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Abstract

Given a Banach-space-valued vector measure m, its associated space L1(m) is weakly complete
iff it is finite-dimensional, weakly quasi-complete iff L1(m) is reflexive, and weakly sequentially
complete iff L1(m) contains no copy of c0. If m takes its values in a locally convex Hausdorff
space Y , then the situation is more complicated. The first question is the completeness of L1(m)
for its given L1-topology.

It is shown that L1(m) is complete iff it is quasi-complete and, if Y is sequentially complete,
that L1(m) is complete iff Σ(m) := {f ∈ L1(m) : f is {0, 1}-valued} is relatively weakly compact
in L1(m). Weak completeness properties of L1(m) have no reasonable characterization, and little
is known about the dual space L1(m)∗. However, if m := P is a spectral measure acting in a
Banach space (with m strong operator σ-additive), then more can be said. Two remarkable
features arise: f ∈ L1(P ) iff f ∈ L∞(P ) and a concrete description of L1(P )∗ is available. Some
sample consequences are: L1(P ) is complete iff it is quasi-complete, iff it is weakly quasi-complete,
iff Σ(P ) is relatively weakly compact in L1(P ). If Σ(P ) is not relatively weakly compact, then
L1(P ) may fail to be weakly sequentially complete, but never if P is atomic.
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1. Introduction and main results

For a positive measure µ defined on a measurable space (Ω,Σ), two of its fundamental
properties are that L1(µ) is complete for its usual norm ‖f‖1 :=

∫
Ω
|f | dµ (i.e., L1(µ) is

a Banach space) and that the Banach space L1(µ) is always weakly sequentially complete
(i.e., every sequence in L1(µ) which is Cauchy for the weak topology σ(L1(µ), L1(µ)∗)

converges weakly to some element of L1(µ)) [9, Ch. IV, Theorem 8.6]. One may ask
whether L1(µ) has stronger completeness properties for σ(L1(µ), L1(µ)∗), namely, is it
weakly quasi-complete (i.e., bounded, weakly closed subsets are weakly complete), or
perhaps even weakly complete? Except in trivial cases (i.e., when there is no infinite
sequence of pairwise disjoint non-µ-null sets in Σ) the answer is negative in both cases.
Indeed, we know that

L1(µ) is weakly complete ⇔ L1(µ) is weakly quasi-complete

⇔ dim(L1(µ)) <∞. (1.1)

This is a routine consequence of the following general facts:

(i) L1(µ) is reflexive ⇔ dim(L1(µ)) <∞ [30, Example 1.11.24].
(ii) A Banach space X is weakly complete ⇔ dim(X) <∞ [30, Proposition 2.5.15].
(iii) The closed unit ball B[X] of a Banach space X, being convex, is necessarily weakly

closed [30, Theorem 2.5.16].
(iv) A bounded subset of a Banach space is weakly compact ⇔ it is weakly complete

[13, 0.6, p. 3].
(v) A Banach space X is reflexive ⇔ B[X] is weakly compact [30, Theorem 2.8.2].

Finally, whenever µ is a localizable measure (which includes all σ-finite measures), then
the dual Banach space L1(µ)∗ of L1(µ) is precisely L∞(µ), and so the weak topology
of L1(µ) is well understood; it is generated by the family of seminorms f 7→ |

∫
Ω
fg dµ|, for

f ∈ L1(µ), as g varies through L∞(µ).
Suppose now that m : Σ → X is a Banach-space-valued vector measure (i.e., σ-

additive). As for scalar measures, there is an associated Banach space L1(m) consisting of
all the C-valued, m-integrable functions defined on Ω, with norm again denoted by ‖ · ‖1;
see Remark 2.17 for the definitions. Moreover, L1(m) is always a (complex) Banach lattice
with a weak order unit and its norm ‖ · ‖1 is order continuous; actually all Banach lattices
of this kind are isomorphic to L1(m) for a suitable Banach-space-valued vector measurem
[2, Theorem 8], [37, Proposition 3.9]. Since the class of Banach lattices with order con-
tinuous norm and a weak order unit contains many reflexive spaces, their corresponding
isomorphic spaces L1(m) will necessarily be weakly quasi-complete. Actually, L1(m) is

[5]



6 S. Okada and W. J. Ricker

reflexive if and only if it is weakly quasi-complete. This is true of any Banach space X.
Indeed, if X is reflexive, then we can apply [30, Theorem 2.6.2 and Corollary 2.6.19] to the
dual Banach space X∗ and use X∗∗ = X to conclude that X is weakly quasi-complete.
Conversely, if X is weakly quasi-complete, then by (iii) above, B[X] is weakly complete.
So, (iv) shows that B[X] is weakly compact, and hence X is reflexive (via (v)). Of course,
because of (ii) above, L1(m) will be weakly complete only in trivial cases.

Since L1(m) is a Banach lattice, its weak sequential completeness is also characterized
by the fact that it does not contain an isomorphic copy of the Banach sequence space c0;
see [31, Theorem 2.5.6] for real spaces and [37, Proposition 3.38 together with the discus-
sion after Remark 3.39] for complex spaces. Moreover, c0 is a Banach lattice with order
continuous norm and a weak order unit, and so it can be realized as L1(m) for some
vector measure m. Accordingly, L1(m) spaces are not always weakly sequentially com-
plete, in contrast to the spaces L1(µ) when µ is a scalar-valued measure. Moreover, unlike
for L1(µ), there is no adequate description available for the dual space L1(m)∗ when m
is a general Banach-space-valued vector measure (although certain characterizations of
individual members of L1(m)∗ are known [33]). Accordingly, the weak topology of L1(m)

is not so well understood in general. To compare the situation with (1.1) we have, for the
spaces L1(m):

L1(m) is weakly complete ⇔ dim(L1(m)) <∞, (1.2)

L1(m) is weakly quasi-complete ⇔ L1(m) is reflexive, (1.3)

and

L1(m) is weakly sequentially complete

⇔ L1(m) contains no isomorphic copy of c0. (1.4)

The situation for a vector measure m : Σ → Y , with Y a locally convex Hausdorff
space (briefly, lcHs), is significantly different. Again there is an associated lcHs L1(m),
equipped with the topology τ(m) of uniform convergence of indefinite integrals, which
coincides with the norm topology ‖ · ‖1 if Y is a Banach space; see Section 2 for the
definitions. However, for spaces Y more general than Banach spaces, the lcHs L1(m) is no
longer necessarily τ(m)-complete (or even sequentially τ(m)-complete). This new feature
has an impact on the weak completeness properties of L1(m), especially when we recall
that completeness and weak completeness in a general lcHs are closely connected [13, p. 4],
[23, §18, 4.(4)]. So, in this more general setting of lcHs’ we first need to address the question
of the completeness of L1(m) for its given topology τ(m); this is the purpose of Section 2.
A crucial role is played by the τ(m)-closed subset Σ(m) := {χE : E ∈ Σ} of L1(m).
A vector measure m is called closed if Σ(m) is a τ(m)-complete subset of L1(m).

If Y is metrizable, then every Y -valued vector measure is closed, but not in a general
lcHsY ; see Example 2.13 below, for instance. The closedness of a vectormeasurem : Σ→ Y

is intimately related to the completeness of the lcHs (L1(m), τ(m)). As already noted,
L1(m) need not be τ(m)-complete or even sequentially τ(m)-complete in general, even if
the codomain space Y ofm is itself complete; see, for example, [34, Examples 3.3 and 3.6].
This is a subtle point of the theory. On the other hand, even if Y is not sequentially
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complete, it can still happen that L1(m) is τ(m)-complete; see Remark 2.6(iii) below. The
following facts are known (references are given in Section 2). First,

L1(m) is complete ⇔ L1(m) is quasi-complete. (1.5)

If, in addition, the lcHs Y is sequentially complete, then

L1(m) is complete ⇔ m is a closed measure. (1.6)

In Section 2 it is shown (still withY sequentially complete) that (1.6) has a third equivalence,
namely that

Σ(m) is a relatively weakly compact subset of L1(m); (1.7)

see Remark 2.6(vi). This is a consequence of Proposition 2.4, one of the main results
of Section 2, which states for every lcHs-valued vector measure m (with Y sequentially
complete or not) thatm is a closed measure whenever Σ(m) is a relatively weakly compact
subset of L1(m). The converse statement is false in general (cf. Example 2.5). However,
another main result of Section 2 (i.e., Proposition 2.16) provides a class of vector measures
m for which the converse does hold, namely whenever m is atomic.

The proofs of several of the results in Section 2 are somewhat technical. In order to
maintain an ease of reading and to keep a clear overview of the section, these proofs have
been placed in the Appendix at the end of the paper.

The weak completeness properties of L1(m) for a general lcHs-valued vector measure
m cannot be characterized in any reasonable manner, not to mention the lack of concrete
information concerning its dual space L1(m)∗. Nevertheless, there is an important class
of vector measures (within the family of operator-valued measures) for which interesting
and non-trivial results can be achieved. This is the class of spectral measures acting in
Banach spaces, which are analogues of the resolution of the identity for selfadjoint or more
generally normal operators in a Hilbert space. The monographs [7], [10], [48] provide a
detailed study of spectral measures and their corresponding spectral operators.

So, let X be a Banach space and Ls(X) be the lcHs of all continuous linear operators
on X equipped with the strong operator topology. The first point is that Ls(X) is always
quasi-complete and that its weak topology σ(Ls(X),Ls(X)∗) is precisely the weak opera-
tor topology in L(X). Second, given any spectral measure P : Σ→ Ls(X) (see Section 3
for the definition) the space L1(P ) of all P -integrable functions is precisely L∞(P ),
as a vector space, that is, a Σ-measurable function is P -integrable if and only if it is
P -essentially bounded! Of course, the lcH-topology τ(P ) on L∞(P ) = L1(P ) is surely
not the sup-norm topology (except in trivial cases). Third, the integration operator
IP : (L1(P ), τ(P )) → Ls(X), given by f 7→

∫
Ω
f dP , is a bicontinuous isomorphism

onto its range IP (L1(P )) ⊆ Ls(X); this is surely not the case for the integration operator
Im : (L1(m), τ(m)) → Y of a general lcHs-valued vector measure m. Fourth, the dual
space L1(P )∗ has a relatively simple description. Namely, ξ ∈ L1(P )∗ if and only if there
exist vectors x ∈ X and x∗ ∈ X∗ such that

〈f, ξ〉 =

∫
Ω

f d〈Px, x∗〉, f ∈ L1(P ), (1.8)

where 〈Px, x∗〉 is the C-valued measure E 7→ 〈P (E)x, x∗〉 for E ∈ Σ. These four features
(see Section 3 for precise details) play a special role in determining the completeness
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properties of L1(P ), both for its given lcH-topology τ(P ) and for its weak topology
σ(L1(P ), L1(P )∗).

Let us now summarize the main results of Section 3 which address these completeness
properties. Since the codomain space Ls(X) of a spectral measure P is quasi-complete,
we are in the setting of (1.5)–(1.7) for m := P , that is:

L1(P ) is τ(P )-complete ⇔ L1(P ) is τ(P )-quasi-complete

⇔ P is a closed measure ⇔ Σ(P ) is relatively weakly compact in L1(P ). (1.9)

In Theorem 3.7 it is shown that a further condition equivalent to those in (1.9) is that

(L1(P ), τ(P )) is weakly quasi-complete. (1.10)

The importance of the closedness of a spectral measure is clear from (1.9) and (1.10).
Many additional criteria, equivalent to the closedness of P , are known (see those listed in
Lemma 3.1(v) and the discussion after Lemma 3.1, for example). Some of these criteria
are also formulated via certain properties of the Boolean algebra of projections P (Σ) :=

{P (E) : E ∈ Σ} ⊆ L(X); see Lemma 3.2.
For non-closed spectral measures P , because of (1.9) and (1.10), the relevant question

concerns the τ(P )-sequential completeness of L1(P ) and is more involved. Of course, the
results of Section 2 enter here when applied tom := P and Y := Ls(X). There exist spectral
measures P , even in Hilbert space, for which L1(P ) fails to be τ(P )-sequentially complete;
seeExample 3.16. Inparticular, for thisP the lcHsL1(P ) is notweakly sequentially complete
either. On the other hand, for every spectral measure P (closed or not) it is shown in
Proposition 3.17 that the lcHs (L1(P ), τ(P )) cannever contain an isomorphic copyof c0 (this
should be compared with (1.4)). One of our main results (cf. Theorem 3.18) states that for
any atomic spectral measure P (closed or not) the lcHsL1(P ) is always weakly sequentially
complete, and hence also τ(P )-sequentially complete. Atomic spectral measures occur in
abundance, for example, whenever the Banach spaceX has an unconditional basis or even
an unconditional Schauder decomposition [32]. Spectral measures P for which L1(P ) is
weakly sequentially complete but not weakly quasi-complete are exhibited in Examples 3.22
and 3.23.

The dual space L1(P )∗ is well understood in a certain sense (cf. (1.8)). For a large
class of spectral measures P (namely, those admitting a separating vector) this can be
significantly improved. It is shown for such P that there exists a finite, positive mea-
sure µ on Σ such that L1(P ) equipped with its weak topology can be identified as the
Banach space L∞(µ) equipped with its weak-∗ topology σ(L∞(µ), L1(µ)); see Proposi-
tion 3.12.

Finally, in Theorem 3.5 it is shown for the lcHs L1(P ) that

(L1(P ), τ(P )) is weakly complete ⇔ dim(L1(P )) <∞,

both conditions being also equivalent to the range P (Σ) of P being a finite subset of L(X).
Despite the fact that this is an essentially trivial situation, there exist infinite-dimensional
Banach spaces X in which the only spectral measures are those having a finite range!
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2. Preliminaries and general vector measures

Vector spaces to be considered are over C unless stated otherwise. Let Y be a lcHs with
topological dual space Y ∗. The duality between Y and Y ∗ is denoted by 〈y, y∗〉 := y∗(y)

for y ∈ Y and y∗ ∈ Y ∗. Let P(Y ) denote the set of all continuous seminorms on Y . For
each q ∈ P(Y ), let Uq := {y ∈ Y : q(y) ≤ 1}. Its corresponding polar set is denoted
by U◦q := {y∗ ∈ Y ∗ : |〈y, y∗〉| ≤ q(y), ∀y ∈ Uq}. Unless stated otherwise, every linear
subspace of Y is equipped with the topology induced by Y . Given a subset W of Y , we
denote byW its closure in Y . Its linear span (resp. closed linear span) is denoted by spanW

(resp. spanW ). Furthermore, the closed convex hull (resp. closed, balanced, convex hull)
of W is denoted by coW (resp. bcoW ).

A subset W of Y is called weakly complete (resp. weakly sequentially complete) if it is
complete (resp. sequentially complete) with respect to the weak topology σ(Y, Y ∗) of Y ,
that is, every σ(Y, Y ∗)-Cauchy net (resp. σ(Y, Y ∗)-Cauchy sequence) converges weakly
inW . We say that Y is weakly quasi-complete if every bounded, weakly closed subset of Y
is weakly complete. Of course, weak completeness implies weak quasi-completeness, which
in turn implies weak sequential completeness. The σ(Y, Y ∗)-closure of a subset W ⊆ Y is
called its weak closure and is denoted byW

σ
. A subset of Y is said to be relatively weakly

compact if its weak closure is weakly compact (i.e., compact for σ(Y, Y ∗)). When Y is
equipped with its weak topology, we also write Yσ(Y,Y ∗) or simply Yσ if no confusion can
occur.

Let Λ be a non-empty set. A (formal) series
∑
λ∈Λ yλ of elements {yλ : λ ∈ Λ} in Y is

said to be unconditionally convergent if the net of partial sums taken over all finite subsets
of Λ converges to an element y in Y . In this case we write y =

∑
λ∈Λ yλ and call y the sum

of the series
∑
λ∈Λ yλ; see, for example, [3, Ch. II, Definition 2.1].

Let L(Y, Z) denote the vector space of all continuous linear operators from Y into a
lcHs Z. When Y = Z, we simply write L(Y ) := L(Y, Y ).

Throughout this section, we denote by (Ω,Σ) a measurable space, that is, Σ is a
σ-algebra of subsets of a non-empty set Ω. We set

Σ ∩ F := {E ∩ F : E ∈ Σ}, F ∈ Σ.

Clearly Σ ∩ F = {G ∈ Σ : G ⊆ F}. The vector space of all C-valued, Σ-measurable
functions is denoted by L0(Σ).

Let m be a vector measure on Σ, taking its values in Y , that is, m is σ-additive. For
each y∗ ∈ Y ∗, the complex measure 〈m, y∗〉 : E 7→ 〈m(E), y∗〉 on Σ has a finite variation
measure |〈m, y∗〉| [49, §6.1]. Consequently, the range R(m) := m(Σ) of m is bounded for
the weak topology, and hence also bounded for the initial topology on Y .

Lemma 2.1. The range of a vector measure taking values in a quasi-complete lcHs is
relatively weakly compact.

The previous lemma occurs in [50, Theorem 3]. We refer to [35, §2] for further sufficient
conditions for a vector measure to have relatively weakly compact range.

Let us return to a general lcHs-valued vector measurem : Σ→ Y . A function f ∈ L0(Σ)

is said to be m-integrable if it satisfies the following two conditions:
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(I-1) f is 〈m, y∗〉-integrable for every y∗ ∈ Y ∗, and
(I-2) given E ∈ Σ, there exists a unique vector

∫
E
f dm ∈ Y satisfying〈∫

E

f dm, y∗
〉

=

∫
E

f d〈m, y∗〉, y∗ ∈ Y ∗.

In this case, the Y -valued set function

mf : E 7→
∫
E

f dm, E ∈ Σ,

is again σ-additive by the Orlicz–Pettis Theorem [29, Theorem 1], and will be called the
indefinite integral of f with respect to m. Functions f ∈ L0(Σ) which satisfy (I-1) are
called scalarly m-integrable.

Let L1(m) denote the linear subspace of L0(Σ) consisting of allm-integrable functions
on Ω. Clearly the linear subspace sim Σ ⊆ L0(Σ) of all C-valued, Σ-simple functions is
contained inL1(m) because the characteristic functionχE of each setE ∈ Σ ism-integrable
with

∫
F
χE dm = m(E ∩F ) for F ∈ Σ and because sim Σ = span{χE : E ∈ Σ}. Moreover,

given f ∈ L1(m) and E ∈ Σ, we have

fχE ∈ L1(m) and
∫
F

fχE dm =

∫
E∩F

f dm for F ∈ Σ. (2.1)

Given q ∈ P(Y ), define a function q(m) on L1(m) by

q(m)(f) := sup
y∗∈U◦q

∫
Ω

|f | d|〈m, y∗〉|, f ∈ L1(m), (2.2)

in which case

sup
E∈Σ

q

(∫
E

f dm

)
≤ q(m)(f) ≤ 4 sup

E∈Σ
q

(∫
E

f dm

)
, f ∈ L1(m). (2.3)

Equivalently, given f ∈ L1(m), its indefinite integral mf satisfies

sup
E∈Σ

q(mf (E)) ≤ sup
y∗∈U◦q

|〈mf , y
∗〉|(Ω) ≤ 4 sup

E∈Σ
q(mf (E))

[25, p. 158]. Indeed, this inequality and the identity supy∗∈U◦q |〈mf , y
∗〉| = q(m)(f) (see

[25, Theorem 2.2(1)]) yield (2.3).
Next, since the vector measure mf : Σ → Y has bounded range, it follows from (2.3)

that q(m) is [0,∞)-valued. In particular, q(m) is a seminorm on L1(m).
The mean convergence topology on L1(m) is defined as the locally convex topology

generated by the class of seminorms q(m) for all q ∈ P(Y ). Via (2.3), it is the topology of
uniform convergence of indefinite integrals. The linear subspace sim Σ is sequentially dense
in L1(m) with respect to this topology; see [34, Proposition 1.2] (which is obtained as an
application of [25, Theorem 2.4]). The mean convergence topology may not be Hausdorff.
The associated lcHs is the quotient space

L1(m) := L1(m)/N (m)

with respect to the closed subspace

N (m) :=
⋂

q∈P(Y )

q(m)−1({0}).
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The corresponding quotient topology is denoted by τ(m). The lcHs L1(m) is equipped
with this (initial) topology τ(m) unless stated otherwise. To emphasize this, we may speak
of the lcHs (L1(m), τ(m)). Another topology on L1(m) which we shall also discuss is the
weak topology σ(L1(m), L1(m)∗).

Functions belonging toN (m) are said to bem-null. These are exactly thosem-integrable
functions whose indefinite integral is the zero vector measure. A set E ∈ Σ is calledm-null
if χE ∈ N (m). The family of all m-null sets is denoted by N0(m). Clearly a set E ∈ Σ

is m-null if and only if m(F ) = 0 for all F ∈ Σ with F ⊆ E. A property holding outside
an m-null set is said to hold m-almost everywhere, briefly m-a.e. Observe that a function
f ∈ L0(Σ) is equal to 0 pointwise m-a.e. if and only if f is both m-integrable and m-null.

The integration operator Im : L1(m)→ Y is defined by

Im(f) :=

∫
Ω

f dm = mf (Ω), f ∈ L1(m), (2.4)

which is clearly linear. Moreover, Im is continuous via (2.3). The range of Im is known to
lie within the closed linear span of the range of m, that is,

Im(L1(m)) ⊆ spanR(m) (2.5)

[34, p. 347]. Moreover, the equality Im(N (m)) = {0} implies that Im induces a unique
Y -valued, continuous linear operator on L1(m), namely (in standard coset notation)

f +N (m) 7→ Im(f), f ∈ L1(m). (2.6)

Let E ∈ Σ. Because of (2.1) we can define a linear multiplication operator ME :

L1(m)→ L1(m) via
ME : f 7→ fχE , f ∈ L1(m). (2.7)

Since q(m)(ME(f)) ≤ q(m)(f) for q ∈ P(Y ) and f ∈ L1(m), the operator ME is con-
tinuous. As ME(N (m)) ⊆ N (m), the operator ME induces a unique continuous linear
operator from L1(m) into L1(m) given by

f +N (m) 7→ME(f) +N (m), f ∈ L1(m). (2.8)

The subset
Σ(m) := {χE +N (m) : E ∈ Σ} ⊆ L1(m)

is always τ(m)-closed in L1(m). This was first stated in [22, Ch. IV, proof of Theorem 4.1]
without proof; its proof can be found in [35, p. 8], [38, Lemma 2.10(i)]. A vector measure
m is called closed if Σ(m) is a τ(m)-complete subset of L1(m) [22, p. 71].

Define an order on Σ(m) by

χE +N (m) ≤ χF +N (m) (2.9)

whenever E,F ∈ Σ satisfy χE ≤ χF pointwise m-a.e. Then Σ(m) is a lattice for the
operations ∧ and ∨ given by

(χE +N (m)) ∧ (χF +N (m)) := χE∩F +N (m),

(χE +N (m)) ∨ (χF +N (m)) := χE∪F +N (m)

for E,F ∈ Σ. Σ(m) is a lattice with unit element χΩ + N (m) and zero element N (m).
Furthermore,Σ(m) is distributive and complemented. Therefore,Σ(m) is aBoolean algebra,
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briefly B.a. [11, p. 5]. Actually Σ(m) is isomorphic to the quotient B.a. Σ/N0(m) [14, §41],
[18, p. 53].

Henceforth, we will identifyL1(m) withL1(m) = L1(m)/N (m), i.e., its associated quo-
tient space, except when we need to distinguish these two spaces (this may be indicated
by speaking of individual functions in L1(m)). Accordingly, the integration operator Im
defined by (2.4) is identified with the Y -valued linear operator (2.6) defined on L1(m). Sim-
ilarly, the multiplication operatorME defined by (2.7) is identified with the corresponding
operator (2.8), for each E ∈ Σ. In the same spirit, the subsets {χE : E ∈ Σ} ⊆ L1(m) and
Σ(m) ⊆ L1(m) are identified. With this identification, when χE ≤ χF pointwise m-a.e.
on Ω (i.e., (2.9) holds in Σ(m)), we say that χE ≤ χF in the order of Σ(m).

The following result was originally presented in [6, Proposition 1.1] with some extra
assumptions; for the current general form see [35, Lemma 1.4].

Lemma 2.2. A lcHs-valued vector measure m : Σ → Y is closed if and only if Σ(m) is
complete as an abstract B.a. and has the property that whenever {χE(γ)}γ∈Γ is a net in
Σ(m) which is downwards filtering to 0, then the net {m(E(γ))}γ∈Γ is convergent to 0 in Y .

Let us now provide some criteria for closedness of vector measures, which will be needed
in what follows. Parts (i) and (ii) of the following result are from [22, Theorems 7.1 and 7.3,
Ch. IV], respectively.

Lemma 2.3. Let m : Σ→ Y be a lcHs-valued vector measure.

(i) If Y is metrizable, then m is closed.
(ii) If there exists a localizable measure µ : Σ → [0,∞] such that 〈m, y∗〉 � µ for every

y∗ ∈ Y ∗, then m is closed.

Every Banach-space-valued vector measure is closed by (i) above. For the definition
of a localizable measure, see [14, 64A]. Every σ-finite measure is localizable [14, 64H]. We
refer to [36, §1] for further criteria ensuring the closedness of general vector measures.

The next result is new and plays an important role in what follows.

Proposition 2.4. Let m be a lcHs-valued vector measure defined on Σ. If the subset
Σ(m) ⊆ L1(m) is relatively weakly compact, then it is τ(m)-complete in L1(m) (i.e., m is
a closed measure).

Proof. By assumption, the weak closure Σ(m)
σ
of Σ(m) in L1(m) is weakly compact, and

hence is a weakly complete subset of L1(m) [13, 0.6, p. 3]. Thus, Σ(m)
σ
is also τ(m)-

complete [13, p. 4], [23, §18, 4.(4)]. The τ(m)-closed subset Σ(m) of L1(m) is also a closed
subset of the τ(m)-complete set Σ(m)

σ
⊆ L1(m). Accordingly, Σ(m) is τ(m)-complete.

We point out that the set Σ(m)
σ
⊆ L1(m) that occurs in the proof of Proposition 2.4

can be genuinely larger than the τ(m)-closed set Σ(m) ⊆ L1(m); see Example 2.11 below.
The converse statement to Proposition 2.4 fails to hold, in general.

Example 2.5. Let Ω := [0, 1] and Σ be the Borel σ-algebra of Ω. Equip the linear subspace
Y := sim Σ ⊆ L∞(µ) with the topology induced by the weak-∗ topology σ(L∞(µ), L1(µ)).
Remark 1.8(iii) in [35] shows that the Y -valued set function m : E 7→ χE on Σ is a closed
vector measure (by using Lemma 2.3(ii) for the Lebesgue measure µ), and that its range
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R(m) ⊆ Y is not relatively weakly compact. The latter fact is a consequence of Y failing
to be sequentially complete. Now, since R(m) equals the image of Σ(m) under Im and
Im ∈ L(L1(m), Y ), and because Im maps relatively weakly compact sets to relatively
weakly compact sets, the subset Σ(m) ⊆ L1(m) cannot be relatively weakly compact. 2

In Example 2.5 above, it is crucial that Y is not sequentially complete. Indeed, the
converse statement of Proposition 2.4 does hold for a vector measure with values in a
sequentially complete lcHs (see Remark 2.6(vi) below).

Remark 2.6. Let m : Σ→ Y be a lcHs-valued vector measure.
(i) The lcHs L1(m) is τ(m)-complete if and only if it is τ(m)-quasi-complete. This

fact occurs in this form in [38, Lemma 2.10(iii)] but it was essentially known earlier (see
[22, Ch. IV, Theorem 4.1], [44, Theorem 1]). For the case when Y is a real lcHs, L1(m) is a
real lcH-Riesz space [38, Proposition 3.7(i)], and so one can also apply [52, Proposition 1.4]
to deduce the equivalence of the completeness and quasi-completeness of L1(m). This
approach also applies when Y is a lcHs over C provided that L1(m) is a complex Riesz
space, which is not always the case; see [38, Example 3.9(iv), (v)].

(ii) If L1(m) is τ(m)-complete, then its τ(m)-closed subset Σ(m) is necessarily τ(m)-
complete, i.e., m is closed.

(iii) If m is closed and its codomain space Y is sequentially complete, then L1(m)

is τ(m)-complete [44, Theorem 2]. There exists a vector measure m, with values in an
incomplete normed space, such that L1(m) is τ(m)-complete [44, Example 1].

(iv) A useful way to analyze Σ(m) is to realize it as the range of the L1(m)-valued
vector measure

[m] : E 7→ χE , E ∈ Σ.

That [m] is indeed a vector measure with rangeR([m]) = Σ(m) and satisfying the equality
(L1([m]), τ([m])) = (L1(m), τ(m)) as lcHs’ is a special case of [34, Proposition 3.1]. In
particular, Σ([m]) and Σ(m) are the same subset of L1([m]) = L1(m). Accordingly, [m] is
closed if and only if m is. From this fact and Lemma 2.3(i), with Y := L1(m) and [m] in
place of m, it follows that m is closed whenever L1(m) is τ(m)-metrizable.

(v) If L1(m) is τ(m)-complete, then its subset Σ(m) is relatively weakly compact. This
is a consequence of Lemma 2.1 applied to the L1(m)-valued vector measure [m] (see part
(iv) above).

(vi) Assume, in addition now, that Y is sequentially complete. Then the following
assertions are equivalent:

(a) m is closed.
(b) L1(m) is τ(m)-complete.
(c) Σ(m) is relatively weakly compact in L1(m).

Indeed, part (iii) above yields (a)⇒(b). For (b)⇒(c), see (v) above. The implication (c)⇒(a)
is clear from Proposition 2.4.

In particular, the converse of Proposition 2.4 holds whenever Y happens to be sequen-
tially complete. We point out that there exists a non-closed vector measure taking its
values in a sequentially complete lcHs (see Examples 2.13 and 2.14 below). 2
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The converse statement of Proposition 2.4 also holds wheneverm is atomic. This result,
which is included in Proposition 2.16 below, is part of the special features of atomic vector
measures to which we devote the remainder of this section.

The concept of an atom for a vector measure is analogous to that for a scalar mea-
sure [20], [22]. To be precise, let m : Σ→ Y be a lcHs-valued vector measure. A set E ∈ Σ

is an m-atom if m(E) 6= 0 and if, for every F ∈ Σ, either m(E ∩ F ) = 0 or m(E \ F ) = 0

[22, p. 32]. In this case
m(Σ ∩ E) = {0,m(E)}. (2.10)

A vector measure m is called atomic if every non-m-null set contains an m-atom. If m has
no m-atoms, then it will be called atomless; in the literature the terminology non-atomic
is also common.

Let us recall the well known concept of atoms in a B.a. B [18, p. 69]. A non-zero element
a ∈ B is called an atom if the only elements b ∈ B satisfying b ≤ a (i.e., a dominates b)
are b = 0 and b = a. The B.a. B is called atomic if every non-zero element dominates an
atom. We say that B is atomless if it has no atoms.

The following result (whose proof is presented in the Appendix) shows that the concept
of an m-atom and that of an atom in the B.a. Σ(m) are essentially the same.

Lemma 2.7. Let m : Σ→ Y be a lcHs-valued vector measure.

(i) Let E ∈ Σ be an m-atom. Then a set G ∈ Σ ∩ E is m-null if and only if m(G) = 0.
(ii) The following conditions on a set E ∈ Σ are equivalent:

(a) E is an m-atom.
(b) E /∈ N0(m) and, for each F ∈ Σ, either E ∩ F ∈ N0(m) or (E \ F ) ∈ N0(m).
(c) E is an [m]-atom for the vector measure [m] : Σ→ L1(m).
(d) χE is an atom of the B.a. Σ(m).

(iii) The vector measure m is atomic (resp. atomless) if and only if the vector measure [m]

is atomic (resp. atomless) if and only if the B.a. Σ(m) is atomic (resp. atomless).

Note that a set E ∈ Σ satisfying condition (b) in Lemma 2.7(ii) is a proper m-atom
in the terminology of [20, (7), p. 7]. The equivalence (a)⇔(d) in Lemma 2.7(ii) is stated
without proof in [22, p. 32].

Let m be a lcHs-valued vector measure. The family of all the atoms in the B.a. Σ(m)

is denoted by {χF (α)}α∈A(m). We assume, for distinct labels α, β ∈ A(m), that their
corresponding atoms χF (α) and χF (β) are disjoint, that is, χF (α) ∧ χF (β) = 0 in Σ(m)

(equivalently F (α) ∩ F (β) ∈ N0(m)). So, {χF (α)}α∈A(m) is an “enumeration” of all the
atoms in Σ(m).

Note thatA(m) = ∅ if an only ifm is atomless. We say thatm is σ-atomic ifm is atomic
and if the index setA(m) is countable. Every σ-atomic vector measure is necessarily closed
[35, Proposition 1.9]. The atomic measures treated in [20, (9), p. 7] are restricted to the
class of σ-atomic measures.

The proofs of the following two lemmas are postponed to the Appendix.

Lemma 2.8. Suppose that a lcHs-valued vector measure m : Σ → Y satisfies A(m) 6= ∅.
Let f ∈ L1(m). For each α ∈ A(m), with corresponding atom χF (α) ∈ Σ(m), there exists
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a unique complex number a(α, f) satisfying both∫
F (α)

f dm = a(α, f)m(F (α)) (2.11)

and
fχF (α) = a(α, f)χF (α) pointwise m-a.e. on Ω. (2.12)

Lemma 2.9. Let m : Σ → Y be a lcHs-valued, atomic vector measure. A set E ∈ Σ is
m-null if and only if E ∩ F (α) is m-null for every m-atom F (α), α ∈ A(m).

Lemmas 2.8 and 2.9 are crucial for establishing Proposition 2.10 below (for its proof
we refer to the Appendix) as well as for further results in Section 3.

Proposition 2.10. Let m be an atomic, lcHs-valued vector measure. Then the subset
Σ(m) ⊆ L1(m) is necessarily weakly closed.

The weak closedness of Σ(m) may not be enjoyed by a general vector measure m, as
demonstrated by the following example. See also Remark 3.9(ii) below and the discussion
after Proposition 3.21.

Example 2.11. Letm : Σ→ Y be a lcHs-valued, atomless vectormeasure. Recall fromRe-
mark 2.6(iv) that the associated vector measure [m] : Σ→L1(m) satisfies R([m]) = Σ(m)

and, via Lemma 2.7(iii), that [m] is also atomless. Assume further that

R([m])
σ

= coR([m]) equivalently Σ(m)
σ

= coR([m]) (2.13)

in L1(m). Then Σ(m) is not weakly closed in L1(m) because 1
2χΩ + 1

2χ∅ = 1
2χΩ and (2.13)

imply that
1
2χΩ ∈ (co Σ(m)) \ Σ(m) = Σ(m)

σ
\ Σ(m).

We note that either of the conditions that

(a) the domain Σ of [m] is a countably generated σ-algebra, or
(b) the codomain space L1(m) of [m] is τ(m)-metrizable

is sufficient for (2.13) to be satisfied; see Theorem 1 in [22, Ch. V, Section 6], applied to
the vector measure [m], for example, whereas [22, p. 111] provides earlier references.

Condition (a) is satisfied if Σ is the Borel σ-algebra of a topological space with a
countable open base. For example, every separable metric space, such as the closed unit
interval [0, 1], admits a countable open base.

If the codomain space Y of m is metrizable, then we find both that m is closed (see
Lemma 2.3(i)) and that L1(m) is τ(m)-metrizable (in view of the definition of τ(m)). In
short, every atomless vector measure m with values in a metrizable lcHs has the property
that Σ(m) is τ(m)-complete but not weakly closed in L1(m). 2

Proposition 2.12. Let m : Σ→ Y be a lcHs-valued, vector measure which is both closed
and atomic. Then:

(i) The range R(m) ⊆ Y is compact.
(ii) Given any E ∈ Σ, the series

∑
α∈A(m)m(E ∩ F (α)) is unconditionally convergent

in Y and its sum is precisely m(E).
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According to [20, Theorem 10], every σ-atomic vector measure has compact range.
This is a special case of Proposition 2.12(i) above because every σ-atomic vector measure
is necessarily closed; see the discussion prior to Lemma 2.8. Our proof of Proposition 2.12
(provided in the Appendix) is an extension of that of [20, Theorem 10].

Let us now present some examples of atomic vector measures. Further examples, of a
different nature, will be presented in Section 3.

Example 2.13. Let Ω := [0, 1] and Σ ⊆ 2Ω be any σ-algebra such that {ω} ∈ Σ for all
ω ∈ Ω. Let Y := L0(Σ) ⊆ CΩ be equipped with the topology of pointwise convergence
on Ω. Then Y is a sequentially complete lcHs whose initial topology and weak topology
coincide.

Note that m : Σ→ Y defined by m(E) := χE for E ∈ Σ is an atomic vector measure
whose m-atoms are all the singleton sets {ω} for ω ∈ Ω. It is clear that

N (m) = {0} and Σ(m) = R(m) = {χE : E ∈ Σ}

as sets, that L1(m) = Y as lcHs’, and that the integration operator Im : L1(m)→ Y is the
identity map. Consequently, the initial topology τ(m) on L1(m) is exactly the pointwise
convergence topology.

The claim is thatm is closed if and only if Σ = 2Ω. To see this, assume first that Σ ( 2Ω.
Fix any E ∈ 2Ω \ Σ and let F(E) denote the family of all finite subsets of E, directed
by inclusion. Then the net {χF }F∈F(E) is τ(m)-Cauchy in Σ(m) but has no τ(m)-limit.
Hence, Σ(m) is not τ -complete, that is, m is not closed. So, the ‘only if’ portion holds
as we have established its contrapositive statement. On the other hand, if Σ = 2Ω, then
Σ(m) = {χE : E ∈ 2Ω} = {0, 1}Ω is τ(m)-compact (as τ(m) is the product topology on
{0, 1}Ω), and hence is τ -complete. This verifies the ‘if’ portion.

Returning to the case when Σ ( 2Ω, it is routine to verify that the non-closed, atomic
vector measure m satisfies

m(E) =
∑
ω∈Ω

m(E ∩ {ω}), E ∈ Σ,

with the right-hand side being unconditionally convergent in Y . In other words, part (ii)
of Proposition 2.12 still holds for this m even though it is non-closed. This is due to the
fact that A(m) (in our standing notation) can be taken as Ω. 2

Example 2.14. Let Ω and Y be as in Example 2.13 with Σ now being the Borel σ-algebra.
Denoting the Lebesgue measure on Σ by µ, define a Y -valued vector measure by

m(E) := χE + µ(E)χ{1}, E ∈ Σ.

Then m is atomic and its m-atoms are all the singletons {ω} with ω ∈ Ω. It is clear that
N (m) = {0} and that L1(m) equals the vector space L1(µ) of all individual µ-integrable
functions. Moreover, we have

Im(f) = f +

(∫
Ω

f dµ

)
χ{1}, f ∈ L1(m).

Since m restricted to Σ ∩ [0, 1) is not closed (by applying the argument in Example 2.13
to [0, 1) in place of [0, 1]), the vector measure m itself is not closed.
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The claim is that now part (ii) of Proposition 2.12 fails to hold (with the index set
A(m) := Ω). Indeed, for any set E ∈ Σ with µ(E) > 0,

m(E) = χE + µ(E)χ{1} 6= χE =
∑
ω∈Ω

m(E ∩ {ω})

with the right-hand side being unconditionally convergent in Y . 2

Remark 2.15. (i) Example 2.5 above provides a closed, atomless vector measure, with
values in a lcHs equipped with its weak topology, whose range is not relatively com-
pact (= not relatively weakly compact). Therefore, we cannot omit the assumption in
Proposition 2.12(i) that the vector measure is atomic.

(ii) There also exist closed, atomless vector measures which do have compact range.
Indeed, take any atomless vector measure with values in a finite-dimensional Banach space.
Then it is closed by Lemma 2.3(i), and it has compact range by Lyapunov’s Theorem [4, Ch.
IX, Corollary 1.5]. For the infinite-dimensional case, see [4, Ch. IX, Example 1.9 and the
subsequent comment] which provides a c0-valued, atomless vector measure with compact
range; such a vector measure is closed (again by Lemma 2.3(i)). 2

We conclude this section with a result which determines exactly when an atomic vector
measurem is closed in terms of compactness properties of Σ(m). Its proof will be provided
in the Appendix.

Proposition 2.16. The following assertions for a lcHs-valued, atomic vector measure m
defined on Σ are equivalent:

(a) m is closed.
(b) Σ(m) is a τ(m)-compact subset of L1(m).
(c) Σ(m) is a weakly compact subset of L1(m).
(d) Σ(m) is a relatively weakly compact subset of L1(m).

Remark 2.17. Let m : Σ → X be a Banach-space-valued vector measure. Then the
corresponding seminorm (2.2), with q replaced by the norm of X, is the norm

f 7→ ‖f‖1 := sup
‖x∗‖X∗≤1

∫
Ω

|f | d|〈m,x∗〉|, f ∈ L1(m).

Here ‖ · ‖X∗ is the norm of the dual Banach space X∗ of X. Then (L1(m), ‖ · ‖1) turns out
to be a Banach space; it is a natural analogue of (L1(µ), ‖ · ‖1) whenever µ is a positive
scalar measure. Actually, L1(m) is a (complex) Banach lattice and ‖ · ‖1 is a lattice norm.
Some of the important features of L1(m) have been alluded to in Section 1; for further
properties see [37, Ch. 3] and the references therein, for instance. 2

3. Weak completeness of L1 for spectral measures

Let X be a (complex) Banach space with norm ‖ · ‖X and with closed unit ball B[X] :=

{x ∈ X : ‖x‖X ≤ 1}. Recall that the norm of its dual Banach spaceX∗ is denoted by ‖·‖X∗ .
The vector space L(X) is also an algebra for the multiplication defined by composition;
its unit is the identity operator I.
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The uniform operator topology on L(X) is defined by the operator norm

‖T‖op := sup
x∈B[X]

‖Tx‖X , T ∈ L(X).

In this case we write Lu(X) and note that Lu(X) is a unital Banach algebra with respect
to ‖ · ‖op.

By Ls(X) we denote L(X) equipped with the strong operator topology τs (i.e., the
topology of pointwise convergence on X). It is a lcHs whose topology is generated by the
family of seminorms

ρx : T 7→ ‖Tx‖X , T ∈ L(X), (3.1)

with x ∈ X varying. It turns out that Ls(X) is always quasi-complete because of the
completeness of X and the Banach–Steinhaus Theorem. The multiplication (S, T ) 7→ ST

is clearly separately continuous from Ls(X) × Ls(X) into Ls(X). So, Ls(X) is a locally
convex algebra. To describe the dual space Ls(X)∗ of Ls(X), fix any x ∈ X and x∗ ∈ X∗.
The linear functional

x⊗ x∗ : T 7→ 〈Tx, x∗〉, T ∈ Ls(X), (3.2)

is clearly continuous, i.e., x⊗x∗ ∈ Ls(X)∗. Conversely, every continuous linear functional
on Ls(X) is necessarily the sum of finitely many linear functionals of the form (3.2). In
other words,

Ls(X)∗ =
{ n∑
j=1

xj ⊗ x∗j : xj ∈ X, x∗j ∈ X∗, j = 1, . . . , n, n ∈ N
}

; (3.3)

see [9, Ch. VI, proof of Theorem 1.4]. Thus, the weak topology σ(Ls(X),Ls(X)∗) in the
lcHsLs(X) coincides with theweak operator topology τw onL(X) [9, Ch. VI, Definition 1.3],
in which case we write Lw(X).

We point out that X is weakly sequentially complete if and only if Ls(X) is weakly
sequentially complete. The ‘only if’ portion appears in [19, Theorem 2.15.2], and the ‘if’
portion follows from the fact thatX is topologically isomorphic to a closed linear subspace
of Ls(X) [24, §39, 1.(2′)].

Throughout this section, (Ω,Σ) denotes an arbitrary measurable space except when
we consider specific measure spaces. A vector measure with values in the lcHs Ls(X) is
called an operator-valued measure. Since Ls(X) is quasi-complete, every operator-valued
measure has relatively weakly compact range (see Lemma 2.1), and so its range is uniformly
bounded (i.e., bounded in Lu(X)). An operator-valued measure P : Σ→ Ls(X) is called
a spectral measure if P (Ω) = I and

P (E ∩ F ) = P (E)P (F ), E, F ∈ Σ. (3.4)

Theσ-additivity ofP means exactly that limn→∞ ‖P (En)x‖X = 0 for eachx ∈ X whenever
En ↓ ∅ in Σ, that is,

Px : E 7→ P (E)x, E ∈ Σ, (3.5)

is an X-valued vector measure for each x ∈ X.
Given a spectral measure P : Σ → Ls(X) and vectors x ∈ X, x∗ ∈ X∗, it follows

that 〈P (E), x⊗ x∗〉 = 〈P (E)x, x∗〉 for E ∈ Σ, a formula in which the left-hand side is the
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duality between Ls(X) and Ls(X)∗, whereas the right-hand side is the duality between
X and X∗. In short, we have equality between two scalar measures on Σ:

〈P, x⊗ x∗〉 = 〈Px, x∗〉, x ∈ X, x∗ ∈ X∗. (3.6)

Therefore, (3.3) shows that a function f ∈ L0(Σ) is scalarly P -integrable if and only if it
is 〈Px, x∗〉-integrable for all x ∈ X, x∗ ∈ X∗.

Since the seminorms ρx for x ∈ X (see (3.1)) generate the strong operator topology τs,
it follows that the topology τ(P ) is generated by the seminorms

ρx(P ) : f 7→ sup

{∫
Ω

|f | d|〈P, ξ〉| : ξ ∈ U◦ρx

}
, f ∈ L1(P ); (3.7)

see (2.2) with Y := Ls(X) and ρx in place of q and m := P . Using the X-valued vector
measure Px (see (3.5)) enables us to express ρx(P ) simply as

ρx(P )(f) = sup
x∗∈B[X∗]

∫
Ω

|f | d|〈Px, x∗〉|, f ∈ L1(P ). (3.8)

Indeed, for each x ∈ X, consider the evaluation map Ux : T 7→ Tx, for T ∈ L(X),
which is a continuous linear operator from the lcHs Ls(X) into the Banach space X. With
U∗x : X∗ → Ls(X)∗ denoting the dual operator of Ux, it is routine to verify that

U∗x(B[X∗]) = U◦ρx ; (3.9)

adapt [9, Ch. VI, proof of Theorem 1.4], for example. Given x∗ ∈ B[X∗], since

〈P (E), U∗x(x∗)〉 = 〈P (E)x, x∗〉 = 〈Px(E), x∗〉, E ∈ Σ,

it follows that 〈P,U∗x(x∗)〉 = 〈Px, x∗〉. This identity, (3.7) and (3.9) yield (3.8).
Given f, g ∈ L1(P ), their pointwise product fg is also P -integrable and we have∫

E

(fg) dP =

(∫
Ω

f dP

)(∫
Ω

g dP

)
P (E), E ∈ Σ,

inLs(X). SinceN (P ) is stable under pointwisemultiplication, the pointwisemultiplication
of individual functions in L1(P ) induces their P -a.e. multiplication in the quotient space
L1(P ) = L1(P )/N (P ). These facts appear in [48, Proposition V.3 and p. 80], for example.

The P -null sets are more easily described than those of a general vector measure.
Indeed, a set E ∈ Σ is P -null if and only if P (E) = 0, which is a consequence of (3.4).
Hence, E ∈ Σ satisfies P (E) = I if and only if P (Ω \E) = 0 if and only if Ω \E is P -null.
This enables us to define a function f ∈ L0(Σ) to be P -essentially bounded if

|f |P := inf
{

sup
ω∈E
|f(ω)| : E ∈ Σ, P (E) = I

}
<∞.

In this case there is E0 ∈ Σ satisfying both P (E0) = I and |f |P = supω∈E0
|f(ω)|; see

[10, pp. 2186–2187] or [48, pp. 72–73]. Clearly, a function f ∈ L0(Σ) is P -null if and only if
it is P -essentially bounded and |f |P = 0. Accordingly, let L∞(P ) denote the vector space
of all equivalence classes of P -essentially bounded functions modulo N (P ). The norm
on L∞(P ) induced by | · |P is called the P -essentially bounded norm, and is denoted by
the same symbol | · |P . We write (L∞(P ), | · |P ) when we wish to emphasize that L∞(P )

is equipped with the norm | · |P . We can define the multiplication of equivalence classes in
L∞(P ) via the pointwise multiplication of their representatives, because N (P ) is stable
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under pointwise multiplication. Then (L∞(P ), | · |P ) is a commutative Banach algebra
whose unit is the equivalence class containing χΩ. As in the case of the L∞-space for a
scalar measure, we shall identify each P -essentially bounded function with its equivalence
class in L∞(P ) as long as there is no danger of confusion.

We now collect some known results which will be used in what follows.

Lemma 3.1. Let X be a Banach space and P : Σ→ Ls(X) be a spectral measure. Define

|||P (Σ)|||op := sup
E∈Σ
‖P (E)‖op <∞.

(i) The integration operator IP : (L1(P ), τ(P )) → Ls(X) is a bicontinuous algebra
isomorphism onto its range and satisfies

ρx(IP (f)) ≤ ρx(P )(f) ≤ 4|||P (Σ)|||op ρx(IP (f)), x ∈ X, f ∈ L1(P ).

(ii) A function f ∈ L0(Σ) is P -integrable if and only if it is P -essentially bounded.
Consequently, we have the equality

L1(P ) = L∞(P ) (3.10)

of vector spaces.
(iii) The identity map from (L∞(P ), | · |P ) onto (L1(P ), τ(P )) is continuous.
(iv) The inequalities

|f |P ≤ ‖IP (f)‖op ≤ 4|||P (Σ)|||op|f |P , f ∈ L∞(P ) = L1(P ), (3.11)

hold and IP : (L∞(P ), | · |P )→ Lu(X) is a bicontinuous, Banach algebra isomorphism
onto an inverse closed Banach subalgebra of Lu(X).

(v) The following conditions are equivalent:

(a) P is a closed measure.
(b) R(P ) = P (Σ) is a complete subset of Ls(X).
(c) R(P ) = P (Σ) is a closed subset of Ls(X).
(d) L1(P ) is τ(P )-quasi-complete.
(e) L1(P ) is τ(P )-complete.
(f) IP (L1(P )) is a τs-complete subspace of Ls(X).
(g) Σ(P ) is a relatively weakly compact subset of L1(P ).

Proof. (i) See [48, Theorem V.4], for example.
(ii) The first part of (ii) can be derived from [10, Ch. XVIII, Theorem 2.11(c)]. A direct

proof is given in [48, Proposition V.4]. The identity (3.10) is a consequence of the first
part once we recall that L1(P ) and L∞(P ) are both the corresponding quotient spaces
modulo N (P ).

(iii) Fix x ∈ X. Given f ∈ L∞(P ), since |f(ω)| ≤ |f |P · χΩ(ω) for P -a.e. ω ∈ Ω, it
follows from (3.7) or (3.8) that

ρx(P )(f) ≤ ρx(P )(|f |PχΩ) = |f |P · ρx(P )(χΩ).

So, (iii) holds because ρx(P )(χΩ) <∞.
(iv) See [10, Ch. XVII, Theorem 2.10]; the current form is in [48, Theorem V.1].
(v) The equivalences (a)⇔(b) and (e)⇔(f) follow because IP is a bicontinuous isomor-

phism onto its range (via part (i)) and satisfies IP (Σ(P )) = R(P ). As noted earlier in
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this section, R(P ) is bounded in Ls(X), which ensures the equivalence (b)⇔(c) because
Ls(X) is quasi-complete. For the equivalences (a)⇔(d)⇔(e), see Remark 2.6(i)–(iii) with
Y := Ls(X) and m := P . Since Y := Ls(X) is quasi-complete, (a)⇔(g) follows from
Remark 2.6(vi) with m := P .

Part (v) of Lemma 3.1 above provides a simple characterization for a spectral measure
to be closed in terms of its range. We refer to [35], [36] and [48] together with the references
therein for further features of closed spectral measures.

Since the range of a spectral measure is a B.a., we shall see that certain completeness
properties of such a B.a. are related to the closedness of its corresponding spectral measure.
Recall, for a Banach space X, that a subsetM⊆ L(X) of commuting projections is called
a Boolean algebra of projections when it is a B.a. relative to the partial order given by
range inclusion. The lattice operations are given by

Q ∧R := QR and Q ∨R := Q+R−QR, Q,R ∈M.

It is always assumed that the zero element ofM is the zero operator, and the unit ofM
is I. A B.a. of projectionsM is said to be Bade complete (resp. Bade σ-complete) if it is
complete (resp. σ-complete) as an abstract B.a. and if we have(∧

λ∈Λ

Qλ

)
(X) =

⋂
λ∈Λ

Qλ(X) and
(∨
λ∈Λ

Qλ

)
(X) = span

(⋃
λ∈Λ

Qλ(X)
)

for each family (resp. each countable family) {Qλ}λ∈Λ inM. The following result is part
of [48, Theorem IV.1].

Lemma 3.2. Let X be a Banach space. A B.a. of projectionsM in L(X) is Bade complete
(resp. Bade σ-complete) if and only if it is the range of a closed spectral measure (resp.
a spectral measure).

The B.a. Σ(P ) ⊆ L1(P ) associated with a spectral measure P was defined in Section 2
(setm := P there). Its connection to the B.a.R(P ) = P (Σ) (see Lemma 3.2) is as follows.

Lemma 3.3. Let X be a Banach space and P : Σ → Ls(X) be a spectral measure. The
restriction of IP to Σ(P ) ⊆ L1(P ) is a B.a. isomorphism onto the B.a. of projections
P (Σ) = IP (Σ(P )) in L(X). Consequently, P is an atomic (resp. atomless) measure if and
only if the B.a. P (Σ) is atomic (resp. atomless).

Proof. The first part is a consequence of (3.4). This then ensures the second part once we
recall that the B.a. Σ(P ) is atomic (resp. atomless) if and only if P is an atomic (resp.
atomless) measure; see Lemma 2.7(iii) with Y := Ls(X) and m := P .

We now turn our attention to the main topic of this section, namely various com-
pleteness properties of L1(P ), for a spectral measure P , with respect to its weak topology
σ(L1(P ), L1(P )∗). We begin with a useful description of the dual space L1(P )∗ of L1(P ).
Such a description is given in [43, Theorem 1] under the assumption that P is closed; this
assumption is actually superfluous.

Lemma 3.4. Let X be a Banach space and P : Σ→ Ls(X) be a spectral measure. Then

L1(P )∗ = {(x⊗ x∗) ◦ IP : x ∈ X, x∗ ∈ X∗}. (3.12)
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Proof. In view of (3.2), if x ∈ X and x∗ ∈ X∗, then the composition (x ⊗ x∗) ◦ IP of
x⊗x∗ ∈ Ls(X)∗ and IP ∈ L(L1(P ),Ls(X)) clearly belongs to L1(P )∗. So, the right-hand
side of (3.12) is included in the left-hand side.

Concerning the reverse inclusion, let 〈W 〉 denote the τs-closed subalgebra generated
by a subset W of Ls(X). Fix ξ ∈ L1(P )∗. Since I−1

P : IP (L1(P )) → L1(P ) is continuous
and linear (see Lemma 3.1(i)), the composition ξ ◦ I−1

P : IP (L1(P )) → C is a continuous
linear functional which admits a unique continuous linear extension ξ̂ to the τs-closure
IP (L1(P )) ⊆ Ls(X). Since IP (L1(P )) is a subalgebra of Ls(X) (see Lemma 3.1(ii)) and
since sim Σ is τ(P )-dense in L1(P ) (see Section 2), we have (for W = P (Σ)) the identity
〈P (Σ)〉 = IP (L1(P )). Next, we recall from Lemma 3.2 that P (Σ) is a Bade σ-complete
B.a. of projections. Its τs-closure M := P (Σ) in Ls(X) is then a Bade complete B.a.
of projections [48, Theorem V.8]. The identity 〈P (Σ)〉 = 〈M〉 clearly holds, and hence
〈M〉 = IP (L1(P )); i.e., IP (L1(P )) is the τs-closed subalgebra of Ls(X) generated by the
Bade complete B.a. of projectionsM. According to [5, Proposition 3.2] there exist x ∈ X
and x∗ ∈ X∗ satisfying x⊗ x∗ = ξ̂ on IP (L1(P )), which implies that x⊗ x∗ = ξ ◦ I−1

P on
IP (L1(P )), and hence that ξ = (x ⊗ x∗) ◦ IP . As ξ ∈ L1(P )∗ is arbitrary, the left-hand
side of (3.12) is included in the right-hand side.

For a spectral measureP , when isL1(P )weakly complete? The following result provides
an answer: it is so only under very special circumstances. If we write P : Σ→ Lu(X), then
P is to be interpreted as a Banach-space-valued measure, typically only finitely additive.
We say that P : Σ → Lu(X) has finite variation if its total variation, which is defined
as in the scalar-valued case [4, Ch. I, Definition 1.4], is a [0,∞)-valued, finitely additive
measure on Σ. The set function P : Σ → Lu(X) is called strongly additive if the series∑∞
n=1 P (En) converges in Lu(X) whenever {En}∞n=1 is a sequence of pairwise disjoint sets

from Σ [4, Ch. I, Definition 1.14]. Whenever the integration operator IP is to be regarded
as Lu(X)-valued, we write IP : (L1(P ), τ(P ))→ Lu(X).

We point out that a lcHs Y is weakly complete if and only if every linear functional
on its dual space Y ∗ is σ(Y ∗, Y )-continuous. This is a consequence of the fact that the
completion of Yσ(Y,Y ∗) equals the algebraic dual of Y ∗σ(Y ∗,Y ) [23, §20, 9.(2)]. Thus, if there
exists a linear functional on Y ∗ which is not σ(Y ∗, Y )-continuous, then Y is not weakly
complete.

Theorem 3.5. Let X be a Banach space and P : Σ→ Ls(X) be a spectral measure.

(I) If the vector space L1(P ) is infinite-dimensional, then the lcHs (L1(P ), τ(P )) is not
weakly complete.

(II) The following conditions for P are equivalent:

(a) (L1(P ), τ(P )) is weakly complete.
(b) L1(P ) is finite-dimensional.
(c) (L1(P ), τ(P )) is normable.
(d) (L1(P ), τ(P )) is metrizable.
(e) The linear operator IP : (L1(P ), τ(P ))→ Lu(X) is continuous.
(f) P : Σ→ Lu(X) is σ-additive.
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(g) There exists a finitely additivemeasureµ : Σ→ [0,∞) such that ‖P (E)‖op ≤ µ(E)

for every E ∈ Σ.
(h) P (Σ) is a finite subset of L(X).
(i) P : Σ→ Lu(X) has finite variation.
(j) P : Σ→ Lu(X) is strongly additive.
(k) There exists a finite Σ-partition {Ej}kj=1 of Ω (with k ∈ N) such that each

projection P (Ej) for j = 1, . . . , k is an atom of the B.a. of projections P (Σ), and

P (F ) =

k∑
j=1

P (F ∩ Ej), F ∈ Σ.

(l) P (Σ) is a compact subset of Lu(X).
(m) The Banach space (L∞(P ), | · |P ) is separable.

Proof. (I) Our proof is an adaptation of that of [30, Proposition 2.5.14]. First observe that
L1(P )∗ is also infinite-dimensional (becausedimL1(P )∗<∞would implydimL1(P )<∞).
So, there exists an infinite, linearly independent subset V = {ξn : n∈N} ⊆ L1(P )∗. By
Lemma 3.4 above, for each n ∈ N there exist (non-zero) vectors xn ∈ X and x∗n ∈ X∗
satisfying ξn = (xn ⊗ x∗n) ◦ IP . We may assume that ‖xn‖X = 1 = ‖x∗n‖X∗ for each n ∈ N
because the infinite set {

ξn
‖xn‖X · ‖x∗n‖X∗

: n ∈ N
}

is linearly independent in L1(P )∗. The set V is then σ(L1(P )∗, L1(P ))-bounded because,
given f ∈ L1(P ), we have

sup
n∈N
|〈f, ξn〉| = sup

n∈N
|〈f, (xn ⊗ x∗n) ◦ IP 〉| = sup

n∈N
|〈IP (f)xn, x

∗
n〉|

≤ sup
n∈N
‖IP (f)‖op · ‖xn‖X · ‖x∗n‖X∗ = ‖IP (f)‖op <∞.

Now, select any Hamel basis H for the vector space L1(P )∗ such that V ⊆ H

[23, §7, 3.(2)]. Then there exists a unique linear functional u : L1(P )∗ → C determined
by the requirements u(ξn) := n for n ∈ N and u(ξ) := 0 for ξ ∈ H \ V [23, §8.5, p. 63].
Clearly, the image u(V ) of the σ(L1(P )∗, L1(P ))-bounded subset V is unbounded in C.
Thus, u is not continuous (as every continuous linear functional on a lcHs maps bounded
sets to bounded sets in C). Therefore, L1(P ) is not weakly complete (see the discussion
immediately prior to this theorem).

(II) (a)⇒(b). This is the contrapositive of (I).
(b)⇒(a). Clear, as everyfinite-dimensional lcHsY is topologically isomorphic to CdimY.
(b)⇒(c)⇒(d). Clear.
(d)⇒(e). By (d) the codomain space L1(P ) of the vector measure [P ] : E 7→ χE on Σ

is metrizable. So, Lemma 2.3(i) with Y := L1(P ) andm := [P ] yields the closedness of [P ].
Thus, P is also closed (via Remark 2.6(iv) with Y := Ls(X), and m := P ), and hence
(L1(P ), τ(P )) is complete by Remark 2.6(iii) with Y := Ls(X) andm := P . This together
with (d) implies that (L1(P ), τ(P )) is a Fréchet space. The Open Mapping Theorem then
shows that the identity operator from the Banach space (L∞(P ), | · |P ) onto (L1(P ), τ(P ))

is a bicontinuous isomorphism (after recalling that this operator is always continuous
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by Lemma 3.1(iii)). Thus, (e) holds because we already know from Lemma 3.1(iv) that
IP : (L∞(P ), | · |P )→ Lu(X) is continuous.

(e)⇒(f). Let E(n) ↓ ∅ in Σ. The σ-additivity of P : Σ → Ls(X) implies that
IP (χE(n)) = P (E(n)) → 0 in Ls(X). Since I−1

P : (IP (L1(P )), τs) → (L1(P ), τ(P )) is
continuous by Lemma 3.1(i), it follows that χE(n) = I−1

P (IP (χE(n)))→ 0 in (L1(P ), τ(P ))

as n → ∞. Now apply (e) to deduce that P (E(n)) = IP (χE(n)) → 0 in Lu(X), which
establishes (f).

(f)⇒(j). This follows immediately from the definitions of σ-additivity and strong ad-
ditivity.

The equivalence of (g), (h), (i), (j) and (k) is a special case of [47, Proposition 1].
(h)⇒(b). Condition (h) implies W := spanP (Σ) = IP (sim Σ) is finite-dimensional

and, in particular, is then a τs-closed linear subspace of Ls(X). This together with the
τ(P )-denseness of sim Σ inL1(P ) (see Section 2) implies thatW = IP (L1(P )). So, (b) holds
because IP is injective (see Lemma 3.1(i)).

(h)⇒(l). Clear.
(l)⇒(f). Let E(n) ↓ ∅ in Σ. Then P (E(n)) → 0 in Ls(X) as n → ∞. On the other

hand, (l) implies that the uniform and strong operator topologies coincide on P (Σ). So,
limn→∞ P (E(n)) = 0 in Lu(X), which establishes (f).

(b)⇒(m). This is clear because L∞(P ) = L1(P ) as vector spaces (see Lemma 3.1(ii))
and because every finite-dimensional Banach space is separable.

(m)⇒(h). To prove the corresponding contrapositive statement, assume that P (Σ)

is an infinite set. According to [47, Lemma 1], there exists a sequence {E(n)}∞n=1 of
pairwise disjoint, non-P -null sets in Σ. This enables us to define a linear operator Φ :

`∞ → (L∞(P ), | · |P ) by assigning to each (αn)∞n=1 ∈ `∞ the pointwise sum
∑∞
n=1 αnχE(n)

∈ L∞(P ). ThenΦ is a bicontinuous isomorphism from `∞ (equippedwith the usual uniform
norm) onto span{χE(n) : n ∈ N} ⊆ L∞(P ). Consequently, (L∞(P ), | · |) is non-separable,
which establishes the desired contrapositive statement.

Remark 3.6. There exist Banach spacesX such that every Ls(X)-valued spectralmeasure
P has finite range, that is, P satisfies condition (h) in Theorem 3.5(II) above. The class
of such Banach spaces contains (at least) two subclasses. One consists of all Grothendieck
spaces with the Dunford–Pettis property [42, Proposition 1]. This subclass includes the
L∞-spaces of scalar measures and many others [26]. The second subclass consists of the
hereditarily indecomposable Banach spaces; see [45, Proposition 1] and the equivalence
(h)⇔(k) inTheorem3.5(II) togetherwith the fact that the range of every spectralmeasure is
a Bade σ-complete B.a. of projections (via Lemma 3.2). These two subclasses are disjoint
because each hereditarily indecomposable space is not a Grothendieck space with the
Dunford–Pettis property [45, Proposition 4]. 2

The following result characterizes when L1(P ) is weakly quasi-complete (i.e., quasi-
complete for σ(L1(P ), L1(P )∗)).

Theorem 3.7. Let X be a Banach space and P : Σ→ Ls(X) be a spectral measure. Then
P is a closed measure if and only if the lcHs (L1(P ), τ(P )) is weakly quasi-complete.
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Proof. Suppose that P is closed. Since its codomain space Ls(X) is quasi-complete, the
subset Σ(P ) ⊆ L1(P ) is relatively weakly compact, that is, its weak closure Σ(P )

σ
is

weakly compact. For this apply Remark 2.6(vi) with Y := Ls(X) and m := P . From
Krein’s Theorem [23, §24, 5.(4′)], it follows that bco(Σ(P )

σ
) is also weakly compact

in L1(P ). Recalling that the weak closure and the τ(P )-closure of any balanced, convex
set in L1(P ) coincide, we can conclude that bco Σ(P ) ⊇ Σ(P )

σ
, which implies the identity

bco Σ(P ) = bco(Σ(P )
σ
). Thus, bco Σ(P ) is weakly compact, and hence weakly complete.

Select any weakly bounded subset V ⊆ L1(P ), which is then also τ(P )-bounded. The
claim is that there exists a constant C > 0 such that

V ⊆ C · bco Σ(P ); (3.13)

To verify this, we first recall that L1(P ) = L∞(P ) as vector spaces (cf. Lemma 3.1(ii)).
Moreover,

B[L∞(P )] ⊆ 4 · bco Σ(P ); (3.14)

this can be proved by expressing each function inB[L∞(P )] as a uniform limit of appropriate
Σ-simple functions. On the other hand, the image IP (V ) ⊆ Ls(X) is bounded for the strong
operator topology τs, and hence uniformly bounded by the Banach–Steinhaus Theorem.
From this and (3.11), it follows that

M := sup
f∈V
|f |P ≤ sup

f∈V
‖IP (f)‖op <∞,

which yields
V ⊆M · B[L∞(P )]. (3.15)

Therefore, (3.13) holds with C := 4M by (3.14) and (3.15).
Now, since bco Σ(P ) is weakly complete, so is C · bco Σ(P ). In short, each weakly

bounded subset V of L1(P ) is contained in some weakly complete subset. In other words,
the lcHs L1(P ) is weakly quasi-complete.

Conversely, if L1(P ) is weakly quasi-complete, then it is also τ(P )-quasi-complete
[23, §18, 4.(4)]. So, the bounded, closed subset Σ(P ) ⊆ L1(P ) is also τ(P )-complete. In
other words, P is closed.

The list of equivalences in Lemma 3.1(v) with the statement of Theorem 3.7 can be
extended further. Recalling that Lw(X) is precisely the lcHs Ls(X) equipped with its weak
topology, let Pw : Σ→ Lw(X) denote the spectral measure P : Σ→ Ls(X) interpreted as
being Lw(X) = (Ls(X), σ(Ls(X),Ls(X)∗))-valued. The σ-additivity of Pw is guaranteed
by the Orlicz–Pettis Theorem. Of course, if i : Ls(X) → Lw(X) is the identity map,
necessarily continuous, then Pw = i◦P . ClearlyN0(P ) = N0(Pw) and, from the definition
of an integrable function for a vector measure (see (I-1) and (I-2) in Section 2), it is clear
that L1(P ) = L1(Pw) as vector spaces.

Proposition 3.8. Let X be a Banach space and P : Σ → Ls(X) be a spectral measure.
Then P is a closed measure if and only if Pw is a closed measure.

Proof. For ease of notation set Y := Ls(X) and Yσ := (Y, σ(Y, Y ∗)) = Lw(X), in which
case we have P : Σ→ Y and Pw : Σ→ Yσ.
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Suppose that P is a closed measure. The seminorms determining the topology of Yσ
are the family {qy∗ : y∗ ∈ Y ∗} given by

qy∗(y) := |〈y, y∗〉|, y ∈ Yσ, (3.16)

and so P(Yσ) ⊆ P(Y ), from which it is clear via the definition of the topology τ(Pw) in
L1(Pw) (= L1(P ) as vector spaces) that τ(Pw) is weaker than the topology τ(P ) in L1(P ).
Thus, the identity map from (L1(P ), τ(P )) onto (L1(Pw), τ(Pw)) is continuous, which
implies that L1(Pw)∗ ⊆ L1(P )∗. The claim is that this is an equality. To show this, fix
y∗ := x ⊗ x∗ ∈ Y ∗σ = Y ∗ of the form (3.2), with x ∈ X and x∗ ∈ X∗, and consider the
seminorm qy∗ ∈ P(Yσ) given by (3.16). Since the polar set {y∗}◦ equals Uqy∗ = q−1

y∗ ([0, 1]),
the Bipolar Theorem ([13, p. 1], [23, §20, 8.(5)]) yields

U◦qy∗ = bco{y∗} = {λy∗ : λ ∈ C, |λ| ≤ 1}.
Hence, the corresponding τ(Pw)-continuous seminorm qy∗(Pw) for L1(Pw) satisfies (see
(2.2) with qy∗ in place of q and Pw in place of m) the equation

qy∗(Pw)(f) = sup
|λ|≤1

∫
Ω

|f | d|〈Pw, λy∗〉| =
∫

Ω

|f | d|〈Pw, y∗〉|

=

∫
Ω

|f | d|〈P, y∗〉|, f ∈ L1(Pw). (3.17)

Define now ξ := y∗ ◦IP = (x⊗x∗)◦IP . Since the integration operator IP : L1(P )→ Y

is continuous, it follows that ξ ∈ L1(P )∗. Moreover, from (3.17) we have

|〈f, ξ〉| =
∣∣∣∣〈∫

Ω

f dP, y∗
〉∣∣∣∣ =

∣∣∣∣∫
Ω

f d〈P, y∗〉
∣∣∣∣

≤
∫

Ω

|f | d|〈P, y∗〉| = qy∗(Pw)(f), f ∈ L1(Pw) = L1(P ).

Consequently, ξ is τ(Pw)-continuous because qy∗(Pw) ∈ P(L1(Pw)). This establishes the
reverse inclusion L1(P )∗ ⊆ L1(Pw)∗ because every element of L1(P )∗ is of the form
ξ = (x⊗ x∗) ◦ IP for some x ∈ X and x∗ ∈ X∗; see Lemma 3.4.

Hence, we see that L1(P )∗ = L1(Pw)∗, and so the weak topologies σ(L1(P ), L1(P )∗)

and σ(L1(Pw), L1(Pw)∗) coincide on L1(P ) = L1(Pw). Using Theorem 3.7 we can now
conclude that L1(Pw) is σ(L1(Pw), L1(Pw)∗)-quasi-complete, and so L1(Pw) is τ(Pw)-
quasi-complete by [23, §18, 4.(4)]. In particular, the vector measure Pw : Σ → Lw(X) is
closed as Σ(Pw) is a τ(Pw)-closed, bounded subset of L1(Pw).

The converse implication, namely that the closedness of P follows from that of Pw, is
proved (correctly) in [41, proof of Proposition 2] (set m := P there).

Remark 3.9. (i) A comment on [41, Proposition 2] is in order. One direction of the proof
given there is based on [21, Corollary 13], which however is yet to be verified because its
proof in [21] is incomplete. Because of this problemwe have chosen to provide an alternative
proof of this direction for Proposition 3.8 above (only for spectral measures).

(ii) Comparing Lemma 3.1(v), Theorem 3.7 and Proposition 3.8 we notice that there
is no claim that these equivalences are the same asR(Pw) (= R(P )) being a closed subset
of Lw(X). Indeed, this is in general false: see the discussion after Proposition 3.21 below.
Actually, since IP : (L1(P ))σ → Lw(X) is a bicontinuous isomorphism of (L1(P ))σ onto
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IP (L1(P )), equipped with the relative topology τw from Lw(X), and satisfies IP (Σ(P ))

= R(P ), we see that R(P ) is a closed set for the weak operator topology if and only Σ(P )

is a weakly closed subset of (L1(P ), τ(P )).
(iii) It was shown in the proof of Proposition 3.8 that whenever P is a closed spectral

measure, then the lcHs (L1(Pw), τ(Pw)) is always quasi-complete. This is independent of
whether or not the codomain space Lw(X) of Pw is quasi-complete. In fact, Lw(X) is
quasi-complete if and only if the Banach space X is reflexive. To see this, recall from
Section 1 that X is reflexive if and only if X is weakly quasi-complete (i.e., Xσ is quasi-
complete), and hence it suffices to show that Lw(X) = (Ls(X))σ is quasi-complete if and
only if Xσ is quasi-complete. Suppose first that Xσ is quasi-complete, and let {Tγ} be any
bounded Cauchy net in Lw(X), that is, supγ |〈Tγx, x∗〉| <∞ for all x ∈ X, x∗ ∈ X∗. Fix
x ∈ X. Then {Tγx} is a bounded Cauchy net in Xσ, and so there exists Tx ∈ X such
Tγx→ Tx in Xσ. The map T : x 7→ Tx for x ∈ X is linear and, by the Banach–Steinhaus
Theorem, also continuous, i.e., T ∈ L(X). It is routine to check that Tγ → T in Lw(X),
and so Lw(X) is quasi-complete. Conversely, suppose that Lw(X) is quasi-complete. Let
{xγ} be any bounded Cauchy net in Xσ. Fix z∗ ∈ X∗ \ {0} and define Tγ : X → X by
Tγ : x 7→ 〈x, z∗〉xγ for x ∈ X and each γ. For all x ∈ X and x∗ ∈ X∗ we observe (by (3.2)
and (3.3)) that

sup
γ
|〈Tγ , x⊗ x∗〉| = |〈x, z∗〉| sup

γ
|〈xγ , x∗〉| <∞

because {xγ} is bounded in Xσ, i.e., {Tγ} is a bounded net in Lw(X). Moreover,

|〈(Tγ − Tγ′), x⊗ x∗〉| = |〈x, z∗〉| · |〈(xγ − xγ′), x∗〉| ∀γ, γ′,

and so {Tγ} is also Cauchy in Lw(X). By assumption there exists T ∈ L(X) such that
Tγ → T in Lw(X). Choose any u ∈ X with λ := 〈u, z∗〉 6= 0. Then 1

λTγ →
1
λT in Lw(X),

and in particular,

lim
γ
〈xγ , x∗〉 = lim

γ

〈
1

λ
Tγ , u⊗ x∗

〉
=

1

λ
〈Tu, x∗〉, x∗ ∈ X∗.

Hence, xγ → 1
λTu in Xσ. The quasi-completeness of Xσ is thereby established. 2

The following result is an immediate consequence of Lemma 2.3(ii) with m := P

together with (3.3) and (3.6).

Lemma 3.10. Let X be a Banach space. A spectral measure P : Σ → Ls(X) is closed
whenever there exists a localizable measure µ : Σ→ [0,∞] such that

〈Px, x∗〉 � µ, x ∈ X, x∗ ∈ X∗. (3.18)

Example 3.11. Let Ω := [0, 1] and Σ be the Borel σ-algebra of Ω. Given 1 ≤ p <∞, let
X := Lp([0, 1]) be the Banach space with its usual Lp-norm for the Lebesgue measure µ
on Σ. For each E ∈ Σ, multiplication in Lp([0, 1]) by χE defines an operator P (E) ∈ L(X).
It is clear that the so-defined set function P : E 7→ P (E) ∈ Ls(X) is a spectral measure.
Since P has infinite range, the lcHs L1(P ) is not weakly complete by Theorem 3.5. On
the other hand, (3.18) holds for all x ∈ X and x∗ ∈ X∗ = Lq([0, 1]), with 1/p+ 1/q = 1,
because 〈Px, x∗〉(E) =

∫
E
x(ω)x∗(ω) dµ(ω) for E ∈ Σ. Thus, P is closed by Lemma 3.10,

and hence Theorem 3.7 shows that L1(P ) is weakly quasi-complete. 2
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The proof of Theorem 3.7 is somewhat abstract and relies on several general results
from functional analysis. Also, the weak quasi-complete lcHs (L1(P ), σ(L1(P ), L1(P )∗))

is not identified explicitly. For a large class of spectral measures P an alternative, more
direct proof of Theorem 3.7 is available, which is of interest in its own right and has the
advantage that it identifies (L1(P ), σ(L1(P ), L1(P )∗) more concretely (as an L∞-space
equipped with its weak-∗ topology). First we require a definition.

Let X be a Banach space and P : Σ → Ls(X) be a spectral measure. An element
x0 ∈ X is called a separating vector for P if P (E) = 0 whenever P (E)x0 = 0. In other
words,E ∈ Σ is P -null if and only if P (E)x0 = 0. For the spectral measure in Example 3.11
the constant function χΩ is a separating vector.

Proposition 3.12. Let X be a Banach space and P : Σ → Ls(X) be a spectral measure
admitting a separating vector x0 ∈ X. Then there exists a finite, positive measure µ on Σ

such that (
L1(P ), σ(L1(P ), L1(P )∗)

)
=
(
L∞(µ), σ(L∞(µ), L1(µ))

)
(3.19)

as lcHs’. In particular, P is closed and L1(P ) is weakly quasi-complete.

Proof. Select any Bade functional x∗0 ∈ X∗ of P relative to x0; that is, x∗0 satisfies both

(a) µ : E 7→ 〈P (E)x0, x
∗
0〉, for E ∈ Σ, is a finite positive measure on Σ, and

(b) P (E)x0 = 0 whenever µ(E) = 0

(see Lemma 3.2 and [48, Theorem VI.1]). It follows that P and µ have the same null sets
because x0 is a separating vector for P . Consequently,

L1(P ) = L∞(P ) = L∞(µ) (3.20)

as vector spaces (see Lemma 3.1(ii) for the first equality), and moreover, (3.18) holds. In
particular, P is closed by Lemma 3.10.

Fix x ∈ X and x∗ ∈ X∗. By (3.18) the Radon–Nikodým derivative ϕx,x∗ ∈ L1(µ) of
the complex measure 〈Px, x∗〉 with respect to µ exists. Recalling (3.6) and Lemma 3.4 we
deduce, for each f ∈ L1(P ) = L∞(P ) = L∞(µ), that

〈f, (x⊗ x∗) ◦ IP 〉 =

∫
Ω

f d〈Px, x∗〉 =

∫
Ω

fϕx,x∗ dµ. (3.21)

Let now g ∈ L1(µ). Its corresponding indefinite integral µg : E 7→
∫
E
g dµ for E ∈ Σ

satisfies µg(E) = 0 whenever P (E)x0 = 0 (see the definition of µ in (a), and use the fact
that E is µ-null). According to [16, Theorem 4.2], there exist vectors x ∈ span{P (E)x0 :

E ∈ Σ} ⊆ X and x∗ ∈ X∗ such that µg = 〈Px, x∗〉 on Σ. Thus, (3.21) holds with g in
place of ϕx,x∗ .

Recalling Lemma 3.4, we conclude from the above arguments and (3.20) that L1(P )∗

can be identified with L1(µ), and hence (3.21) yields the identity (3.19) between lcHs’.
Finally, (3.19) shows thatL1(P ) is weakly quasi-complete becauseL∞(µ) is quasi-complete
for the weak-∗ topology σ(L∞(µ), L1(µ)) [30, Corollary 2.6.19].

Remark 3.13. (i) If X is a separable Banach space, then every Ls(X)-valued spectral
measure admits a separating vector (see Lemma 3.2 and [48, Proposition VI.3]).
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(ii) There exist a non-separable Banach spaceX and an Ls(X)-valued spectral measure
admitting a separating vector [39, Example 1].

(iii) For an alternative proof of the existence of Bade functionals we refer to [10, Ch.
XVII, Lemma 3.12]. 2

The following example generalizes Example 3.11 and simultaneously illustrates that,
in certain settings, the use of Bade functionals can be replaced by an elegant factorizition
result of Lozanovskĭı. Of course, since separating vectors are present, it is covered by
Proposition 3.12 above.

Example 3.14. Consider a Banach function space, briefly B.f.s., X = X(µ) based on a
finite, positive measure space (Ω,Σ, µ), with respect to the µ-a.e. pointwise order. That is,
X(µ) is a complex vector lattice of (equivalence classes of) Σ-measurable functions modulo
µ-null functions such that

(a) if ψ ∈ L0(Σ) and ϕ ∈ X(µ) with |ψ| ≤ ϕ pointwise µ-a.e., then ψ ∈ X(µ),
(b) sim Σ ⊆ X(µ), and
(c) X(µ) is equipped with a lattice norm ‖ · ‖X(µ) for which X(µ) is complete.

As general references we suggest [28], [37], [53], for example.
We assume further that X(µ) has σ-order continuous norm, i.e., limn→∞ ‖ϕn‖X(µ)

= 0 whenever ϕn ↓ 0 in the µ-a.e. pointwise order of X(µ). For such B.f.s.’ X(µ) we can
identify the dual Banach space X(µ)∗ of X(µ) with its associate space

X(µ)′ := {ψ ∈ L0(Σ) : ϕψ ∈ L1(µ) for all ϕ ∈ X(µ)}

in the following sense. Every function ψ ∈ X(µ)′ defines a continuous linear functional
ξψ : ϕ 7→

∫
Ω
ϕψ dµ on X(µ), and conversely, every continuous linear functional on X(µ)

must be equal to ξψ for some ψ ∈ X(µ)′ [37, Proposition 2.16].
Let E ∈ Σ. Via (a), we can define a linear operator P (E) in X(µ) by P (E)ϕ := ϕχE

for ϕ ∈ X(µ). Clearly P (E) is a projection, and moreover is continuous because ‖ · ‖X(µ)

is a lattice norm. The L(X(µ))-valued set function P : E 7→ P (E), for E ∈ Σ, is clearly
finitely additive on Σ and satisfies (3.4). By the σ-order continuity of ‖ · ‖X(µ), the set
function P is actually σ-additive for τs. So, P : Σ → Ls(X(µ)) is a spectral measure,
usually referred to as the canonical spectral measure in X(µ).

The constant function x0 := χΩ, which belongs to X(µ) by (b), is a separating vector
for P . Moreover, χΩ ∈ X(µ)∗ = X(µ)′ is a Bade functional relative to x0 and satisfies
〈P (E)x0, χΩ〉 = µ(E) for E ∈ Σ, i.e., 〈Px0, χΩ〉 = µ on Σ. In particular, L1(P ) =

L∞(P ) = L∞(µ) as vector spaces.
Let ϕ ∈ X(µ) and ψ ∈ X(µ)′, in which case ϕψ ∈ L1(µ) and

〈Pϕ,ψ〉(E) =

∫
E

ϕψ dµ, E ∈ Σ. (3.22)

Then (ϕ⊗ ψ) ◦ IP ∈ L1(P )∗ (see Lemma 3.4) has the form

〈f, (ϕ⊗ ψ) ◦ IP 〉 =

∫
Ω

f d〈Pϕ,ψ〉 =

∫
Ω

f(ϕψ) dµ

for f ∈ L1(P ) = L∞(P ) = L∞(µ).
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Conversely, let g ∈ L1(µ). Define a bounded, Σ-measurable function g0 by g0(ω) :=

g(ω)/|g(ω)| if g(ω) 6= 0, and by g0(ω) := 0 otherwise. Then g = |g|g0 pointwise on Ω.
By Lozanovskĭı’s Theorem (see [17, Theorem 1], [27, Theorem 6], [40, Proposition 6])
applied to the R-valued function |g| ∈ L1(µ), there exist R-valued functions ϕ0 ∈ X(µ)

and ψ ∈ X(µ)∗ such that |g| = ϕ0ψ on Ω. So, with ϕ := g0ϕ0 ∈ X(µ) (recall condi-
tion (a)) we see that g = |g|g0 = (g0ϕ0)ψ = ϕψ. This together with (3.22) implies, for
every f ∈ L1(P ) = L∞(P ) = L∞(µ), that∫

Ω

fg dµ =

∫
Ω

f(ϕψ) dµ =

∫
Ω

f d〈Pϕ,ψ〉 = 〈f, (ϕ⊗ ψ) ◦ IP 〉.

We can conclude from the above arguments that the dual space L1(P )∗ of L1(P ) can
be identified with L1(µ) and that (3.19) holds as lcHs’. 2

We now address the weak sequential completeness of L1(P ), beginning with the role
played by a certain completeness property of the co-domain space Ls(X). Even though
the next result follows from Theorem 3.7, we provide a simpler and more direct proof.

Proposition 3.15. Let X be a weakly sequentially complete Banach space. If P :

Σ→ Ls(X) is any closed spectral measure, then L1(P ) is also weakly sequentially complete.

Proof. Since P is closed, the linear subspace IP (L1(P )) ⊆ Ls(X) is complete (see Lem-
ma 3.1(v)), and in particular weakly closed. So, IP (L1(P )) is weakly sequentially complete
because the weak sequential completeness of X implies that of Ls(X); this was noted
earlier in this section. Thus L1(P ), which is topologically isomorphic to IP (L1(P )) by
Lemma 3.1(i), is weakly sequentially complete.

In view of Theorem 3.7, the question of the weak sequential completeness of L1(P ) is
only relevant for non-closed spectral measures. In this regard, the first point is whether
the closedness assumption on P can be omitted in Proposition 3.15. The answer is no, as
can be seen from the following

Example 3.16. We refer to [15, 4.2 and 4.3] which exhibit a non-separable Hilbert spaceX
and an Ls(X)-valued spectral measure defined on some (specific) measurable space (Ω,Σ)

such thatP (Σ) is not sequentially τs-closed; equivalently,P (Σ) is not sequentially complete
in the quasi-complete lcHs Ls(X). In particular, P (Σ) is not complete in Ls(X), and hence
P is not a closed measure. Moreover, L1(P ) is not τ(P )-sequentially complete (due to the
τ(P )-closedness of Σ(P ) in L1(P )); see [38, Example 6.5(i)] for the detailed arguments.
Thus, the lcHs L1(P ) is not weakly sequentially complete [23, §18, 4.(4)], whereas the
Hilbert space X is surely weakly sequentially complete. 2

Concerning Example 3.16, the point is that the range P (Σ) of P is a Bade σ-complete
B.a. of projections (see Lemma 3.2), but it is not weakly sequentially complete because it
is not sequentially τs-complete.

For a Banach-space-valued vectormeasurem, it was pointed out in Section 1 thatL1(m)

is a Banach lattice with order continuous norm, and that L1(m) is weakly sequentially
complete if and only if it does not contain an isomorphic copy of c0. For analogues of this
to the locally convex Riesz space setting we refer to [8], [51]. However, the full analogue
is not available. In Example 3.16, the lcHs L1(P ) does not contain a copy of c0 (see
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Proposition 3.17 below), but it fails to be weakly sequentially complete. Recall that a
lcHs Y is said to contain an isomorphic copy of the Banach space c0 if there exists a Y -
valued, bicontinuous isomorphism from c0 onto its range. A weakly sequentially complete
lcHs cannot contain an isomorphic copy of c0 because c0 itself is not weakly sequentially
complete.

Proposition 3.17. Let X be a Banach space and P : Σ→ Ls(X) be any spectral measure.

(i) Every scalarly P -integrable function is also P -integrable.
(ii) The lcHs (L1(P ), τ(P )) cannot contain an isomorphic copy of c0.

Proof. (i) Let f : Ω → C be a scalarly P -integrable function. Our proof is motivated by
that of [48, Proposition V.4], which provides a direct proof of Lemma 3.1(ii). To show that
the subset

{IP (s) : s ∈ sim Σ, |s| ≤ |f |} ⊆ L(X) (3.23)

is uniformly bounded (i.e., bounded in Lu(X)), fix x ∈ X. Given x∗ ∈ X∗, the function f
is 〈P, x⊗x∗〉-integrable by assumption (see (3.3)), and hence 〈Px, x∗〉-integrable by (3.6).
Thus, for each s ∈ sim Σ satisfying |s| ≤ |f | pointwise, it follows that

|〈IP (s)x, x∗〉| =
∣∣∣∣〈∫

Ω

s dPx, x∗
〉∣∣∣∣ =

∣∣∣∣∫
Ω

s d〈Px, x∗〉
∣∣∣∣

≤
∫

Ω

|s| d|〈Px, x∗〉| ≤
∫

Ω

|f | d|〈Px, x∗〉| <∞.

Therefore, the subset {IP (s)(x) : s ∈ sim Σ, |s| ≤ |f |} ⊆ X is weakly bounded, and hence
norm bounded. Since x ∈ X is arbitrary, the Banach–Steinhaus Theorem ensures that the
subset (3.23) is uniformly bounded.

Given k ∈ N0 := N ∪ {0}, define the set

E(k) := {ω ∈ Ω : k2 ≤ |f(ω)| < (k + 1)2} ∈ Σ.

Then 0 ≤ k2χE(k) ≤ |f | pointwise on Ω, so that k2P (E(k)) = IP (k2χE(k)) belongs to the
uniformly bounded subset (3.23). Let

M := sup
k∈N0

‖k2P (E(k))‖op <∞. (3.24)

Given n ∈ N, the set F (n) := {ω ∈ Ω : |f(ω)| ≥ n2} equals the disjoint union
⋃∞
k=nE(k).

So, for every x ∈ X, it follows from (3.24) that

‖P (F (n))x‖X =
∥∥∥ ∞∑
k=n

P (E(k))x
∥∥∥
X
≤
∞∑
k=n

‖P (E(k))x‖X

≤
∞∑
k=n

‖P (E(k))‖op · ‖x‖X ≤M
( ∞∑
k=n

k−2
)
‖x‖X .

Then ‖P (F (n))‖op ≤M
∑∞
k=n k

−2 for all n∈N. Consequently, limn→∞ ‖P (F (n))‖op = 0.
But every non-zero projection Q ∈ L(X) satisfies ‖Q‖op ≥ 1. Therefore, we can select
N ∈ N such that P (F (N)) = 0, which means that F (N) is P -null, that is, |f | < N2

pointwise P -a.e. on Ω. Thus, f is P -essentially bounded, and hence P -integrable via
Lemma 3.1(ii).
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(ii) Since the codomain space Ls(X) of P is quasi-complete, part (ii) follows from the
equivalence (a)⇔(c) in [38, Proposition 6.4(i)].

Part (i) of Proposition 3.17 above is of interest in its own right because, given a general
vector measure m, one of the natural questions is whether or not scalarly m-integrable
functions are always m-integrable. For arbitrary m the answer is: not always. This topic
is extensively explored in [37, Ch. 3], [38], for general vector measures.

According to Example 3.16, there exist non-closed spectral measures whose L1-space
fails to be weakly sequentially complete. There also exist non-closed spectral measures
whose L1-space is weakly sequentially complete. Actually, as we now show, there is a
large class of spectral measures whose L1-space is always weakly sequentially complete,
independent of whether the spectral measure is closed or not!

Theorem 3.18. Let X be a Banach space and P : Σ → Ls(X) be any atomic spectral
measure. Then the lcHs L1(P ) is weakly sequentially complete. If, in addition, P is a closed
measure, then P (Σ) is necessarily a compact subset of Ls(X).

Proof. Fix a weak Cauchy sequence {fn}∞n=1 in L1(P ), in which case it is weakly bounded,
and hence τ(P )-bounded. The continuous linear operator IP : L1(P ) → Ls(X) maps
the τ(P )-bounded sequence {fn}∞n=1 to the bounded sequence {IP (fn)}∞n=1 in Ls(X),
which is then uniformly bounded via the Banach–Steinhaus Theorem. So, we have K :=

supn∈N ‖IP (fn)‖op <∞. This and (3.11) give

sup
n∈N
|fn|P ≤ K. (3.25)

For each individual function fn with n ∈ N, there is E(n) ∈ Σ satisfying both Ω \ E(n)

∈ N0(P ) and |fn|P = supω∈E(n) |fn(ω)|. Consequently, (3.25) implies that

|(fnχE(n))(ω)| ≤ K, n ∈ N, ω ∈ Ω. (3.26)

The claim is both that the set

L :=
{
ω ∈ Ω : lim

n→∞
(fnχE(n))(ω) exists in C

}
belongs to Σ, and that Ω \ L ∈ N0(P ). Indeed, with gn := fnχE(n) for n ∈ N, let

L1 :=
{
ω ∈ Ω : lim

n→∞
(Re gn)(ω) exists in R

}
,

L2 :=
{
ω ∈ Ω : lim

n→∞
(Imgn)(ω) exists in R

}
.

Define extended real-valued functions ϕ and ψ on Ω by

ϕ(ω) := lim sup
n→∞

(Re gn)(ω) and ψ(ω) := lim inf
n→∞

(Im gn)(ω), ω ∈ Ω.

Since both ϕ and ψ are Σ-measurable, we have

L1 = ϕ−1(R) ∩ ψ−1(R) ∩ {ω ∈ Ω : ϕ(ω) = ψ(ω)} ∈ Σ.

Similarly, L2 ∈ Σ. So, L = L1 ∩ L2 ∈ Σ.
In order to verify that Ω\L ∈ N0(P ), we shall apply Lemma 2.9 with Y := Ls(X) and

m := P . With the notation from there, {χF (α)}α∈A(P ) is the family of all atoms in Σ(P ).
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First, fixα ∈ A(P ) and select vectorsxα ∈ X andx∗α ∈ X∗ satisfying 〈P (F (α))xα, x
∗
α〉 = 1.

Consider the linear functional

ξα := (xα ⊗ x∗α) ◦ IP ◦MF (α) ∈ L1(P )∗

(see Lemma 3.4), whereMF (α) ∈ L(L1(P )) is the operator of multiplication by χF (α) (see
(2.7) or (2.8) with E := F (α)). By recalling that gn = fn pointwise P -a.e. on Ω for n ∈ N,
the sequence {gn}∞n=1 is the same as {fn}∞n=1 in the quotient space L1(P ) = L1(P )/N (P ),
and hence {gn}∞n=1 is weakly Cauchy in L1(P ). So, ξα ∈ L1(P )∗ maps {gn}∞n=1 to a Cauchy
sequence in C. From (2.11), with m := P and f := gn for n ∈ N, we can see that this
Cauchy sequence in C is precisely {a(α, gn)}∞n=1 because

〈gn, ξα〉 =

〈(∫
F (α)

gn dP

)
xα, x

∗
α

〉
= 〈a(α, gn)P (F (α))xα, x

∗
α〉 = a(α, gn)

for n ∈ N. Moreover, it follows from (2.12) with m := P and f := gn that the set

G(α, n) := g−1
n ({a(α, gn)}) ∩ F (α) ⊆ F (α), n ∈ N,

satisfies
F (α) \G(α, n) ∈ N0(P ). (3.27)

With G(α) :=
⋂∞
n=1G(α, n) ⊆ F (α), it follows that

gn(ω) = a(α, gn), ω ∈ G(α), n ∈ N. (3.28)

Since the Cauchy sequence {a(α, gn)}∞n=1 converges in C, we deduce from (3.28) that
G(α) ⊆ L, i.e., Ω \ L ⊆ Ω \G(α), and hence (3.27) gives

(Ω \ L) ∩ F (α) ⊆ F (α) \G(α) =

∞⋃
n=1

(F (α) \G(α, n)) ∈ N0(P ).

Therefore, (Ω\L)∩F (α) ∈ N0(P ). As this holds for arbitrary α ∈ A(P ), Lemma 2.9 with
Y := Ls(X), m := P and E := Ω \ L shows that Ω \ L is P -null. So, the claim has been
verified.

Now, let f denote the pointwise limit of the individual functions fnχE(n)∩L = gnχL for
n ∈ N. Then |f | ≤ KχΩ pointwise by (3.26). SinceKχΩ is P -integrable and the codomain
space Ls(X) of P is quasi-complete (hence, sequentially complete), the Dominated Con-
vergence Theorem applied to P [25, Theorem 2.2(2)] shows that f is the τ(P )-limit of
{fnχE(n)∩L}∞n=1. So, f is the τ(P )-limit of {fn}∞n=1 as fn = fnχE(n)∩L pointwise P -a.e.
on Ω. In particular, f is also the weak limit of {fn}∞n=1 in L1(P ), which establishes the
weak sequential completeness of L1(P ) because {fn}∞n=1 was an arbitrary weak Cauchy
sequence in L1(P ).

If, in addition, P is closed, then the compactness of P (Σ) in Ls(X) follows from
Proposition 2.12(i).

We recall that every σ-atomic spectral measure is necessarily closed; see the discussion
immediately prior to Lemma 2.8. A general atomic spectral measure may or may not be
closed; see Example 3.22 below, for instance.

Corollary 3.19. Let X be a Banach space and P : Σ → Ls(X) be any atomic spectral
measure.
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(i) A sequence in L1(P ) is τ(P )-convergent if and only if it is weakly convergent.
(ii) The closed subset Σ(P ) ⊆ L1(P ) is weakly sequentially complete.

Proof. (i) The ‘only if’ portion is obvious. On the other hand, the ‘if’ portion has been
established in the proof of Theorem 3.18.

(ii) Since Σ(P ) is weakly closed in L1(P ) by Proposition 2.10 (with m := P ), this
follows immediately from Theorem 3.18.

Remark 3.20. Part (ii) of Corollary 3.19 need not be valid for spectral measures which
are not atomic. Fix any 1 ≤ p <∞ and let X := Lp([0, 1]). Consider the atomless, closed
spectral measure P : Σ → Ls(X) given in Example 3.11; the notation is from there,
and so µ is the Lebesgue measure on the Borel σ-algebra Σ of Ω := [0, 1]. According to
Proposition 3.12 and Example 3.14, we can identify L1(P ) with L∞(µ), as vector spaces,
and identify the weak topology on L1(P ) with the weak-∗ topology σ(L∞(µ), L1(µ))

on L∞(µ). It is shown in [20, Example 4] that there exists a sequence {A(n)}∞n=1 ⊆ Σ

such that χA(n) → 1
2χΩ in (L∞(µ), σ(L∞(µ), L1(µ))) as n → ∞. Hence, {χA(n)}∞n=1 is

a weak Cauchy sequence in L1(P ) whose weak limit 1
2χΩ does not belong to Σ(P ). So,

Σ(P ) ⊆ L1(P ) is not weakly sequentially complete.
This specific spectral measure P also shows that part (i) of Corollary 3.19 may fail for

a general spectral measure. Indeed, as already noted, the sequence {χA(n)}∞n=1 is weakly
convergent to 1

2χΩ inL1(P ). However, it cannot be τ(P )-convergent because the closedness
of Σ(P ) in L1(P ) would then imply that the τ(P )-limit (necessarily 1

2χΩ) belongs to Σ(P ),
which is clearly not the case. 2

Given a Banach space X, the question arises of whether or not every Bade σ-complete
B.a. of projections in Ls(X) is weakly sequentially complete, i.e., sequentially complete
in the space Lw(X) = (Ls(X), σ(Ls(X),Ls(X)∗)). The answer is no, in general; see the
discussion after Example 3.16. However, if the B.a. happens to be atomic, then the answer
is in the affirmative as we now show.

Proposition 3.21. Let X be a Banach space and M ⊆ Ls(X) be any atomic, Bade
σ-complete B.a. of projections. ThenM is sequentially complete in Lw(X).

Proof. According to Lemma 3.2, there exists a measurable space (Ω,Σ) and a spectral
measure P : Σ → Ls(X), necessarily atomic by Lemma 3.3, whose range equals M.
By Corollary 3.19(ii), the subset Σ(P ) ⊆ L1(P ) is weakly sequentially complete, and
hence so is its image IP (Σ(P )) under the bicontinuous isomorphism IP from L1(P ) into
Ls(X); use Lemma 3.1(i) and the fact that any continuous linear map between lcHs’
Y and Z is also continuous between (Y, σ(Y, Y ∗)) and (Z, σ(Z,Z∗)) [23, §20, 4.(5)]. But
M = P (Σ) = IP (Σ(P )), which establishes the proposition.

An immediate consequence of Proposition 3.21 is that such a B.a. of projectionsM is
necessarily sequentially complete in Ls(X), which is exactly Theorem 2.2 in [15].

For the interested reader we provide an alternative and more direct proof of Proposi-
tion 3.21 in the Appendix. It does not make use of spectral measures, but is based purely
on the structure of Bade σ-complete B.a.’s of projections.
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The subtlety of Proposition 3.21 can be gleaned from Remark 3.20. From the notation
and the example there, since the isomorphism IP : L1(P ) → Ls(X) is bicontinuous, it is
also weak-to-weak bicontinuous. But Σ(P ) is not weakly sequentially complete, and hence
M := P (Σ) = IP (Σ(P )) is not sequentially complete in Lw(X). Of course, M is not
atomic, and so there is no contradiction to Proposition 3.21.

The feature exhibited by this example is actually more widespread. Indeed, let X
be any infinite-dimensional Hilbert space and M ⊆ L(X) be any atomless, Bade com-
plete B.a. of selfadjoint projections. A classical result of H. Dye [12, Lemma 2.3] asserts
that the closure Mw

of M in Lw(X) never consists entirely of projections. Neverthe-
less,Mw

is always a uniformly bounded, quasi-complete subset of Lw(X). This follows
from the facts that M = P (Σ) for some closed spectral measure P : Σ → Ls(X) (see
Lemma 3.2), that L1(P ) is weakly quasi-complete (by Theorem 3.7) and, as noted before,
that IP : L1(P )→ Ls(X) being a bicontinuous isomorphism implies it is also a bicontinu-
ous isomorphism of (L1(P ), σ(L1(P ), L1(P )∗)) onto IP (L1(P )) equipped with the relative
topology τw from Lw(X). Similar examples can be constructed in certain reflexive Banach
spaces [1, p. 354]. Curiously, for any Bade complete B.a. of projectionsM in any Banach
space X, it is known that if a net {Qγ}γ∈Γ ⊆ M converges in Lw(X) to a projection Q,
then necessarily Q ∈M [10, Ch. XVII, Lemma 3.6], and {Qγ}γ∈Γ actually converges to Q
in Ls(X) [10, Ch. XVII, Theorem 3.27]. The point is that for certain atomless B.a.’s of pro-
jectionsM in various Banach spaces X, there always exist nets/sequences {Qγ}γ∈Γ ⊆M
which converge in Lw(X) to operators which are not projections!

We end this section with two relevant examples of atomic spectral measures taken
from [15]. To this end, let X be a Banach space andM⊆ L(X) be a B.a. of projections.
According to [15, p. 46] (see also [46, p. 366]), we say that M is Bade atomic if it has
a family {Qα}α∈A of atoms such that, for every Q ∈ M \ {0}, there is a subset B ⊆ A
for which the series

∑
α∈BQα is unconditionally convergent in the lcHs Ls(X) with Q as

its sum, i.e., Q =
∑
α∈BQα. IfM is Bade atomic, then clearly it is atomic. The converse

holds under the additional assumption thatM is Bade complete [15, Lemma 2.1(ii)].

Example 3.22. With Ω := [0, 1], let Σ ⊆ 2Ω be any σ-algebra such that {ω} ∈ Σ for
all ω ∈ Ω. We denote by X the non-separable Banach space `p(Ω) (1 ≤ p < ∞) or
c0(Ω). For each E ∈ Σ, define a projection P (E) ∈ L(X) by P (E) := χEx for x ∈ X.
The set function P : Σ → Ls(X) is an atomic spectral measure whose atoms are all the
singleton sets {ω} with ω ∈ Ω. The case when X := `2(Ω) and Σ is the Borel σ-algebra
was considered in [15, pp. 45–46]; the arguments given there still apply here. Regarding
the rangeM := P (Σ) of P , it is an atomic, Bade σ-complete B.a. of projections in Ls(X)

(see Lemmas 3.2 and 3.3) and its atoms are the projections P ({ω}) for ω ∈ Ω. Moreover,
M is also Bade atomic because for everyE ∈ Σ the series

∑
ω∈E P ({ω}) is unconditionally

convergent in Ls(X) with P (E) =
∑
ω∈E P ({ω}).

It turns out that P is closed if and only if Σ = 2Ω. This can be proved by adapting
the arguments in Example 2.13. Note also that [36, Example 2.22] gives the ‘if’ portion,
when X = `2(Ω), by Lemma 2.3(ii) with Y := Ls(X), m := P and µ being the counting
measure. This is possible because µ, defined on 2Ω, is localizable. In particular, if Σ is the
Borel σ-algebra in Ω or the σ-algebra of all countable/co-countable subsets of Ω, then P



36 S. Okada and W. J. Ricker

is not closed. In this case, L1(P ) is not weakly quasi-complete (by Theorem 3.7), but in
view of Theorem 3.18, it is weakly sequentially complete. 2

Example 3.23. The following construction occurs in [15, Example 2.5]. Let Ω := [0, 1]

and Σ be the Borel σ-algebra of Ω. For any subset G ⊆ Ω, let F(G) denote the family of
all the finite subsets of G. We denote by X the Banach space of all σ-additive complex
measures on Σ, equipped with the total variation norm ‖µ‖X := |µ|(Ω) for µ ∈ X, where
|µ| : Σ → [0,∞) is the total variation measure of µ [49, §6.1]. Given µ ∈ X and E ∈ Σ,
define µE ∈ X by µE(F ) := µ(E ∩ F ) for F ∈ Σ. The set function P : Σ→ Ls(X) given
by P (E)µ := µE for µ ∈ X and E ∈ Σ is an atomic spectral measure whose atoms are all
the singleton sets {ω} ∈ Σ with ω ∈ Ω. The rangeM := P (Σ) of P is an atomic, Bade
σ-complete B.a. of projections in Ls(X); its atoms are precisely the projections P ({ω})
with ω ∈ Ω (see Lemmas 3.2 and 3.3). However,M is not Bade atomic. Indeed, take any
non-zero, continuous measure ν ∈ X (i.e., ν({ω}) = 0 for all ω ∈ Ω). Then

P (Ω)ν = ν 6= 0 but lim
F∈F(Ω)

∑
ω∈F

P ({ω})ν = 0, (3.29)

which implies thatM is not Bade atomic. Consequently,M is not Bade complete (see the
discussion immediately prior to Example 3.22); equivalently, P is not a closed measure
(see Lemma 3.2). So L1(P ) is weakly sequentially complete (see Theorem 3.18) but not
weakly quasi-complete (see Theorem 3.7). One example of a specific projection belonging
to the τs-closure ofM but not toM itself is given in [15, Example 2.5], where it is denoted
by Pλ. We now exhibit a further projection of this kind.

Given µ ∈ X, define Ω(µ) := {ω ∈ Ω : µ({ω}) 6= 0}. Then Ω(µ) is a countable set.
Indeed, given n ∈ N, the subset Ω(|µ|, n) := {ω ∈ Ω : |µ|({ω}) > 1/n} is finite because
|µ|(Ω) <∞. So, Ω(|µ|) =

⋃∞
n=1 Ω(|µ|, n) is countable. Thus, Ω(µ) is also countable because

Ω(µ) = Ω(|µ|). In particular, Ω(µ) ∈ Σ. Observe that µ(F \Ω(µ)) = 0 for every countable
set F ⊆ Ω.

Define a map Q : X → X by Qµ := µΩ(µ) for µ ∈ X. To show that Q is additive, first
observe the general fact that

ηΩ(η)∪F = ηΩ(η), η ∈ X, (3.30)

for each countable subset F ⊆ Ω. This is a consequence of the σ-additivity of η ∈ X:

ηΩ(η)∪F (E) := η(E ∩ (Ω(η) ∪ F ))

= η(E ∩ Ω(η)) + η(E ∩ (F \ Ω(η))) = η(E ∩ Ω(η)) = ηΩ(η)(E)

for each E ∈ Σ. Second, fix µ, ν ∈ X. Since

|(µ+ ν)({ω})| ≤ |µ({ω})|+ |ν({ω})|, ω ∈ Ω,

we have Ω(µ+ ν) ⊆ Ω(µ) ∪ Ω(ν). This yields

(µ+ ν)Ω(µ)∪Ω(ν) = (µ+ ν)Ω(µ+ν) (3.31)

by (3.30) with η := (µ+ ν) and F := (Ω(µ) ∪ Ω(ν)) \ Ω(µ+ ν). Next, (3.30) with η := µ

and F := Ω(ν) gives
µΩ(µ)∪Ω(ν) = µΩ(µ). (3.32)
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Similarly we have
νΩ(ν)∪Ω(µ) = νΩ(ν). (3.33)

Since (µ+ ν)Ω(µ)∪Ω(ν) = µΩ(µ)∪Ω(ν) + νΩ(µ)∪Ω(ν), it follows from (3.31)–(3.33) that

Q(µ+ ν) := (µ+ ν)Ω(µ+ν) = (µ+ ν)Ω(µ)∪Ω(ν) = µΩ(µ) + νΩ(ν) = Q(µ) +Q(ν),

which verifies the additivity of Q as µ, ν ∈ X are arbitrary.
Next, let a ∈ C. To establish the identity Q(aµ) = aQ(µ), we may assume that a 6= 0

because this identity clearly holds when a = 0. But for a 6= 0 we have Ω(aµ) = Ω(µ),
which implies that

Q(aµ) := (aµ)Ω(aµ) = (aµ)Ω(µ) = a · µΩ(µ) = aQ(µ).

So, it has been verified that Q is linear.
The linear operator Q is also continuous because, for µ ∈ X, we have

‖Qµ‖X = ‖µΩ(µ)‖X = |µΩ(µ)|(Ω) ≤ |µ|(Ω) = ‖µ‖X .
Moreover, Q is a projection. Indeed, for µ ∈ X it follows that

Q2µ = Q(µΩ(µ)) = (µΩ(µ))Ω(µ) = µΩ(µ) = Qµ.

The claim is that the series
∑
ω∈Ω P ({ω}) is unconditionally convergent in Ls(X)

and that its sum equals Q. In fact, fix µ ∈ X and ε > 0. Since Ω(µ) is countable and∑
ω∈Ω(µ) |µ|({ω}) = |µ|(Ω(µ)), we can select F0 ∈ F(Ω(µ)) such that |µ|(Ω(µ) \ F0) < ε.

Whenever F ∈ F(Ω) satisfies F ⊇ F0, we have∥∥∥Qµ−∑
ω∈F

P ({ω})µ
∥∥∥
X

= ‖µΩ(µ) − µΩ(µ)∩F ‖X = ‖µΩ(µ)\F ‖X = |µ|(Ω(µ) \ F )

≤ |µ|(Ω(µ) \ F0) < ε.

This establishes the claim as µ ∈ X and ε > 0 are arbitrary.
Finally, to see that Q /∈M assume that, on the contrary, Q = P (E0) for some E0 ∈ Σ.

Then
δω = Q(δω) = P (E0)δω = (δω)E0

, ω ∈ Ω,

with δω denoting the Dirac measure at ω ∈ Ω. This implies that ω ∈ E0 for all ω ∈ Ω.
In other words, E0 = Ω, and hence P (Ω) = Q, so that I = P (Ω) =

∑
ω∈Ω P ({ω}). This

contradicts (3.29) and so Q /∈M. 2

4. Appendix

In this final section we provide the proofs of those results in Section 2 which are yet to be
verified, together with the alternative proof of Proposition 3.21.

Proof of Lemma 2.7. (i) Since the ‘only if’ portion is obvious, let us verify the ‘if’ portion.
Suppose then thatm(G) = 0. To prove that G ism-null assume, on the contrary, that G is
not m-null. Then there exists H ∈ Σ∩G satisfyingm(H) 6= 0. Sincem(H) ∈ m(Σ∩G) ⊆
m(Σ ∩ E) = {0,m(E)} (see (2.10)), we must have m(H) = m(E), and hence

m(G \H) = m(G)−m(H) = −m(H) = −m(E) 6= 0. (4.1)

It then follows that m(G \ H) = m(E) because m(G \ H) 6= 0 by (4.1) and because
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m(G \ H) ∈ m(Σ ∩ E) = {0,m(E)}. On the other hand, m(G \ H) = −m(E) again
by (4.1). So, m(E) = m(G \H) = −m(E), that is, m(E) = 0, which is impossible as E is
an m-atom. Thus, G must be m-null.

(ii) (a)⇒(b). By assumption m(E) 6= 0. Let F ∈ Σ. Since E is an m-atom, ei-
ther m(E ∩ F ) = 0 or m(E \ F ) = 0. From part (i) we have either E ∩ F ∈ N0(m) or
E \ F ∈ N0(m), which establishes (b).

(b)⇒(a). First we show thatm(E) 6= 0. So, select G ∈ Σ∩E withm(G) 6= 0, which is
possible becauseE /∈ N0(m). ThenE∩G = G /∈ N0(m). This and (b) yieldE\G ∈ N0(m),
and hence we have

m(E) = m(G) +m(E \G) = m(G) 6= 0.

Now, let F ∈ Σ∩E. Then either E ∩F ∈ N0(m) or E \F ∈ N0(m) by assumption, which
implies that either m(E ∩ F ) = 0 or m(E \ F ) = 0. Thus, (a) holds.

(b)⇔(c). This equivalence is a consequence of the fact that a set G ∈ Σ satisfies
G ∈ N0(m) if and only if [m](G) := χG = 0 in L1(m) = L1(m)/N (m).

(c)⇒(d). Observe first that the [m]-atom E must satisfy χE = [m](E) 6= 0 in
Σ(m) ⊆ L1(m). Next, fix a set G ∈ Σ such that χG ≤ χE in the order of Σ(m). We
may assume that χG ≤ χE pointwise everywhere on Ω. Again, E being an [m]-atom
implies that either χE∩G = [m](E ∩G) = 0 or χE\G = [m](E \G) = 0, that is,

χG = χE∩G = 0 or χG = χE\(E\G) = χE

in the B.a. Σ(m). This establishes (d).
(d)⇒(b). The atom χE in the B.a. Σ(m) is by definition a non-zero element, and hence

E /∈ N0(m). Next let F ∈ Σ. The element χE∩F ∈ Σ(m), which is dominated by the atom
χE in the B.a. Σ(m), must satisfy either χE∩F = 0 or χE∩F = χE as elements of Σ(m).
Now, the identity χE∩F = 0 in Σ(m) means exactly that E ∩ F ∈ N0(m). On the other
hand, if χE∩F = χE in Σ(m), then χE\F = χE\(E∩F ) = χE − χE∩F = 0 in Σ(m), that is,
E \ F ∈ N0(m). So, we have established (b).

(iii) This follows immediately from the equivalence of (a), (c) and (d) in part (ii).

Proof of Lemma 2.8. Fix α ∈ A(m), with corresponding atom χF (α) in Σ(m), and f ∈
L1(m). Observe first that∫

F (α)

s dm ∈ spanm(Σ ∩ F (α)), s ∈ sim Σ. (4.2)

Next, it follows from [25, Theorem 2.4] that there is a sequence {sn}∞n=1 in sim Σ which is
τ(m)-convergent to f . The multiplication operatorMF (α) ∈ L(L1(m)) and the integration
operator Im ∈ L(L1(m), Y ) were defined in Section 2. It follows from (4.2) with s := sn
for each n ∈ N that∫

F (α)

f dm = (Im ◦MF (α))(f) = lim
n→∞

(Im ◦MF (α))(sn)

= lim
n→∞

∫
F (α)

sn dm ∈ spanm(Σ ∩ F (α)) (4.3)

in Y . On the other hand, F (α) is an m-atom by Lemma 2.7(ii) with E := F (α), so that
m(Σ∩F (α)) = {0,m(F (α))} (see (2.10) withE := F (α)). Consequently, spanm(Σ∩F (α))
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equals the one-dimensional subspace span{m(F (α)}. Hence, (4.3) guarantees that there
is a unique complex number a(α, f) satisfying (2.11).

Clearly, to verify (2.12) is equivalent to showing that∫
F

(fχF (α) − a(α, f)χF (α)) dm = 0, F ∈ Σ ∩ F (α). (4.4)

To prove (4.4), fix F ∈ Σ∩F (α). Then either F = F (α)∩F ∈ N0(m) or F (α)\F ∈ N0(m)

as F (α) is an m-atom (see Lemma 2.7(ii) with F (α) in place of E). If F ∈ N0(m), then
(4.4) clearly holds. So, assume that F (α) \ F ∈ N0(m). Then∫

F (α)\F
(fχF (α) − a(α, f)χF (α)) dm = 0,

which means that∫
F (α)

(fχF (α) − a(α, f)χF (α)) dm =

∫
F

(fχF (α) − a(α, f)χF (α)) dm. (4.5)

Since the left-hand side of (4.5) equals 0 by (2.11), so does the right-hand side. Hence,
(4.4) holds for arbitrary F ∈ Σ ∩ F (α), and thus (2.12) is established.

Proof of Lemma 2.9. For each E ∈ Σ, define

AE(m) := {α ∈ A(m) : χF (α) ≤ χE in the B.a. Σ(m)}.

Then χE =
∨
α∈AE(m) χF (α) in the B.a. Σ(m) (see, for example, [18, §16, Lemma 1]). Fix

now E ∈ Σ. Then E ism-null if and only if χE = 0 in Σ(m) if and only if AE(m) = ∅. This
establishes the lemma because AE(m) = ∅ is equivalent to the condition that E ∩F (α) is
in N0(m) for all α ∈ A(m).

Proof of Proposition 2.10. Let f ∈ L1(m) be the weak limit inL1(m) of a net {χE(γ)}γ∈Γ ⊆
Σ(m). Define members of Σ by

G(0) := f−1({0}) and G(1) := f−1({1})

for the individual function f . It suffices to show that

f = χG(1) pointwise m-a.e. on Ω, (4.6)

as then f = χG(1) in Σ(m). To this end, fixing α ∈ A(m), we claim that(
Ω \ (G(0) ∪G(1))

)
∩ F (α) ∈ N0(m). (4.7)

Indeed, via the Hahn–Banach Theorem, choose y∗α ∈ Y ∗ (not unique) satisfying

〈m(F (α)), y∗α〉 = 1. (4.8)

The τ(m)-continuous linear functional y∗α ◦ Im ◦MF (α) : L1(m) → C is also continuous
for the weak topology σ(L1(m), L1(m)∗), which implies that

〈f, y∗α ◦ Im ◦MF (α)〉 = lim
γ∈Γ
〈χE(γ), y

∗
α ◦ Im ◦MF (α)〉. (4.9)

On the other hand, Lemma 2.8 yields that

〈f, y∗α ◦ Im ◦MF (α)〉 =

〈∫
F (α)

f dm, y∗α

〉
= 〈a(α, f)m(F (α)), y∗α〉 = a(α, f), (4.10)

via (4.8), and that
f−1(C \ {a(α, f)}) ∩ F (α) ∈ N0(m). (4.11)
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Given γ ∈ Γ, by Lemma 2.8 with χE(γ) in place of f , we find (by arguing similarly to (4.10))
that

〈χE(γ), y
∗
α ◦ Im ◦MF (α)〉 = a(α, χE(γ)) (4.12)

and that χE(γ)∩F (α) = χE(γ)χF (α) ism-a.e. pointwise equal to a(α, χE(γ))χF (α). The latter
means that

a(α, χE(γ)) =

{
0 if E(γ) ∩ F (α) ∈ N0(m),

1 if (F (α) \ E(γ)) ∈ N0(m)
(4.13)

because F (α) is an m-atom. It now follows from (4.9), (4.10) and (4.12) that a(α, f) =

limγ∈Γ a(α, χE(γ)). This and (4.13) yield a(α, f) ∈ {0, 1}, which ensures that(
Ω \ (G(0) ∪G(1))

)
∩ F (α) = (f−1(C \ {0, 1})) ∩ F (α) ⊆

(
f−1(C \ {a(α, f)})

)
∩ F (α).

Now an appeal to (4.11) verifies (4.7).
Since (4.7) holds for every α ∈ A(m), Lemma 2.9 with the set Ω \ (G(0) ∪ G(1)) in

place of E yields Ω \ (G(0) ∪G(1)) ∈ N0(m). Thus, (4.6) holds because

f = (χG(0) + χG(1) + χΩ\(G(0)∪G(1)))f = χG(1) + fχΩ\(G(0)∪G(1)),

with Ω \ (G(0) ∪G(1)) ∈ N0(m).

Proof of Proposition 2.12. (i) Let {F (α)}α∈A(m) be the family of all m-atoms. Apply
Lemma 2.7(iii) to see that the corresponding B.a. Σ(m) is also atomic. The set {0, 1}A(m)

of all functions from A(m) into {0, 1} is compact with respect to the product topology.
We proceed to construct a Y -valued, continuous function Φ defined on the compact space
{0, 1}A(m) whose range coincides with R(m) in Y .

Fix ε ∈ {0, 1}A(m). Let Aε := ε−1({1}), in which case ε equals the characteristic
function of the subset Aε ⊆ A(m). The family of all finite subsets of Aε is denoted
by Fε and is directed by inclusion. We claim that the series

∑
α∈A(m) ε(α)m(F (α)) is

unconditionally summable in Y , and that its sum lies within R(m); in other words,∑
α∈A(m)

ε(α)m(F (α)) = m(E) ∈ R(m) (4.14)

for some E ∈ Σ. To verify this, observe that
∑
α∈A(m) ε(α)m(F (α)) and

∑
α∈Aε

m(F (α))

are the same series. Since Σ(m) is complete as an abstract B.a. (see Lemma 2.2), there
exists E ∈ Σ such that χE =

∨
α∈Aε

χF (α) in Σ(m). For each A ∈ Fε define (the finite
disjoint union) F (A) :=

⋃
α∈A F (α) ∈ Σ so that m(F (A)) =

∑
α∈Am(F (α)). Then the

net {χE\F (A)}A∈Fε
is downwards filtering to 0 in Σ(m). So, by Lemma 2.2 it follows that

limA∈Fε
m(E \ F (A)) = 0 in Y , which gives

m(E) = lim
A∈Fε

m(F (A)) = lim
A∈Fε

∑
α∈A

m(F (α)).

In other words,
∑
α∈Aε

m(F (α)) is an unconditionally convergent series in Y with sum
m(E). So, (4.14) holds and the claim is established.

The above claim enables us to define a function Φ : {0, 1}A(m) → Y by

Φ(ε) :=
∑

α∈A(m)

ε(α)m(F (α)), ε ∈ {0, 1}A(m).
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It also gives the inclusion Φ({0, 1}A(m)) ⊆ R(m) (see (4.14)). To obtain the reverse
inclusion, fix any non-m-null set E ∈ Σ. Define ε

E
: A(m)→ {0, 1} to be the characteristic

function of the subset

{α ∈ A(m) : χF (α) ≤ χE} in the B.a. Σ(m), (4.15)

in which case Aε
E

= ε−1
E

({1}). In the complete, atomic B.a. Σ(m), the equality χE =∨
α∈Aε

E

χF (α) holds [18, §16, Lemma1]. By recalling the above process of definingΦ(ε), now
for this particular ε

E
, we see that m(E) = Φ(ε

E
), which establishes the reverse inclusion

R(m) ⊆ Φ({0, 1}A(m)) as E ∈ Σ is an arbitrary non-m-null set. Thus, Φ({0, 1}A(m)) =

R(m).
To prove the continuity of Φ, let q ∈ P(Y ) and δ > 0. As the series

∑
α∈A(m)m(F (α))

is unconditionally convergent in Y (choose ε := χA(m) above), there exists a finite subset
A(q, δ) ⊆ A(m) satisfying

q
(∑
α∈A

m(F (α))−
∑
α∈A′

m(F (α))
)
< δ/2 (4.16)

whenever A and A′ are finite subsets of A(m) such that A ∩ A′ ⊇ A(q, δ). Now take any
two functions ε, ε′ ∈ {0, 1}A(m) satisfying

ε(α) = ε′(α), α ∈ A(q, δ), (4.17)

and define B1 := Aε \ Aε′ and B2 := Aε′ \ Aε. Given j = 1, 2, for the special choice
ε := χBj

in the second paragraph of this proof, the corresponding set Aε is Bj , and so the
series

∑
α∈Bj

m(F (α)) is unconditionally convergent in Y . Moreover, for any finite subset
B ⊆ Bj , it follows from (4.17) that

A(q, δ) ∩B ⊆ A(q, δ) ∩ Bj = ∅, j = 1, 2.

This and (4.16), with A(q, δ) ∪B in place of A and A(q, δ) in place of A′, yield

q
(∑
α∈B

m(F (α))
)

= q
( ∑
α∈A(q,δ)∪B

m(F (α))−
∑

α∈A(q,δ)

m(F (α))
)
< δ/2,

and hence q(
∑
α∈Bj

m(F (α))) ≤ δ/2 for j = 1, 2. It follows that

q(Φ(ε)− Φ(ε′)) = q
( ∑
α∈Aε

m(F (α))−
∑
α∈Aε′

m(F (α))
)

= q
( ∑
α∈Aε∩Aε′

m(F (α)) +
∑
α∈B1

m(F (α))−
∑

α∈Aε∩Aε′

m(F (α))−
∑
α∈B2

m(F (α))
)

= q
(∑
α∈B1

m(F (α))−
∑
α∈B2

m(F (α))
)

≤ q
(∑
α∈B1

m(F (α))
)

+ q
(∑
α∈B2

m(F (α))
)
≤ δ.

So, Φ is continuous as q ∈ P(Y ) and δ > 0 are arbitrary. We conclude that R(m) is a
compact subset of Y because it equals the range of the continuous function Φ defined on
the compact space {0, 1}A(m).
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(ii) FixE ∈ Σ. Let ε ∈ {0, 1}A(m) denote the characteristic function of the subset (4.15)
of A(m). Then, as demonstrated in the proof of (i), the vector m(E) ∈ Y is the sum of
the unconditionally convergent series

∑
α∈A(m) ε(α)m(F (α)). This proves (ii) because

α ∈ A(m) satisfies ε(α) = 1 if and only if m(F (α)) = m(E ∩ F (α)).

Proof of Proposition 2.16. (a)⇒(b). Because of (a) the associated L1(m)-valued vector
measure [m] : E 7→ χE on Σ is also closed (see Remark 2.6(iv)). Moreover, [m] is atomic
(see Lemma 2.7(iii)). So, by Proposition 2.12(i) applied to [m], the rangeR([m]) is compact
in L1(m), and hence (b) holds because Σ(m) = R([m]).

(b)⇒(c)⇒(d). These implications are clear.
(d)⇒(a). This is exactly Proposition 2.4.
Note that we can also prove (d)⇒(a) via (c) in Proposition 2.16. In fact, (d) implies

(c) because Σ(m) is weakly closed in L1(m) by Proposition 2.10. Now, (c) is equivalent
to the weak completeness of Σ(m) [13, 0.6, p. 3]. Finally, the weak completeness of Σ(m)

implies its τ(m)-completeness [23, §18, 4.(4)], that is, (a) holds.
We end this section with the promised alternative

Proof of Proposition 3.21. The bidual of the Banach space X is denoted by X∗∗. Let
J : X → X∗∗ denote the natural embedding, which is a linear isometry.

Take an arbitrary sequence {Hn}∞n=1 ⊆ M which is Cauchy in Lw(X). We need to
show that it has a limit in Lw(X) and that this limit belongs to M. This will require
several steps.

Step 1. There exists H ∈ L(X,X∗∗) such that

lim
n→∞

〈Hnx, x
∗〉 = lim

n→∞
〈x∗, (JHn)x〉 = 〈x∗, Hx〉, x ∈ X, x∗ ∈ X∗. (4.18)

To verify this, all we need is to obtain the second equality in (4.18) because the
first equality is obvious from the definition of J . By the Banach–Steinhaus Theorem,
C := supn∈N ‖Hn‖op <∞. Fixx ∈ X. Then the sequence {Hnx}∞n=1 isweaklyCauchy inX.
Since J ∈ L(Xσ(X,X∗), X

∗∗
σ(X∗∗,X∗)) [30, Proposition 2.6.24], it follows that {(JHn)x}∞n=1

is a σ(X∗∗, X∗)-Cauchy sequence, and hence has a σ(X∗∗, X∗)-limit ξx ∈ X∗∗, i.e.,
lim
n→∞

〈x∗, (JHn)x〉 = 〈x∗, ξx〉, x∗ ∈ X∗ (4.19)

(apply [30, Corollary 2.6.21] to the Banach spaceX∗). Next, observe that ‖ξx‖X∗∗ ≤C‖x‖X
by (4.19) because

‖ξx‖X∗∗ = sup
‖x∗‖X∗≤1

|〈x∗, ξx〉| = sup
‖x∗‖X∗≤1

lim
n→∞

|〈x∗, (JHn)x〉|

≤ sup
‖x∗‖X∗≤1

lim sup
n→∞

‖x∗‖X∗‖Hnx‖X ≤ C‖x‖X .

Since x ∈ X is arbitrary, this enables us to define H ∈ L(X,X∗∗) by Hx := ξx. Thus, the
second equality in (4.18) holds in view of (4.19), thereby establishing Step 1.

SinceM is σ-complete as an abstract B.a., the projections

Q :=

∞∨
n=1

∞∧
k=n

Hk and R :=

∞∧
n=1

∞∨
k=n

Hk

both belong toM.
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Step 2. The equality JQ = HQ holds in L(X,X∗∗).

Indeed, set H̃n :=
∧∞
k=nHk ∈M for n ∈ N. Since H̃n ↑ Q in the order ofM, it follows

from [10, Ch. XVII, Lemma 3.4] that limn→∞ H̃n = Q in Ls(X). In other words, relative
to the norm in X, we have

lim
n→∞

H̃nx = Qx, x ∈ X. (4.20)

Fix n ∈ N and x ∈ X for the moment. Given any k ∈ N with k ≥ n, observe that H̃n ≤ Hk

by definition, i.e., HkH̃n = H̃n. This identity and (4.18), with H̃nx in place of x, give for
every x∗ ∈ X∗ the equality

〈x∗, (HH̃n)x〉 = lim
k→∞

〈(HkH̃n)x, x∗〉 = 〈H̃nx, x
∗〉 = 〈x∗, (JH̃n)x〉. (4.21)

So, (HH̃n)x = (JH̃n)x in X∗∗ = L(X∗,C): to see this, apply [30, Corollary 2.2.22] to the
lcHs (X∗∗, σ(X∗∗, X∗)). Using this identity and (4.20) yields

(HQ)x = lim
n→∞

H(H̃nx) = lim
n→∞

(JH̃n)x = (JQ)x

in (X∗∗, ‖ · ‖X∗∗) for each x ∈ X. Thus we have HQ = JQ ∈ L(X,X∗∗).

Step 3. The identity HR = H holds in L(X,X∗∗).

We shall prove this similarly to Step 2. Define H]
n :=

∨∞
k=nHk ∈ M for n ∈ N. Then

H]
n ↓ R in the order of M, and so limn→∞H]

n = R in Ls(X), again by [10, Ch. XVII,
Lemma 3.4]. Fix x ∈ X and n ∈ N. If k ∈ N satisfies k ≥ n, then Hk ≤ H]

n or equivalently
HkH

]
n = Hk. From this identity and (4.18), with H]

nx in place of x, it follows, for every
x∗ ∈ X∗, that

〈x∗H(H]
nx)〉 = lim

k→∞
〈Hk(H]

nx), x∗〉 = lim
k→∞

〈Hkx, x
∗〉.

Again by (4.18) we also have

lim
k→∞

〈
Hkx, x

∗〉 = 〈x∗, Hx〉, x∗ ∈ X∗,

and so 〈x∗, HH]
nx〉 = 〈x∗, Hx〉. Hence, H(H]

nx) = Hx in X∗∗. Since limn→∞H]
nx = Rx

in X, we have

(HR)x = H
(

lim
n→∞

H]
nx
)

= lim
n→∞

H(H]
nx) = Hx

in (X∗∗, ‖ · ‖X∗∗). As this holds of all x ∈ X, we conclude that HR = H in L(X,X∗∗).

Step 4. We have the identity Q = R.

First fix an arbitrary atom K ∈M. The distributive laws inM [18, §7, Lemma 4] give

QK =
( ∞∨
n=1

∞∧
k=n

Hk

)
∧K =

∞∨
n=1

∞∧
k=n

HkK, (4.22)

RK =
( ∞∧
n=1

∞∨
k=n

Hk

)
∧K =

∞∧
n=1

∞∨
k=n

HkK. (4.23)

Observe that HnK ∈ {0,K} for all n ∈ N because K is an atom.
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We claim that there exists N ∈ N satisfying either

HnK = 0, n ≥ N, (4.24)
or

HnK = K, n ≥ N. (4.25)

Assume, on the contrary, that there exist increasing sequences {n(k)}∞k=1 and {r(j)}∞j=1

such that Hn(k)K = 0 for all k ∈ N and Hr(j)K = K for all j ∈ N. Fix x ∈ X and
x∗ ∈ X∗. Then {〈(Hn(k)K)x, x∗〉}∞k=1 and {〈(Hr(j)K)x, x∗〉}∞j=1 are both subsequences
of the convergent sequence {〈(HnK)x, x∗〉}∞n=1 in C (see (4.18) with Kx in place of x).
Therefore

lim
k→∞

〈(Hn(k)K)x, x∗〉 = lim
j→∞
〈(Hr(j)K)x, x∗〉.

But limk→∞〈(Hn(k)K)x, x∗〉 = 0 and limj→∞〈(Hr(j)K)x, x∗〉 = 〈Kx, x∗〉, which implies
that K = 0 because x ∈ X and x∗ ∈ X∗ are arbitrary. However, this contradicts K being
an atom. Thus, there must exist N ∈ N satisfying either (4.24) or (4.25).

We consider each of the possibilities (4.24) and (4.25) separately.

Case 1: Assume that (4.24) holds. Then
∧∞
k=nHkK = 0 for all n ∈ N, and so (4.22)

implies that QK = 0. On the other hand, as (4.24) yields
∨∞
k=nHkK = 0 for all n ≥ N ,

we have RK = 0 from (4.23). Thus, we conclude that QK = RK = 0.

Case 2: Assume that (4.25) holds. Then
∧∞
k=nHkK = K for all n ≥ N . Since

∧∞
k=nHkK

≤ K for 1 ≤ k ≤ N , it follows by (4.22) that QK = K. To obtain the identity RK = K,
observe first from (4.25) that

∨∞
k=nHkK = K for all n ≥ N , and hence

∨∞
k=nHkK ↓ K

in the order ofM. This together with (4.23) gives RK = K. Thus we have shown that
QK = RK = K.

Cases 1 and 2 show that QK = RK whenever K is an atom ofM.
Let AM denote the set of all atoms in M. Since I =

∨
K∈AM K in the order of the

B.a.M (see, for example, [18, §16, Lemma 1]), Step 4 now follows by [18, §7, Lemma 4]
which yields

Q = Q
( ∨
K∈AM

K
)

=
∨

K∈AM

QK =
∨

K∈AM

RK = R
( ∨
K∈AM

K
)

= R.

Step 5. The identity JQ = H holds in L(X,X∗).

Indeed, JQ = HQ by Step 2, and HQ = HR by Step 4. On the other hand, HR = H

by Step 3. Thus, we have JQ = H.

Step 6. The sequence {Hn}∞n=1 converges to Q ∈M in Lw(X).

In fact, Step 6 follows readily from Steps 1 and 5 together with

lim
n→∞

〈
Hnx, x

∗〉 = 〈x∗, Hx〉 = 〈x∗, (JQ)x〉 = 〈Qx, x∗〉

for all x ∈ X and x∗ ∈ X∗.
Finally, we conclude from Step 6 thatM is sequentially complete in Lw(X) because

{Hn}∞n=1 is an arbitrary τw-Cauchy sequence inM.
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