ̃θ)φ

f ](ξ)

= e−iθ
∑
ξ∈Q

[re(̃i∞(bx+iy))φ
f ](ξ) = e−iθΘead(φ

f , ĩ∞(bx+iy))

= e−iθθMaa
f (x+ iy) = j̃(g̃∞, i)

−1θMaa
f (g̃∞ · i)

= (θMaa
f

∣∣∼g̃∞)(i).

Corollary 6.9. If γ ∈ SL(2,Q) then(
θMaa
f

∣∣Maa

1/2
γ
)
(z) = sA(γ)β∞(γ, γ−1)Θead

(
re(̃if(γ

−1)).φf ; ĩ∞(bz, 1)
)
.
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Proof. By (3.15), we have(
θMaa
f

∣∣Maa

1/2
γ
)
(z) =

(
θMaa
f

∣∣∼(γ, 1))(z) = Θead(φ
f ; ĩ∞(γbz, 1)).

But Θead is invariant on the left by ĩdiag(γ
−1), as shown in (6.1), so the

right-hand side is equal to

Θead
(
φf ; ĩf(γ

−1)̃i∞(bz, 1)
)
= Θead

(
φf ; ĩ∞(bz, 1)̃if(γ

−1)
)
.

Applying (6.2) completes the proof.

7. Fourier coefficients of classical theta functions. In this section,
let M be an even positive integer such that M/2 is squarefree, and choose

(7.1) ε : {p : p |M} → {±} such that
∏
p|M

ε(p) = +.

(The motivation for the restriction of ε comes from [Iw97, Section 10.5].)
Pointwise multiplication gives an isomorphism between S(A) and the

restricted tensor product
⊗′

v S(Qv), by which we identify the two spaces.
Recall that we defined vector spaces Vp, V +

p , V
−
p for all primes p in (4.10)

and (4.25), and V4, V +
4 , V −4 in (4.27). Thus, we have defined V ε(p)

pvp(M) for each
prime p dividing M. Now we define

SεM :=
⊗
p|M

V
ε(p)

pvp(M) ⊗
⊗
v-M

φ◦v ⊂ S(A),

and define Γ (2M) as in Section 2.2. Then it follows from Theorems 4.11, 4.26,
4.28 and the decomposition (5.2) that

sA(γ
−1)β∞(γ−1, γ)re(if(γ

−1), 1).φ ∈ SεM (γ ∈ Γ (M), φ ∈ SεM ),

Moreover, if φ is a pure tensor, then so is sA(γ−1)β∞(γ−1, γ)re(if(γ
−1), 1).φ.

Next, let FM be the set of arithmetic functions with period M , which
can be identified with Map(Z/MZ,C). Then it follows from the Chinese Re-
mainder Theorem that pointwise multiplication is an isomorphism between⊗

p|M Fpvp(M) and FM . Let F+
M and F−M denote the subspaces of FM consist-

ing of even and odd elements respectively, and let F εM denote the subspace
spanned by {

∏
p|M fp : fp ∈ F ε(p)pvp(M)}. Then we have a linear isomorphism

F εM → SεM such that each pure tensor f =
∏
p fp ∈ F εM corresponds to

φf :=
⊗
p|M

ιpvp(M)(fp)⊗
⊗
v-M

φ◦v ∈ SεM .

It follows that there exists a map ρεM : Γ (2M) ×F εM → F εM such that

sA(γ
−1)β∞(γ−1, γ)re(if(γ

−1), 1).φf = φρ
ε
M (γ−1,f) (f ∈ F εM , γ ∈ Γ (2M)).
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By Corollary 6.9, this implies

θMaa
f

∣∣Maa

1/2
γ = θρεM (γ−1,f) (f ∈ F εM , γ ∈ Γ (2M)).

Therefore

Aθf (γ, n) = Aθρε
M

(γ−1,f)
(I2, n) = ρεM (γ−1, f)(n).

Now, for φ =
⊗

v φv ∈ S(A), let φf =
⊗

p φp ∈ S(Af) be its finite part. Then
it follows immediately from the definitions that f(n) = φff (if(n)). Thus

Aθf (γ, n) = sA(γ
−1)β∞(γ−1, γ)

∏
p|M

[r
ep
p (γ−1, 1).ιpvp(M)(fp)](n).

Next, recall that for each prime p and both signs ε, in Theorems 4.11
and 4.28 we fixed an ordered basis Bε

pvp(M) for V ε
pvp(M) , and defined %ε

pvp(M)(γ)

=
[
r
ep
p (γ)

∣∣
V ε
pvp(M)

]
Bε
pvp(M)

. Thus

[r
ep
p (γ, 1)ιpvp(M)(fp)](n) = Bε

pvp(M)(n) · %εpvp(M)(γ
−1) · [ιpvp(M)(fp)]Bε

pvp(M)
.

Here we think of Bε
pvp(M) as a row vector of Schwartz functions, or as a

row-vector-valued function, and for h ∈ V ε
pvp(M) we denote by [h]Bε

pvp(M)
the

coordinate (column) vector of h with respect to the basis Bε
pvp(M) .

Finally, let Bε
pvp(M) denote the preimage of Bε

pvp(M) under the linear iso-
morphism ιpvp(M) . Thus it is an ordered basis for F ε

pvp(M) and, in the notation
of Section 4.4, it is given by

(7.2) Bε
pvp(M) =



[ψ2,2 12Z], p = 2, vp(M) = 1, ε = +,

∅, p = 2, vp(M) = 1, ε = −,
[ψ2,2 12+4Z 14Z], p = 2, vp(M) = 2, ε = +,

[ψ2,1], p = 2, vp(M) = 2, ε = −,
[ψp,2 ψp,4 . . . ψp,p−1 1pZ], p 6= 2, ε = +,

[ψp,1 ψp,3 . . . ψp,p−2], p 6= 2, ε = −.
Combining all of this, we obtain

Theorem 7.3. Let M ≥ 1 be an even positive integer such that M/2 is
squarefree, and let ε be as given in (7.1). Take f ∈ F εM and γ ∈ Γ (2M). Then

Aθf (γ, n) = sA(γ
−1)β∞(γ−1, γ)

∏
p|M

B
ε(p)

pvp(M)(n) · %
ε(p)

pvp(M)(γ
−1) · [fp]Bε(p)

pvp(M)

.

Remark 7.4. In the key special case when f is a Dirichlet character
χ (mod M), we write χ =

∏
p χp. For each p, χp is one of the characters

ψp,j for some 1 ≤ j ≤ p − 1, as defined in Section 4.4, ε(p) = χp(−1), and
[χp]Bε(p)

pvp(M)

is the standard basis vector edj/2e.
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Remark 7.5. Suppose thatM1 is odd and squarefree, and ε1 is a function
{p |M1}→{±} with

∏
p|M1

ε1(p)=+. DefineM=2M1 and ε : {p |M}→{±}
by ε(2) = + and by ε(p) = ε1(p) for p 6= 2. Then F ε1M1

is a subspace of F εM .
Combining this remark with the previous one we may apply the theorem
to Dirichlet characters modulo M1 as well. Note, however, that the space
F ε1M1

is not preserved by Γ (2M) or Γ (M), owing to the fact that φ◦2 is not
fixed by K̃(2n)

2 for any n. Hence our analysis of the theta function attached
to a Dirichlet character modulo M1 must necessarily involve theta functions
attached to arithmetic functions which are only periodic modulo M. This is
the reason for the restriction to even M.

Example 7.6. Let p ≥ 5 be a prime, χp (mod p) an even Dirichlet
character, and χ = χ12χp. Then for σ ∈ Γ (24p) we have

Aθχ(σ, n
2) = 2χ12(n)s2(σ

−1)s3(σ
−1)sp(σ

−1)

· %−2 (σ
−1)%−3 (σ

−1)B+
p (n)%

+
p (σ

−1)[χ]B+
p
.

Alternatively, for every n ≥ 0 choose i(n) ≥ 1 such that i(n) = (p+ 1)/2
if p |n and that otherwise i(n) is the unique element of {1, . . . , (p − 1)/2}
satisfying i(n)2 ≡ n2 (mod p). Let ei(n) be the p-dimensional column vector
whose only nonzero entry is the i(n)th and equals to one, and let C+

p be as
defined in (4.12). Then

Aθχ(σ, n
2) = 2χ12(n)s2(σ

−1)s3(σ
−1)sp(σ

−1)

· %−2 (σ
−1)%−3 (σ

−1)tei(n)C
+
p %

+
p (σ

−1)[ψ]B+
p
.

This formula readily explains the observations made by Gunnells, as dis-
cussed following Conjecture 1.1.

7.1. Explicit action on vector-valued forms. In this section we give
another formulation of our results. To do so, we briefly recall the Kronecker
product of matrices and its connection with tensor product operators. If A
and B are matrices of sizes m × n and p × q, then the Kronecker product
A⊗B is the mp× nq matrix C defined by

aijbkl = cp(i−1)+k,q(j−1)+l,

where aij , denotes the i, j entry of the matrix A, and bkl, crs are defined
likewise for B and C. If we think of matrices as representing operators with
respect to ordered bases, then the Kronecker product corresponds to taking
the tensor product of operators, combined with a choice of how to combine
ordered bases of two spaces to form an ordered basis of the tensor product.
Explicitly, if B = (v1, . . . , vn) and C = (w1, . . . , wm) are ordered bases for
two spaces V and W, while T and L are linear endomorphisms of V and W
respectively, then [T ]B ⊗ [L]C is the matrix of T ⊗W ∈ End(V ⊗W ) with
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respect to the ordered basis

(v1 ⊗ w1, . . . , v1 ⊗ wm, v2 ⊗ w1, . . . , v2 ⊗ wm, . . . , vn ⊗ w1, . . . , vn ⊗ wm).
Clearly, A⊗B is not, in general, equal to B⊗A. One may think of A⊗B and
B⊗A as two matrices obtained by writing the same operator in two different
sets of coordinates, obtained from two distinct orderings of the same basis. In
particular, they are conjugate by a permutation matrix. Clearly, this extends
to products of arbitrary length, and it is a routine check that the Kronecker
product is associative.

Now, fix an even positive integer M with M/2 squarefree. Recall that
pointwise multiplication defines an isomorphism

⊗
p|M Fpvp(M) → FM . We

use this isomorphism to identify the two spaces. We also identify F εM with⊗
p|M F

ε(p)
p , for each ε : {p |M} → {±1}. Recall Bε

pvp(M) from (7.2), and
define Bpvp(M) to be the preimage of Bpvp(M) under ιpvp(M) . Then we obtain
bases

BεM =
{⊗
p|M

φp : φp ∈ B
ε(p)

pvp(M) , ∀p |M
}
,

BM =
{⊗
p|M

φp : φp ∈ Bpvp(M) , ∀p |M
}

for F εM and FM respectively, and the convention employed in defining the
Kronecker product (combined with the natural order on the primes p |M)
determines orders on BM and BεM . Note that BM contains all the Dirichlet
characters moduloM (as well as some other elements). Number the elements
BM = {ξM,1, . . . , ξM,M}. Also, we define

−→
θM = (θξM,1 , . . . , θξM,M ).

Further, we write

%M =
⊗
p|M

%pvp(M) (Kronecker product).

Theorem 7.7. Let γ ∈ Γ (2M). Then
−→
θM

Maa
∣∣Maa

1/2
γ = sA(γ

−1)β∞(γ, γ−1)
−→
θM · %M (γ−1).

Remark 7.8. We could also fix ε : {p |M} → {±}, attach a vector-
valued theta function to BεM , and prove an analogous result involving the
Kronecker product %εM =

⊗
p|M %

ε(p)

pvp(M) . The matrix %M is a block matrix
with block %εM for each ε : {p |M} → {±1}. (We permit the degenerate case
of a 0×0 block when v2(M) = 1 and ε(2) = −.) The tuple BM is obtained by
concatenating the tuples BεM , ε : {p |M} → {±1}, in a certain order. This is
then inherited by

−→
θM . We remark that a certain proportion of the functions
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ξM,i will lie in subspaces attached to the functions ε : {p |M} → {±} with∏
p|M ε = −. For such i, we have θξM,i = 0.

Proof of Theorem 7.7. Each element ξ of BM factors as
∏
p ξp with

ξp : Z/pZ → C for each p and ξp ≡ 1 if p - M. Hence ξ corresponds
to φξ = φ◦∞ ·

∏
p φ

ξp
p ∈ SM . The individual factors ξp are unique up to

shifting nonzero scalars among them, and the function φξ is uniquely deter-
mined by ξ. Further, φξpp = 1Zp for all p - M. By Corollary 6.9, for every
ξ ∈ BM we have

θMaa
ξ

∣∣Maa

1/2
γ(z) = sA(γ

−1)β∞(γ, γ−1)Θead

(
φ◦∞

∏
p

(r
ep
p (γ−1, 1)φ

ξp
p ); ĩ∞(γbz)

)
.

If p -M , then θξ,p = 1Zp and γ−1 acts on it trivially. Hence

θMaa
ξ

∣∣Maa

1/2
γ(z) = sA(γ

−1)β∞(γ, γ−1)

·Θead
((∏

v-M

φ◦v

)(∏
p|M

(r
ep
p (γ−1, 1)φ

ξp
p )
)
; ĩ∞(γbz)

)
.

Now, %p(γ−1) is, by definition, the matrix of repp (γ−1, 1) acting on Vp with
respect to the ordered basis Bp. It then follows from the definition of the
Kronecker product that %M (γ−1) is the matrix of re(if(γ−1), 1) acting on
SM with respect to the basis BM , and the result follows from the linearity
of Θead.

Theorem 7.9. Let χ (mod M) be an even Dirichlet character and
σ ∈ Γ (2M). Then Aθχ(σ, n) = 0 unless n ≥ 0 is a perfect square. Further, let
the M -dimensional column vector [χ]M be the coordinate of χ with respect
to the basis BM . Then

Aθχ(σ, n
2) =

{
2sA(σ

−1)β∞(σ, σ−1) BM (n) · %M (σ−1) · [χ]M if n ≥ 1,
sA(σ

−1)β∞(σ, σ−1) BM (0) · %M (σ−1) · [χ]M if n = 0.
Proof. Since

−→
θM

Maa
∣∣Maa

1/2
σ = sA(σ

−1)β∞(σ, σ−1)
−→
θM · %M (σ−1),

we have

θMaa
χ

∣∣Maa

1/2
σ =

(−→
θM

Maa
∣∣Maa

1/2
σ
)
· [χ]M = sA(σ

−1)β∞(σ, σ−1)
−→
θM ·%M (σ−1) · [χ]M .

As we compare the mth Fourier coefficients on both sides, we have

Aθχ(σ,m) = sA(σ
−1)β∞(σ, σ−1)(Aθξ(I2,m))ξ∈BM · %M (σ−1) · [χ]M .

Now by the definition of θξ,

Aθξ(I2, n) =


0 if m is not a perfect square,
2ξ(n) if m = n2 for some n ≥ 1,
ξ(0) if m = 0.
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Hence Aθχ(σ,m) = 0 unless m = n2 for some n ≥ 0, and we have the
required formula for Aθχ(σ, n2).

Example 7.10. Let χ12 =
(
12
·
)
be the primitive Dirichlet character mod-

ulo 12. Define %−4 and %−3 as in (4.29) and (4.23) respectively. By Theorem 7.7,
we have

θχ12

∣∣Hol

1/2
σ = sA(γ)β∞(γ−1, γ)%−4 (σ

−1)%−3 (σ
−1)θχ12 (σ ∈ Γ (24)).

In particular, let a = u/w be a cusp of Γ0(576). Then

Aθχ12 (σa, n) =

{
2s2(σ

−1
a )s3(σ

−1
a )%−4 (σ

−1
a )%−3 (σ

−1
a ) if n = m2 ≥ 1,

0 otherwise,

Aθχ12 (σ
0
a , n) = e

(
− m2wr

24u[24, w]

)
Aθχ(σa, n),

where we choose r, s ∈ Z such that 24us−wr = gcd(24, w), and the scaling
matrices σ0a and σa are as given in (2.1) and (2.4) respectively.
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