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Salem numbers as Mahler measures of nonreciprocal units

by

Artūras Dubickas (Vilnius)

1. Introduction. Recall that for a polynomial

f(x) = a(x− α1) . . . (x− αn) ∈ C[x], where a 6= 0,

its Mahler measure is defined by M(f) := |a|
∏n
j=1 max{1, |αj |}. If f(x) =

(x−α1) . . . (x−αn) ∈ Q[x] is irreducible over the field Q, we denote by Kf

its splitting field Q(α1, . . . , αn) and by Gf = Gal(Kf/Q) its Galois group.
Also, the polynomial f is called reciprocal if the set {α1, . . . , αn} of its
roots is equal to {α−11 , . . . , α−1n }, i.e. f(x) = ±xnf(x−1), and nonreciprocal
otherwise. A root α > 1 of a monic irreducible polynomial f in Z[x] of degree
2n ≥ 4 is called a Salem number if f is reciprocal and has 2n − 2 roots on
the unit circle |z| = 1.

Let L0 be the set of all possible Mahler measures of nonreciprocal (but
not necessarily irreducible) polynomials in Z[x]. Various aspects of the set
of all Mahler measures

L := {M(f) : f ∈ Z[x]}

and of its subset of nonreciprocal measures

L0 := {M(f) : f ∈ Z[x], f nonreciprocal}

have been investigated in the papers of Adler and Marcus [1], Boyd [2],
[3], [4], Dixon and Dubickas [6], Dubickas [8], and Schinzel [12]. One of
the problems from the recent BIRS workshop “The Geometry, Algebra and
Analysis of Algebraic Numbers” held in 2015 in Banff (Canada) suggested
by David Boyd, 7(c), is the following:

• Does L0 contain any Salem numbers?
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The problem, as stated, was actually solved in [6] by Dixon and the
present author (see also [7]). Selecting, for instance, the nonreciprocal quar-
tic polynomial x4−x+ 1 whose Galois group is isomorphic to S4 and whose
Mahler measure is equal to the product

|β|2 = ββ′ = 1.40126 . . . ∈ L0

of two complex conjugate roots β and β′ = β of x4 − x+ 1 that are outside
the unit circle, we see that α = ββ′ must be of degree 6 over Q, and thus it is
a Salem number (in this case, with minimal polynomial x6−x4−x3−x2+1).
This is true for any totally complex nonreciprocal quartic unit β whose
Galois group is doubly transitive: each such Mahler measure M(β) belongs
to the set L0 and at the same time it is a Salem number of degree 6.

This construction seems, however, an accidental one. So one may ask a
more general question:

• Are there Salem numbers of other degrees in the set L0?

In this note we will show that

Theorem 1.1. The set L0 of nonreciprocal Mahler measures contains
infinitely many Salem numbers of degree d = 4 and also of each degree
d = 4`+ 2, where ` ∈ N.

The proofs for d = 4 and for d = 4` + 2 are different. The quartic
Salem numbers are given by a straightforward (although not easy to find!)
construction arising from quartic nonreciprocal totally complex units. More
precisely, we will use the nonreciprocal polynomial Q(x) := x4 + (kx − 1)2

with k ∈ N (see Section 3).

The construction of Salem numbers of degree d = 4` + 2 lying in the
set L0 is more subtle (at least when ` > 1 and the result does not follow
from the above construction). In particular, as one of our main tools, we
use the results of Christopoulos and McKee [5]. In order to formulate those
results we need to recall the notion of a trace polynomial. Let f ∈ Z[x]
be a monic irreducible reciprocal polynomial of degree d = 2n with roots
α1, . . . , αn, α

−1
1 , . . . , α−1n . Then the corresponding trace polynomial g of de-

gree n is the monic polynomial whose roots are α1 + α−11 , . . . , αn + α−1n .
With this notation, [5, Theorem 1.1] asserts the following:

Theorem 1.2. Let f be a Salem polynomial of degree d = 2n, n ≥ 2,
with roots α1, . . . , αn, α

−1
1 , . . . , α−1n and trace polynomial g, and let Gf , Gg

be the Galois groups of f and g. Then Gf is isomorphic either to the semidi-
rect product Zn2 o Gg or to Zn−12 o Gg, with the latter possible only if n is
odd.

Furthermore, in [5, Proposition 2.3] the following has been shown:
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Theorem 1.3. In Theorem 1.2, the group Zn2 of order 2n is generated by
all transpositions of the form (αi, α

−1
i ), i = 1, . . . , n, whereas Zn−12 of order

2n−1 is generated by all the products (αi, α
−1
i )(αj , α

−1
j ) of two transpositions,

where 1 ≤ i < j ≤ n. This latter case occurs if and only if n is odd and the
discriminant of f is a square in the splitting field Kg of g.

In [10], Lalande proved that for each n ≥ 2 there are Salem numbers of
degree 2n with the largest possible Galois groups Zn2 oSn of order 2nn! (see
also [11]). The example

x10 − 2x9 − 6x8 − 10x7 − 10x6 − 10x5 − 10x4 − 10x3 − 6x3 − 2x+ 1

given in [5] illustrates that the second possibility in Theorem 1.2 may occur
for n = 5.

Our next result shows that the second possibility may occur for every
odd n ≥ 3, so one can replace in Theorem 1.2 “only if n is odd” by “if and
only if n is odd”.

Theorem 1.4. For each odd n ≥ 3 there is a Salem polynomial f of
degree d = 2n with Galois group Gf = Zn−12 o Gg, where Gg is the Galois
group of the trace polynomial g of f .

The key result in the proof of Theorem 1.4 is the following lemma:

Lemma 1.5. For each odd n ≥ 3 there exists an irreducible monic poly-
nomial P ∈ Z[x] of degree n which has n−1 real roots in the interval (−2, 2),
one real root greater than 2, and satisfies P (−2) = P (2).

For instance, for n = 3 the procedure described below (with T = 20 and
N = 1) produces the polynomial P (x) = x3 − 12x2 − 4x+ 22.

In the next section, we shall prove Lemma 1.5 and Theorem 1.4. Then,
in Section 3, we prove Theorem 1.1 for d = 4. Finally, in Section 4, using
Theorem 1.4 and the construction of so-called Salem half-norms used in [9],
we shall prove Theorem 1.1 for each d of the form 4`+ 2.

2. Proofs of Lemma 1.5 and Theorem 1.4

Proof of Lemma 1.5. Let

r1 := −2 < r2 < · · · < rn−1 < rn := 2

be n fixed rational numbers. Set

h(x) := b0 + b1x+ · · ·+ bn−1x
n−1.

Then the n equations

h(r1) = −T − 2n+1 − rn1 and h(rj) = (−1)jT − rnj for j = 2, . . . , n

form a linear system in n unknowns b0, b1, . . . , bn−1. The Vandermonde de-
terminant of this linear system is a nonzero rational number. Thus, for each
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T ∈ N this linear system has a unique real solution (b0, . . . , bn−1) ∈ Qn. On
multiplying all equalities by some (large) positive integer N and setting

H(X) := Nh(x) = B0 +B1x+ · · ·+Bn−1x
n−1

we can further assume that all the coefficients Bj of the polynomial H are
integers divisible by 4. Here, by the above,

H(r1) = −N(T + 2n+1 + rn1 ),(2.1)

H(rj) = N((−1)jT − rnj ) for j = 2, . . . , n.(2.2)

Set

P (x) := H(x) + 2− 2n−1x+ xn

= B0 + 2 + (B1 − 2n−1)x+B2x
2 + · · ·+Bn−1x

n−1 + xn.

By construction, all the coefficients of the monic polynomial P ∈ Z[x] for xj

(0 ≤ j ≤ n− 1) are even and the constant coefficient B0 + 2 is not divisible
by 4. Hence, by Eisenstein’s criterion with respect to the prime p = 2, the
polynomial P is irreducible.

Now, we will show that for every T > 2n+1 the polynomial P satisfies
other required properties. Firstly, using (2.1), r1 = −2, and the fact that n
is odd, we obtain

P (−2) = H(−2) + 2 = −N(T + 2n+1 + (−2)n) + 2 = −N(T + 2n) + 2.

Similarly, from (2.2) it follows that

P (rj) = H(rj) + 2− 2n−1rj + rnj = N((−1)jT − rnj ) + 2− 2n−1rj + rnj

for j = 2, . . . , n. In particular, since rn = 2, taking j = n we obtain

P (2) = N(−T − 2n) + 2− 2n + 2n = −N(T + 2n) + 2.

Therefore, P (−2) = P (2), as claimed.

Next, observe that P (r1) = P (−2) < 0 (for any T,N ∈ N). Furthermore,
the condition T > 2n+1 implies that for j even

P (rj) = N((−1)jT − rnj ) + 2− 2n−1rj + rnj

≥ T − rnj + 2− 2n−1rj + rnj > T − 2n−1rj > T − 2n > 0.

Similarly, for j odd we have

P (rj) ≤ −T − rnj + 2− 2n−1rj + rnj < −T + 2 + 2n < 0.

Thus, P has a real root in each of the n − 1 intervals (rj , rj+1) for j =
1, . . . , n− 1. Finally, in view of P (2) < 0 its nth root must lie in (2,∞), as
claimed.

In fact, P depends on the choice of T and N . Evidently, there are in-
finitely many choices of T . Also, for each T there are infinitely many possi-
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bilities to choose N . So, we have infinitely many irreducible polynomials P
satisfying the conditions of Lemma 1.5.

Proof of Theorem 1.4. As observed in [5], the discriminants ∆f of an
irreducible reciprocal polynomial

(2.3) f(x) =
n∏
j=1

(x− αj)(x− α−1j )

of degree n ≥ 2 and ∆g of its trace polynomial

(2.4) g(x) =

n∏
j=1

(x− αj − α−1j )

are related by the formula

(2.5) ∆f = ∆2
g

n∏
i=1

(αj − α−1j )2.

Indeed, using

∆g =
∏

1≤i<j≤n
(αi + α−1i − αj − α

−1
j )2 =

∏
1≤i<j≤n

(αi − αj)2(1− α−1i α−1j )2

=
∏

1≤i<j≤n
(αi − αj)2(αiαj − 1)2

n∏
i=1

α2−2n
i ,

we deduce that

∆f =
∏

1≤i<j≤n
(αi − αj)2(α−1i − α

−1
j )2

∏
1≤i,j≤n

(αi − α−1j )2

=
∏

1≤i<j≤n
(αi − αj)4

∏
1≤i,j≤n

(αiαj − 1)2
n∏
i=1

α2−4n
i

=
∏

1≤i<j≤n
(αi − αj)4(αiαj − 1)4

n∏
i=1

(α2
i − 1)2α2−4n

i

= ∆2
g

n∏
i=1

(α2
i − 1)2α−2i = ∆2

g

n∏
i=1

(αi − α−1i )2.

Since

(−2− y − y−1)(2− y − y−1) = −4 + y2 + y−2 + 2 = (y − y−1)2,
from (2.4) it follows that

n∏
j=1

(αj − α−1j )2 = g(−2)g(2).

Combining this with (2.5) yields ∆f = ∆2
gg(−2)g(2).
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Now, for an odd n ≥ 3, selecting g(x) = P (x) as in Lemma 1.5, we
see that the corresponding f(x) = xnP (x + x−1) in (2.3) will be a Salem
polynomial of degree d = 2n whose discriminant ∆f = ∆2

PP (−2)P (2) is a
square of the positive integer |∆PP (2)|. By Theorem 1.3, this completes the
proof.

3. Quartic Salem numbers. Consider the polynomial

Q(x) = x4 + (kx− 1)2,

where k ∈ N. Clearly, it has no real roots, so it is not a product of cubic
and linear integer polynomials. If it were a product of two monic quadratic
integer polynomials, say x2 + a1x+ b1 and x2 + a2x+ b2, then a1 + a2 = 0
and b1b2 = 1. Thus, a2 = −a1 and b1 = b2 = ±1. However, the product of
x2 + a1x± 1 and x2 − a1x± 1 is equal to (x2 ± 1)2 − a21x2, which is distinct
from Q(x), a contradiction. Hence, Q is irreducible.

Since

Q(x) =
(
x2 + (kx− 1)

√
−1
)(
x− (kx− 1)

√
−1
)
,

it has the following four roots:

β1 :=
1

2

(
−

√
−k2 +

√
k4 + 16

2
+

(√
k2 +

√
k4 + 16

2
+ k

)√
−1

)
,(3.1)

β3 :=
1

2

(√
−k2 +

√
k4 + 16

2
+

(√
k2 +

√
k4 + 16

2
− k
)√
−1

)
,(3.2)

β2 := β1 and β4 = β3.(3.3)

Hence, β1β4 =
√
−1, β1+β4 = k

√
−1 and β2β3 = −

√
−1, β2+β3 = −k

√
−1.

Also, |β1| > 1 and |β3| = |β1|−1 < 1.

Therefore,

α := M(β1) = β1β1 =
1

4

(
k2 +

√
k4 + 16 + k

√
2k2 + 2

√
k4 + 16

)
is a Salem number with conjugates β3β3 = α−1, β1β3, β1β3 whose minimal
polynomial is x4 − k2x3 − 2x2 − k2x+ 1.

4. Proof of Theorem 1.1 for d = 4`+2. Let d = 2n, where n = 2`+1,
` ∈ N. Consider the Salem half-norm (as defined in [9])

β := α1 . . . αn,

where α = α1 is a Salem number of degree 2n as in Theorem 1.4 with con-
jugates α1, . . . , αn, α

−1
1 , . . . , α−1n and Galois group Gf = Zn−12 oGg. Corol-
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lary 4.8 in [9] asserts that the 2n numbers

(4.1) αδ11 . . . αδnn , where δj ∈ {−1, 1},

are all distinct. We will show that the degree of β is 2n−1 and that β is
nonreciprocal, that is, β−1 = α−11 . . . α−1n is not conjugate to β over Q.

Indeed, if β were reciprocal then there is an automorphism of the Ga-
lois group Gf that maps β to β−1. However, by Theorem 1.3, each σ ∈ Gf
maps the product α1 . . . αn into αδ11 . . . αδnn , where δj ∈ {−1, 1}, and
where the number of j’s with δj = 1 is odd, since n is odd. The num-
ber β−1 = α−11 . . . α−1n has zero j’s with δj = 1. Hence, σ(β) 6= β−1 for each
σ ∈ Gf .

In fact, we have two sets of conjugate algebraic numbers: those 2n−1 of
the form (4.1) that have an odd number of δj equal to 1 are all conjugate
to β, whereas the remaining 2n−1 such products (4.1), with an even number

of δj equal to 1, are all conjugate to β−1. In particular, M(β) = α2n−2
, since

2n−2 conjugates of β lie on the circle |z| = α and 2n−2 other conjugates
lie on the circle |z| = α−1. This completes the proof of the theorem, since
M(β) ∈ L0 and every positive integer power αm of a Salem number α is a
Salem number itself (here, m = 2n−2 ≥ 2).
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[11] F. Lalande, Réalisation de produits en couronne comme groupe de Galois de poly-
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