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Boundary asymptotics of the relative Bergman kernel metric
for elliptic curves II: subleading terms

Robert Xin Dong (Nagoya)

Abstract. For a Legendre family of elliptic curves near the moduli space boundary,
we study asymptotic behavior at a node of the relative Bergman kernel metric and show
that its curvature form coincides with the Poincaré metric of C \ {0, 1}. Four-term and
three-term asymptotic expansion formulas near 0 are obtained for this metric and its
Kähler potential, respectively.

1. Introduction. The Bergman kernel is a reproducing kernel of the
space of L2 holomorphic top degree forms on a complex manifold and is
determined by the complex structure.

1.1. Background. The variations of the Bergman kernel on pseudo-
convex domains were initially studied by Maitani and Yamaguchi [M-Y];
their results were later generalized to higher dimensional cases by Berndts-
son [B1]. For the cases of Stein manifolds and complex projective algebraic
manifolds of arbitrary dimension, see [B2], [T] and [B-P]. Moreover, recently
these variations turned out to have a close relation to the optimal constant
version of the Ohsawa–Takegoshi L2 extension theorem (see [G-Z], [C], [Bl],
[B-L], [O]). Roughly speaking, the plurisubharmonic variation results for the
Bergman kernel state certain semipositivity properties of direct images of
relative canonical bundles.

Being restricted to the one-dimensional case, namely a family of Riemann
surfaces parametrized by one variable from the complex plane, the Bergman
kernel on each fiber Xλ, denoted by Bλ, can be written as Bλ = kλ(z)dz∧dz̄
in some local coordinate z for some local function kλ. Then, due to the
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plurisubharmonic variation results for the Bergman kernel, we have

(1.1) Lλ,z :=
√
−1 ∂λ∂̄λ log kλ(z) ≥ 0

if the fiber Xλ is smooth. Note that Lλ,z is independent of local coordinates,
since the Jacobian determinants of transition functions are killed by the
∂λ∂̄λ-operator.

Now suppose someXλ0 is a singular complex algebraic curve. Then a nat-
ural question is to characterize Lλ,z as λ approaches λ0. This limiting case
is not fully understood, especially the asymptotic behavior. For bounded
planar domains, an interesting formula for so-called generalized annuli was
obtained in [W] using various elliptic functions. We consider the compact
case. In the affine coordinate (x, y) ∈ C2, the so-called Legendre family of
elliptic curves Xλ := {y2 = x(x− 1)(x− λ)} ∪ {∞}, λ ∈ C \ {0, 1}, gives a
general description of genus one compact Riemann surfaces (complex tori),
since their moduli space is C \ {0, 1} (see [J, p. 75, p. 261]) and Xλ de-
generates to a singular curve with a node as λ tends to the boundary of
the moduli space, i.e., {0, 1,∞}. Using the Weierstrass ℘-function’s coor-
dinate parametrization and the elliptic modular lambda function’s Taylor
expansion, the author [D1] showed that in this case Lλ,z blows up and has
hyperbolic growth as λ → 0. Note that the Poincaré hyperbolic metric ωD∗

on the punctured unit disk D∗ := D \ {0} has exactly the same asymptotic
behavior near 0. In other words, they are asymptotically similar. Explicit
asymptotic formulas of Lλ,z near the moduli space boundary points 1 and
∞ are obtained in [D2].

1.2. Main results. In this paper, for the above Legendre family of
elliptic curves Xλ, we calculate the following explicit four-term asymptotic
expansion formula near 0, showing that in fact Lλ,z and ωD∗ are not the
same. Another motivation of doing so is that we believe that each term and
in particular its coefficient should contain certain geometrical interpretations
which indicate the geometry of the base varieties and their singularities.

Theorem 1.1. For λ ∈ C \ {0, 1}, let Bλ denote the Bergman kernel of
Xλ and write Bλ = kλ(z)dz ∧ dz̄ in a local coordinate z. Then, as λ→ 0,

Lλ,z =

√
−1 dλ ∧ dλ̄

|λ|2(− log |λ|2)2

×
(

1 +
2 log 16

log |λ|
+ 3

(
log 16

log |λ|

)2

+ 4

(
log 16

log |λ|

)3

+ O

(
1

(log |λ|)4

))
.

As λ → 0, Xλ degenerates to a singular curve X0 := {y2 = x2(x − 1)}
∪{∞}. As we can see, even though the second and fourth terms tend to −∞,
Lλ,z which is mainly affected by the leading term still tends to∞. In general,
the strict positivity of Lλ,z is related to hyperellipticity and Weierstrass
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points (see [B3]). But in this special case, we find that Lλ,z is strictly positive
everywhere inside the moduli space and thus it defines a new Kähler metric,
namely Lλ,z > 0 for all λ ∈ C \ {0, 1}.

Question. What is the Gaussian curvature of Lλ,z?

After careful computations, the curvature is found to be identically −4.
Moreover, the result is as follows.

Theorem 1.2. Under the assumptions of Theorem 1.1, Lλ,z is the Poin-
caré metric of C \ {0, 1}.

On the one hand, this result seems to suggest a connection between the
Bergman kernel’s variation and the moduli space’s hyperbolic metric. On
the other hand, a four-term expansion formula for the Poincaré metric of
C \ {0, 1} is obtained as a corollary.

Corollary 1.3. Let ω0,1 denote the Poincaré metric of C\{0, 1}. Then,
as λ→ 0,

ω0,1 =

√
−1 dλ⊗ dλ̄

|λ|2(− log |λ|2)2

×
(

1 +
2 log 16

log |λ|
+ 3

(
log 16

log |λ|

)2

+ 4

(
log 16

log |λ|

)3

+ O

(
1

(log |λ|)4

))
.

The leading term of the above expansion formula implies that near the
origin, ω0,1 is asymptotically similar to ωD∗ , and the negative second term
seems to indicate that the latter metric is bigger. Actually, we always have
ω0,1 ≤ ωD∗ in D∗ (see [S-V]). Finally, define p(λ) := − log(Im τ(λ)), where
τ(·) is the inverse function of the elliptic modular lambda function and λ ∈
C \ {0, 1}. We have the following asymptotic expansion formula near 0.

Theorem 1.4. Under the assumptions of Corollary 1.3, p(λ) is a Kähler
potential of ω0,1. And as λ→ 0,

p(λ) = − log(− log |λ|) + log π +
log 16

log |λ|
+ O

(
1

(log |λ|)2

)
.

We remark that the first three terms on the right hand side above (de-
noted by p̃(λ)) is a Kähler potential that exactly gives rise to the first two
terms in the asymptotic expansion in Corollary 1.3.

In Section 2, we recall basic ingredients related to our problem and pro-
vide a new proof of a known fact that on any compact Riemann surface of
genus g ≥ 1, there exists a global holomorphic 1-form which does not vanish
at a particular point. The proofs of the main results are given in Sections
3−6. We use the symbol “∼” to denote that the ratio of its both sides tends
to 1 as λ→ 0.
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2. Preliminaries

2.1. Modular lambda function. We will explain the relation between
an elliptic curve and a complex torus by recalling the definition and basic
properties of the elliptic modular lambda function. From [A, p. 264], one
knows that for any z ∈ Tτ := C/(Z + τZ), the Weierstrass ℘-function with
respect to the lattice (1, τ) (τ ∈ C, Im τ > 0) is defined to be

℘(z) =
1

z2
+
∑
w 6=0

(
1

(z − w)2
− 1

w2

)
,

where the sum ranges over all w = n1 +n2τ except 0, and n1, n2 ∈ Z. Denote
e1 := ℘(1/2), e2 := ℘(τ/2) and e3 := ℘((1 + τ)/2). Then the elliptic modular
lambda function

λ(τ) :=
e3 − e2

e1 − e2
,

which is conformal, can be used to identify Xλ with a complex torus Tτ .
Since the area of the parallelogram obtained from the lattice (1, τ) is Im τ ,
the normalized holomorphic 1-form is just (1/

√
Im τ)dz. By definition, the

Bergman kernel Bτ on Tτ is (1/ Im τ)dz ∧ dz̄, which means that kλ(z) =
1/Im τ . Taking derivatives, one gets

lλ,z :=
∂2(log kλ(z))

∂λ∂λ̄
=
∂2(− log Im τ)

∂λ∂λ̄

= −
∂2
(

log
(
τ−τ̄

2
√
−1

))
∂λ∂λ̄

= −
∂
(

2
√
−1

τ−τ̄
∂
∂λ̄

(
τ−τ̄

2
√
−1

))
∂λ

.

Since τ := λ−1 is holomorphic, implying that ∂τ
∂λ̄

= 0, we have

lλ,z = −
∂
(

2
√
−1

τ−τ̄
∂
∂λ̄

( −τ̄
2
√
−1

))
∂λ

=
∂
(
τ ′

τ−τ̄
)

∂λ
=

∂τ ′

∂λ · (τ − τ̄)− τ̄ ′ ∂(τ−τ̄)
∂λ

(τ − τ̄)2

=
0 · (τ − τ̄)− τ ′ ∂(τ)

∂λ

(τ − τ̄)2
=
−|τ ′|2

(τ − τ̄)2
=

|τ ′|2

4(Im τ)2
.

Next, by the inverse function theorem, τ ′(b) = (λ−1)
′
(b) = 1/λ′(a) for

any b = λ(a) (here λ′ being the derivative of λ with respect to τ). Therefore,

(2.1) lλ,z =
|τ ′|2

4(Im τ)2
=

1

4(Im τ · |λ′(τ)|)2
> 0.

The last inequality is due to the fact that the derivative of the elliptic modu-
lar lambda function is nowhere vanishing in the domain of definition. Thus,
Lλ,z =

√
−1 lλ,z dλ ∧ dλ̄ is a true metric on C \ {0, 1}.

2.2. Base point freeness. Here we recall a basic known fact that on
a compact connected Riemann surface of genus g ≥ 1 the Bergman kernel
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never vanishes, which is true because the canonical bundle is base point
free (see the following proposition). We sketch a proof of this fact without
using the Riemann–Roch theorem, and an even simpler proof by using the
Riemann–Roch theorem can be found in [Bo]. The non-compact version of
this classical result is sometimes named “Virtanen theorem”. Therefore, it
makes sense to take the logarithm of the Bergman kernel (since it is positive)
and further consider its variations.

Proposition 2.1. Let X be a connected compact Riemann surface of
genus g ≥ 1. Then, for each p ∈ X, there exists a holomorphic 1-form s on
X such that s(p) 6= 0.

Proof. Assume that g > 1. For any p ∈ X, consider the short exact
sequence

0→ K ⊗mp
ι−→ K ⊗O r−→ K ⊗ Cp → 0,

where K is the canonical bundle, mp the sheaf of germs of holomorphic func-
tions vanishing at p, O the sheaf of germs of holomorphic functions, Cp the
skyscraper sheaf, ι the inclusion map and r the restriction map. Notice that
by Serre duality, H0(X,K⊗Cp) ∼= C, H1(X,K⊗O) ∼= C and H1(X,K⊗Cp)
= 0. Denote by O(p) the sheaf associated to the divisor p (taking value 1
at p and 0 otherwise). Then H1(X,K ⊗mp) ∼= H0(X,O(p))? ∼= C, since a
non-constant holomorphic map from X to P1 must have degree > 1 (1). Let
ς be the operator between H0(X,K ⊗Cp) and H1(X,K ⊗mp). We get the
induced long exact sequence

0→ H0(X,K ⊗mp)
ι1−→ H0(X,K)

r1−→ C ς−→ C ι2−→ C r2−→ 0.

The exactness implies the surjectivity of r1 and completes the proof.

3. Proof of the second term in Theorem 1.1. By [D1, Theorem
1.3], we know that

lλ,z ∼
1

4|λ|2(log |λ|)2

as λ→ 0. In order to get the second term of lλ,z, we define

(3.1) Jλ := lλ,z −
1

4|λ|2(log |λ|)2
,

and analyze its asymptotic behavior as λ→ 0. Using q := exp(π
√
−1 τ), we

rewrite the elliptic modular lambda function as
(3.2) λ(τ) = 16q − 128q2 + 704q3 − 3072q4 + · · · = 16q − 128q2 + O(q3).

Thus, |λ| = |16q − 128q2 + O(q3)| = |q| · |16− 128q + O(q2)|, yielding
log |λ| = log |q|+ log |16− 128q + O(q2)|.

(1) The author thanks Prof. R. Kobayashi for clarifying this fact.
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(3.2) also implies that λ′(τ) = ∂λ
∂q ·

∂q
∂τ = (16 − 256q + O(q2)) · q ·

√
−1π.

Therefore,

|λ′(τ)| = |16− 256q + O(q2)| · |q| · π and |q| = exp(−π · Im τ),

i.e.,

(3.3) Im τ =
log |q|
−π

.

Substituting these into (2.1), we get

lλ,z =
1

4(log |q|)2 · |q|2 · |16− 256q + O(q2)|2
.

Therefore,

4|q|2 · Jλ =
1

(log |q|)2|16− 256q + O(q2)|2

− 1

|16− 128q + O(q2)|2(log |q|+ log |16− 128q + O(q2)|)2

=
|16 + O(q)|2

(
2(log |q|) · log |16 + O(q)|+ (log |16 + O(q)|)2

)
(log |q|)2 · |16 + O(q)|2 · |16 + O(q)|2 ·

(
log |q|+ log |16 + O(q)|

)2
∼ 2 · |16 + O(q)|2 · log 16

(log |q|) · |16 + O(q)|2 · |16 + O(q)|2 · (log |q|)2
∼ 2 · log 16

162 · (log |q|)3
.

As q → 0 (implying λ→ 0), it follows that

Jλ ∼
log 16

2|λ|2(log |λ|)3
.

Finally, applying (3.1) one obtains the second term in Theorem 1.1.
An alternative proof of the first two terms in Theorem 1.1, without using

special properties of elliptic functions, is given in [D3]. Let us generalize
Theorem 1.3(i) of [D1] by proving the following lemma (2), which will be
used in the next section.

Lemma 3.1. Under the assumptions of Theorem 1.1, as λ→ 0,

(3.4) kλ(z) =
π

− log |λ|+ log 16− Reλ/2 + O(λ2)
.

Proof. The preliminary section says that
1

kλ(z)
= Im τ =

− log |q|
π

.

As q → 0, we have
1

kλ(z)
∼ − log |λ|

π
.

(2) If one drops the lower terms, then one gets log kλ(z) ∼ − log(− log |λ|+ log 16).
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Considering their difference, from (3.2) one gets

1

kλ(z)
− − log |λ|

π
=

1

π
log

∣∣∣∣λq
∣∣∣∣ =

1

π
log |16− 128q + O(q2)|.

Furthermore, |16−128q+O(q2)|2 = 162−32 ·128 Re q+O(q2), which implies
that

1

kλ(z)
− − log |λ|

π
=

1

2π
log
(
162 − 32 · 128 Re q + O(q2)

)
.

The Taylor expansion of log t at t = 162 says that

log
(
162 − 32 · 128 Re q + O(q2)

)
= log(162)− 16 Re q + O(q2),

which yields

1

kλ(z)
=
− log |λ|+ log 16− 8 Re q + O(q2)

π

as q → 0. Since Re q ∼ Reλ/16 and O(q2) = O(λ2), the proof is complete.

4. Proof of the third and fourth terms in Theorem 1.1. From
Lemma 3.1, as λ→ 0, we know that

log kλ(z) ∼ − log

(
− log |λ|+ log 16− Reλ/2

π

)
=: RHS.

After some elementary calculations one gets

∂2(RHS)

∂λ∂λ̄
=

1 + Reλ+ 1
4 |λ|

2

4|λ|2(− log |λ|+ log 16− Reλ/2)2
.

Step 1: estimating the third term. We have

∂2(RHS)

∂λ∂λ̄
− 1

4|λ|2(log |λ|)2
− log 16

2|λ|2(log |λ|)3

=

(
Reλ+ 1

4 |λ|
2
)
· (log |λ|)2 + 2 log |λ|(log 16−Reλ/2)− (log 16−Reλ/2)2

4|λ|2(log |λ|)2(− log |λ|+ log 16− Reλ/2)2

− log 16

2|λ|2(log |λ|)3

∼ −(log 16− Reλ/2)2 log |λ|+ 4(log 16)2 log |λ| − 2(log 16)3

4|λ|2(log |λ|)3(− log |λ|+ log 16− Reλ/2)2

∼ 3(log 16)2

4|λ|2(log |λ|)4
,

which means that
∂2(log kλ(z))

∂λ∂λ̄
=

1

4|λ|2(log |λ|)2

(
1+

2 log 16

log |λ|
+3

(
log 16

log |λ|

)2

+O

(
1

(log |λ|)3

))
.
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Step 2: estimating the fourth term. Similarly,

∂2(RHS)

∂λ∂λ̄
− 1

4|λ|2(log |λ|)2
− log 16

2|λ|2(log |λ|)3
− 3(log 16)2

4|λ|2(log |λ|)4

∼ 3 log |λ|(log 16)2 − 2(log 16)3

4|λ|2(log |λ|)3(− log |λ|+ log 16− Reλ/2)2
− 3(log 16)2

4|λ|2(log |λ|)4

∼
−2(log |λ|)(log 16)3 − 3(log 16)2

(
−2(log |λ|)(log 16) + (log 16)2

)
4|λ|2(log |λ|)4(− log |λ|+ log 16− Reλ/2)2

∼ 4 log |λ|(log 16)3 − 3(log 16)4

4|λ|2(log |λ|)4(− log |λ|+ log 16− Reλ/2)2
∼ (log 16)3

|λ|2(log |λ|)5
,

as λ→ 0, which finishes the proof of Theorem 1.1.

Remark. As λ→ 0, we do not know why our results on the asymptotic
behavior of Bergman kernels depend only on |λ|. Moreover, we will see in
the next section that the positivity of the above third term contributes to
the completeness argument in the proof of Theorem 1.2.

5. Proof of Theorem 1.2. We first compute the Gaussian curvature
of the Kähler metric Lλ,z on C \ {0, 1}. From the preliminary section, it is
known that

Lλ,z =

√
−1 · |τ ′|2

4(Im τ)2
dλ ∧ dλ̄ =:

√
−1 (Jλ)2 dλ ∧ dλ̄.

Therefore,

−4∂2 log(Jλ)

∂λ∂λ̄
=
−4∂2 log

( |τ ′|
2·Im τ

)
∂λ∂λ̄

=
−4∂2 log(|τ ′|)

∂λ∂λ̄
+

4∂2 log(2 · Im τ)

∂λ∂λ̄
.

Since τ(·), the inverse function of the elliptic modular function, is also con-
formal, log(|τ ′|) is harmonic with respect to λ. So,

−4∂2 log(Jλ)

∂λ∂λ̄
=

4∂2 log(2 · Im τ)

∂λ∂λ̄
= − |τ ′|2

(Im τ)2
.

Furthermore,

Curv(Lλ,z) =

−4∂2 log(Jλ)

∂λ∂λ̄

(Jλ)2
=
− |τ ′|2

(Im τ)2( |τ ′|
2·Im τ

)2 ≡ −4.

To prove that Lλ,z is complete at 0, we use our asymptotic result of
Theorem 1.1. Since the subleading terms are all incomplete near 0, the sum
of the first and second terms becomes a complete metric (with a non-constant
curvature) on D∗, denoted by ω′D∗ . Then, due to the positivity of the third
term we get Lλ,z > ω′D∗ , which guarantees the completeness of Lλ,z at 0.
For the completeness at other boundary points, 1 and ∞, we make use of
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the behavior of the elliptic modular lambda function under the composition
with inverse or translation mappings (cf. [K-R, D2]).

Corollary 1.3 follows from Theorems 1.2 and 1.1.

6. Proof of Theorem 1.4. The computations in the preliminary section
show that

0 <
1

4(Im τ · |λ′(τ)|)2
=
∂2(log(kλ(z)))

∂λ∂λ̄
=
∂2(p(λ))

∂λ∂λ̄
.

From Theorem 1.2, it follows that p(λ) is a Kähler potential of ω0,1. First,
let us consider the leading term of the asymptotic expansion. By (3.2) and
(3.3), as λ→ 0, it can be seen that

p(λ) ∼ − log(− log |λ|) =: p1(λ).

Actually, p1(λ) is the potential’s leading term near λ = 0 and satisfies

∂2(p1(λ))

∂λ∂λ̄
=

1

4|λ|2(log |λ|)2
.

By (3.4), in order to get the second term, we use p(λ) to subtract p1(λ)
and analyze their difference:

p(λ)− p1(λ) ∼ − log(− log |λ|+ log 16) + log π + log(− log |λ|)

= log π − log

(
1− log 16

log |λ|

)
∼ log π +

log 16

log |λ|
∼ log π =: p2(λ).

The second to last similarity relation holds due to the Taylor expansion
of log(1+ t) at 0. Similarly, we see that the third term is just log 16

log |λ| =: p3(λ).

Remark. We now verify our claim in Section 1 that p̃(λ) is a Kähler
potential that exactly gives rise to the first two terms in the asymptotic ex-
pansion in Corollary 1.3. To check this, we make the following computations:

∂

(
1

log |λ|

)
=

−dλ
2λ(log |λ|)2

, ∂̄

(
1

log |λ|

)
=

−dλ̄
2λ̄(log |λ|)2

,

∂∂̄

(
1

log |λ|

)
= ∂

( −dλ̄
2λ̄(log |λ|)2

)
=

2∂
(
λ̄(log |λ|)2

)
∧ dλ̄

4λ̄2(log |λ|)4

=
2λ̄∂

(
(log |λ|)2

)
∧ dλ̄

4λ̄2(log |λ|)4
=

2λ̄2(log |λ|)dλ2λ ∧ dλ̄
4λ̄2(log |λ|)4

=
dλ ∧ dλ̄

2|λ|2(log |λ|)3
.

Thus, since p2(λ) is a constant,

∂2(p2(λ) + p3(λ))

∂λ∂λ̄
=

log 16

2|λ|3(log |λ|)2
.
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