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Topological radicals, VI. Scattered elements in
Banach Jordan and associative algebras

by

Peng Cao (Beijing) and Yurii V. Turovskii (Baku)

Abstract. A Jordan or associative algebra is called scattered if it consists of elements
with countable spectrum (so called scattered elements). It is proved that for sub-Banach,
Jordan or associative, algebras there exists the largest scattered ideal and it is closed.
Accordingly, this determines the scattered topological radical. The characterization of the
scattered radical is given, and the perturbation class of scattered elements is considered.

1. Introduction. The paper continues the series of works [33, 34, 35,
22, 36], each of which can be read independently. Topological radicals were
introduced by Dixon [13], for the classes Una and Uba of all normed asso-
ciative and Banach associative algebras, respectively. He also suggested the
axioms for algebraic radicals that were somewhat stronger than the classical
Amitsur–Kurosh axioms. Later, especially in [35, 36], axioms for topologi-
cal radicals for general classes of normed associative algebras were unified.
In [22] some topological radicals on the class of Banach Lie algebras were
considered.

The scattered radical Rs was introduced in [32] and studied mainly
in [36] for the class Uba. For each A ∈ Uba,Rs(A) is the largest scattered ideal
of A; an ideal is scattered if its elements all have countable spectrum. One of
the main goals of this paper is to show that the scattered radicalRs(J) exists
for each Banach Jordan algebra J , and that Rs is a topological radical on
the class Ubj of all Banach Jordan algebras, and even on the wider class Usbj
of all sub-Banach Jordan algebras. An important fact about the latter class
is that analytic functional calculus exists in every unital sub-Banach Jordan
algebra (see Lemma 2.5).
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For Banach Jordan algebras J , there are well known examples of scat-
tered ideals: the Jacobson radical, rad, and the socle, soc. Using ana-
lytic multifunctions, Aupetit gave nice spectral characterizations of them.
Namely, let x ∈ J . Then x is in rad(J) if and only if the spectrum σ(Uax)
is zero for each a ∈ J , and if and only if supλ∈C ρ(a + λx) < ∞ for each
a ∈ J , where Ua is the quadratic operator generated by a, and ρ is the
spectral radius [2, Corollary 1 and Theorem 2]. Note that this is also valid
for normed Jordan Q-algebras [2, Remark]. If J is semisimple then x is
in soc(J) if and only if Uax has finite spectrum for each a ∈ J [3, The-
orem 3.11]. Wilkins [40] obtained a spectral characterization of inessential
ideals (whose elements have at most 0 as a limit point of spectrum). Au-
petit and Baribeau [4, Theorem 19] transferred the Barnes Theorem [6] on
existence of the socle in semisimple scattered Banach associative algebras to
the case of Banach Jordan algebras. They showed that each separable scat-
tered Banach Jordan algebra J has an increasing transfinite chain (Iα)α<γ
of closed ideals such that I0 = rad(J), Iγ = J and the quotients Iα+1/Iα
are modular annihilator.

Our paper is based on the technique of analytic multifunctions devel-
oped, in particular, by Aupetit [1]. One of the main results we apply to
Banach Jordan algebras J is due to Aupetit and Zräıbi [5, Theorem 1]: If
f : D → J is an analytic function on an open set D ⊂ C, then λ 7→ σ(f(λ))
is an analytic multifunction. We also use the Scarcity Theorem and the
Aupetit–Zemánek Theorem [1, Theorems 7.2.8 and 7.2.13] that determine
the behavior of scattered analytic multifunctions.

An ideal I of a normed (not necessarily associative) Q-algebra L is called
thin if σ(x) \ σ̂(x/I) is countable for each x ∈ L, where x/I is the coset of x
in L/I and σ̂(x) is the full spectrum of x. Every thin ideal is clearly scattered
and, by [36, Theorem 8.14], each scattered ideal and its closure are thin for
every sub-Banach associative algebra. In Corollary 3.4 we obtain a stronger
result: the closure of a scattered ideal in the completion of a sub-Banach
Jordan or associative algebra is thin. This result leans on Theorem 3.3 that
is of independent interest, and improves the Gohberg–Krĕın Theorem [16,
Theorem 5.1 and Lemma 5.2] and the Aupetit Theorem on perturbation by
inessential elements [1, Theorem 5.7.4].

As a consequence, we deduce that there is the largest scattered ideal
Rs(L) in each sub-Banach Jordan or associative algebra L, it is closed
(Corollary 3.5), and the map Rs : L 7→ Rs(L) is a topological radical on
the class Usbj and on the class Usba of all sub-Banach associative algebras
(Corollary 3.6). For associative algebras, this result was obtained earlier in
[36, Section 8] in a different way.

We improve the results of Aupetit and Baribeau mentioned above. We
prove that Rs(L) has a similar chain of closed ideals for any (not nec-
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essarily separable) sub-Banach Jordan or associative algebra L, and that
every scattered semisimple sub-Banach Jordan or associative algebra has
a non-zero socle (Corollary 3.7). Moreover, we show that Rs is the restric-
tion of some algebraic radical (depending on rad and soc) to Usbj and Usba
(Corollary 3.9).

The technique of analytic multifunctions allows us to give a charac-
terization of Rs(L). We show that an element x ∈ L is in Rs(L) if and
only if σ̂(x + a) \ σ̂(a) is countable for any a ∈ L, and if and only if
{λ ∈ C : 0 ∈ σ(a + λx)} is countable for every a in L1 (the unitization
of L) with 0 /∈ σ̂(a) (Theorems 3.10 and 3.11). It follows from this that
Rs(A) and Rs(A+) coincide where A is a sub-Banach associative algebra
and the Jordan algebra A+ is the algebra A considered with the product
x · y = (xy + yx)/2 (Corollary 3.12).

Given a linear space X, the perturbation class of a subset G ⊂ X is the
set Per(G) of all x ∈ X such that x+ y ∈ G for every y ∈ G. Perturbation
classes were introduced by Lebow and Schechter [23] for the study of semi-
Fredholm operators. For a Banach associative algebra A, the following result
of Zemánek is well known [41, Theorem 2]: a ∈ rad(A) if and only if a belongs
to the perturbation class of the set of all quasinilpotent elements of A.

We consider the perturbation class Z(L) := Per(S(L)) of the set S(L)
of all scattered elements of L and show that, under some natural conditions
on L, Z(L) is a full subalgebra of L (Theorem 4.4). If L = A is asso-
ciative and complete normed, and D is a bounded derivation on A, then
D(A) ⊂ Rs(A) whenever D(A) ⊂ Z(A) (Theorem 4.6). If L = J is a uni-
tal Banach Jordan algebra, then the associators of elements of Z(J) are
in Rs(J) (Theorem 4.8). At the end of paper we consider some conditions
equivalent to the equality Z(L) = S(L). In particular, we show in Corol-
lary 4.10 that, for a Banach associative algebra A, Z(A) = S(A) if and only
if S(A) lies in the center of A modulo the scattered radical.

Note that our results are formulated in full generality, for incomplete
normed algebras. For simplicity, the reader can restrict attention to the case
of complete normed algebras, but it seems that the use of incomplete normed
algebras is more appropriate, especially for topological radical axioms. Note
also that Theorem 3.3 answers the question for which scattered normed al-
gebras their completion is also scattered. In Theorem 4.1 we present an ex-
ample of a scattered commutative associative Q-algebra with Rs-semisimple
completion.

2. Preliminaries. In what follows, all spaces and algebras are taken
over the field C of complex numbers. For λ ∈ C and δ > 0, let N(λ, δ) denote

the open disk {µ ∈ C : |λ−µ| < δ}. Let ∂G and Ĝ denote the boundary and
polynomially convex hull of any bounded set G ⊂ C, respectively.
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If X is a normed space and Y ⊂ X then Y denotes the closure of Y
in X, and X̂ the completion of X. If Y is a subspace of X, we identify Ŷ
with the closed subspace of X̂, so Y ⊂ Ŷ . In general, Y 6= Ŷ .

First we recall some definitions and results on Jordan algebras. We also
assume that the reader is familiar with the corresponding definitions and
results in the associative setting.

2.1. Jordan algebras. A Jordan algebra J is a non-associative algebra
whose product · satisfies a ·b = b ·a and (a ·b) ·a2 = a · (b ·a2) for all a, b ∈ J ,
where a2 = a · a. The associator [a, b, c] of elements of J is defined by

(2.1) [a, b, c] = (a · b) · c− a · (b · c).

By a result of Jacobson (see [10, Lemma 3.1.23]), b 7→ [a, b, c] is a derivation
of J . It is easy to check from the commutativity of the product that

(2.2) [a, b, c] + [b, c, a] + [c, a, b] = 0 for all a, b, c ∈ J.

For x ∈ J , the operator of “left” multiplication Lx is defined by Lxa :=
x ·a for all a ∈ J . The operator of “ right” multiplication obviously coincides
with Lx. As usual, Ua,b denotes the operator on J defined by

Ua,bx = {a, x, b} = (LaLb + LbLa − La·b)x

and we set Ua = Ua,a for all a, b, x ∈ J .

An associative algebra A endowed with the new product a·b = (ab+ba)/2
is a well-known example of a Jordan algebra; it is denoted by A+. Any
Jordan algebra which is isomorphic to a Jordan subalgebra of A+ is called
special.

The identity element (or the unit) in J is an element 1 such that a ·1 = a
for each a ∈ J . Let J1 denote J if J is unital, and the Jordan algebra J ⊕C
obtained from J by adjoining the unit 1 otherwise. Let p ∈ J be a projection
(p2 = p) and J1(p) := {x ∈ J : p · x = x}. By [19, (3.1.6) and Lemma 3.1.1],
J1(p) = UpJ , J1(p) is a subalgebra of J , and p is the identity element
of J1(p).

An element a in a unital Jordan algebra J is invertible if there is b ∈ J
such that a · b = 1 and a2 · b = a. The inverse is unique and denoted by a−1.
The set of all invertible elements of J is denoted by Inv(J).

If J is not necessarily unital then a ∈ J is quasi-invertible if 1 − a is
invertible in J1. For any Jordan algebra J , there is the largest ideal rad(J)
consisting of quasi-invertible elements of J ; it is called the Jacobson radical
of J . By [25, (3)], for invertible x, y ∈ J ,

(2.3) x−1 − y−1 = Uy−1Ux−yx
−1 − Uy−1(x− y).

An element a is invertible in J if and only if Ua is invertible, and in this
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case U−1a = Ua−1 . The equality

(2.4) UUab = UaUbUa for all a, b ∈ J
shows that

(2.5) Uab is invertible ⇔ a and b are invertible.

Taking into account that a−1 = Ua−1a = U−1a a for each a ∈ Inv(J), we see
from the above that

(2.6) (Uab)
−1 = U−1UabUab = Ua−1Ub−1Ua−1Uab = Ua−1b−1

for all a, b ∈ Inv(J). It is easy to check that

(2.7) Ua−λ = Ua − 2λLa + λ2

for all a ∈ J and λ ∈ C. In particular, U1 = U−1 is the identity operator
on J .

For x ∈ J , the spectrum of x (denoted by σJ(x) or σ(x)) is the set of
λ ∈ C for which λ − x is not invertible in J1. By the definition, σJ(x) =
σJ1(x). Let Res(x) := C \ σ(x) be the resolvent set of x.

A subspace M of J is called a quadratic ideal of J if UMJ ⊂ M [42,
Section 15.1], and an inner ideal of J if UMJ

1 ⊂ M [26]. For example,
UxJ is an inner ideal called the principal inner ideal generated by x ∈ J .
Any inner ideal of J is a subalgebra in J , and the intersection of inner
(quadratic) ideals is an inner (quadratic) ideal. By [4, Proposition 4c)], if p
is a projection in J and x ∈ UpJ , then σUpJ(x) ⊂ σJ(x).

For e ∈ J , an inner ideal M is called e-modular if U1−eJ+U1−e,MJ
1 ⊂M

and e2 − e ∈ M ; if M is maximal among proper e-modular inner ideals, it
is called a maximal e-modular inner ideal. Finally, M is a maximal modular
inner ideal if it is maximal e-modular for some e ∈ J . The intersection of
all maximal modular inner ideals is an ideal that coincides with rad(J) [18,
Theorem 4.1]. If J is unital, rad(J) is the intersection of all maximal inner
ideals of J [18, Theorem 1.1].

A largest ideal of J contained in a maximal modular inner ideal of J
is called primitive. Let Prim(J) be the set of all primitive ideals of J ; J is
called primitive if 0 ∈ Prim(J). The Jacobson radical is the intersection of
all primitive ideals of J [26, Theorem III.5.3.1] and

σJ(x) = σJ/rad(J)(x/rad(J)) =
⋃
{σJ/P (x/P ) : P ∈ Prim(J1)}

for every x ∈ J (see [39, Lemma 1]), where x/rad(J) and x/P are the cosets
of x in J/rad(J) and J/P , respectively. (Usually one writes x + I for x/I,
but x+ I may be used for the set {x+ y : y ∈ I}.)

Let I be an ideal of J . Then the kernel-hull closure kh(I) of I is an ideal
of J defined by

(2.8) kh(I) =
⋂
{P ∈ Prim(J1) : I ⊂ P} =

⋂
{P ∈ Prim(J) : I ⊂ P}.
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As {P/I : P ∈ Prim(J), I ⊂ P} = Prim(J/I), we have

(2.9) kh(I)/I = rad(J/I) = rad(J1/I).

Lemma 2.1. Let J be a Jordan (or associative) algebra, I an ideal of J ,
and p a projection in J . If p ∈ kh(I) then p ∈ I.

Proof. Let p̃ = p/I. As p̃ ∈ rad(J/I) by (2.9), p̃ is quasi-invertible and
U1−p̃ is invertible in (J/I)1. As U1−p̃ p̃ = 0, we have p̃ = 0 and p ∈ I.

A Jordan algebra J is non-degenerate [26] if UxJ
1 = 0 implies x = 0 for

x ∈ J . For instance, if rad(J) = 0 then J is non-degenerate. It is easy to
see that any ideal I of a non-degenerate Jordan algebra is non-degenerate:
if UxI

1 = 0 for x ∈ I then UUxJ1J1 ⊂ Ux(UJ1UxJ
1) ⊂ UxI

1 = 0 by (2.4),
whence UxJ

1 = 0 and x = 0.

If a Jordan algebra J is non-degenerate, the socle soc(J) of J is de-
fined as a sum of all minimal inner ideals [27]. Then soc(J) is the sum of
the simple ideals of J generated by all completely primitive projections [27,
Theorem 17], so soc(J) is an ideal of J . Recall that a projection p is com-
pletely primitive (or division) if the subalgebra J1(p) (equal to the image
Up(J), see [19, (3.1.6) and Lemma 3.1.1]) is a division Jordan algebra. The
following assertion is folklore.

Lemma 2.2. Let J , J1, J2 be non-degenerate Jordan algebras. Then:

(1) If θ is a homomorphism from J1 onto J2 then θ(soc(J1)) ⊂ soc(J2).
(2) If I is an ideal of J then soc(I) = I ∩ soc(J) and soc(soc(I)) =

soc(I).

Proof. (1) Let M be a minimal inner ideal of J1. It is clear that θ(M)
is an inner ideal of J2. Assume that θ(M) 6= 0. If K is a non-zero inner
ideal of J2 and K ⊂ θ(M) then θ−1(K) ∩M is an inner ideal of J1, whence
M ⊂ θ−1(K) and θ(M) ⊂ K. Therefore θ(M) is a minimal inner ideal of J2.
This shows that θ(soc(J1)) ⊂ soc(J2).

(2) It is easy to see by using (2.4) that if K is an inner ideal of J then
UUKJ1J1 ⊂ UKJ1, whence UKJ

1 is also an inner ideal J .

Let M be a minimal inner ideal of J . Then UMJ
1 = M or UMJ

1 = 0,
but the latter case is impossible by assumption. As M ∩ I is also an inner
ideal of J , we have either M ⊂ I or M ∩I = 0. Assume that K is a non-zero
inner ideal of I and K ⊂M ⊂ I. Then UKJ

1 is a non-zero inner ideal of J :
UUKJ1J1 ⊂ UKI ⊂ UKJ

1. As M is minimal in J , UKJ
1 = K = M , i.e. M

is a minimal inner ideal of I. This shows that I ∩ soc(J) ⊂ soc(I).

Let N be a minimal inner ideal of I. Then UNI
1 = N and UNJ

1 =
UUNJ1J1 ⊂ UNI

1 = N , whence N is an inner ideal of J . Assume that K
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is a non-zero inner ideal of J and K ⊂ N . Then UKJ
1 is a non-zero inner

ideal of I, whence UKJ
1 = K = N , i.e. N is a minimal inner ideal of J .

This shows that soc(I) ⊂ soc(J).

To prove soc(soc(I)) = soc(I) it suffices to replace I by soc(I) in soc(I) =
I ∩ soc(J).

A subalgebra M of J is called strongly associative if [La, Lb] = 0 for
any a, b ∈ M , spectral if σM (a) ∪ {0} = σJ(a) ∪ {0} for each a ∈ M , and
full (or inverse closed) if M contains the inverse of each element of M in-
vertible in J . Each strongly associative subalgebra is associative. By [25,
Corollary 2.3], for any a ∈ J there is a maximal strongly associative subal-
gebra containing a which is inverse closed whenever J is unital; this subal-
gebra is obviously spectral. If J is a special Jordan algebra, i.e. J ⊂ A+ for
some associative algebra A, then Ua,bx = (axb + bxa)/2 for all a, b, x ∈ J ,
x · x = (xx + xx)/2 = xx, x · x · x = xxx and so on. So maximal strongly
associative subalgebras of J are really subalgebras of A.

Lemma 2.3. Let J be a unital Jordan algebra, and let x, a ∈ J be invert-
ible. Then σ(a−1) = {λ−1 : λ ∈ σ(a)} and σ(Uxa

2) = σ(Uax
2).

Proof. Let µ ∈ C be non-zero. As a − µ = Ua(a
−1 − µa−2), we see

that a− µ and a−1 − µa−2 are simultaneously invertible or not. Let A be a
maximal strongly associative subalgebra of J containing a. Then a−1−µa−2
is invertible in J if and only if it is so in A. As A is an associative algebra,
a−1 − µa−2 is invertible in A if and only if 1 − µa−1 is. As A is an inverse
closed subalgebra of J , 1−µa−1 is invertible in A if and only if it is so in J .
Hence

(2.10) σ(a−1) = {µ−1 : µ ∈ σ(a)}.

It is clear that Uxa
2 and Uax

2 are invertible. Let λ ∈ C be non-zero.
Then it follows from

Uxa
2 − λ = Ux(a2 − λx−2) = UxUa(1− λUa−1x−2)

that Uxa
2 − λ and 1 − λUa−1x−2 are simultaneously invertible or not. As

Ua−1x−2 is the inverse of Uax
2 (see (2.6)), we have σ(Uxa

2) = σ(Uax
2) by

using (2.10).

An element x in J is called scattered in J if σJ(x) is finite or countable.
In what follows, we omit “finite or” for brevity. The set of all scattered
elements in J is denoted by S(J). If J is not unital then S(J) = S(J1) ∩ J
and S(J1) = S(J) + C. A subalgebra or ideal of J is called scattered if it
consists of scattered elements of J . All these notions can be transferred to
associative algebras. So, if A is an associative algebra then S(A) denotes the
set of all scattered elements of A.
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2.2. Banach Jordan algebras. A Jordan algebra J is called normed
if it is a normed space with norm ‖ · ‖ and ‖x · y‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ J .
If J is unital, we assume that ‖1‖ = 1. If J is complete under the norm then
J is called a Banach (or complete normed) Jordan algebra.

Let J be a unital normed Jordan algebra and Aic(x) (or Aic(x; J) if it
is necessary to indicate J) be a closed full subalgebra of J generated by
x ∈ J . It follows from [25] that Aic(x) is associative and is the closure of
the algebra of rational functions p(x) · q(x)−1, where p, q are polynomials
and q(x) is invertible. If J ⊂ A+ for a normed associative algebra A, then
Aic(x, J1) is a closed full commutative subalgebra of A1.

By [25, Theorem 2.8], for a Banach Jordan algebra J , σJ(x) = σAic(x)(x)

is a compact non-empty set in C and λ 7→ (λ− x)−1 is analytic on Res(x).
Moreover, by analytic functional calculus (see [25, Theorem 2.9]), for any
C-valued function f analytic on some neighborhood V of σ(x) there is an
element f(x) ∈ Aic(x) defined by

(2.11) f(x) = (2πi)−1
�

Γ

f(ξ)(ξ − x)−1 dξ

where Γ is a suitable contour in V surrounding σ(x), f(x) does not depend
on the choice of V and Γ , and the map f 7→ f(x) is a homomorphism from
the algebra O(V ) of functions analytic on V into J ; this homomorphism
is continuous with respect to convergence of functions on compact subsets
of V (see [30, Theorem 10.27]). If Γ ⊂ Res(x) surrounds the clopen part σ
of σ(x) then

(2.12) pσ(x) = (2πi)−1
�

Γ

(ξ − x)−1 dξ

is called the spectral projection of x corresponding to σ; if Γ = ∂N(λ, δ), it
is convenient to write pλ.δ(x) for pσ(x). One of the important properties of
functional calculus is the Spectral Mapping Theorem:

(2.13) f(σ(x)) = σ(f(x))

for every function f analytic in some open neighborhood of σ(x). In partic-
ular, σ(pσ(x)) is equal to σ∪{0} if σ(x)\σ is not empty, and to σ otherwise.
Hence σ = ∅ if and only if pσ(x) = 0.

Let x ∈ J . If U1 is an open set containing σ(x) and f is holomorphic
on U1, and U2 is an open set containing f(σ(x)) and g is holomorphic on U2,
then (g ◦ f)(x) = g(f(x)) (see for instance [1, Exercise 3.13]).

Let J be a normed Jordan algebra. Then ρ(x) = lim ‖xn‖1/n is the
spectral radius of x ∈ J ; x is called quasinilpotent if ρ(x) = 0. If J is
complete normed then, by the Beurling–Gelfand formula (see also [25]),

(2.14) ρ(x) = ρJ(x) := max{|λ| : λ ∈ σ(x)},
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and the map x 7→ σ(x) is upper semicontinuous on J [3, Theorems 2.1
and 2.2]. In particular, x 7→ ρ(x) is upper semicontinuous on J .

For a compact set K ⊂ C, recall that K̂ is the set of all µ ∈ C such that
|p(µ)| ≤ supλ∈K |p(λ)| for every polynomial p [15, Section 3.1]. In particular,

K̂ is a compact set in C,

(2.15) sup
µ∈K̂
|p(µ)| = sup

λ∈K
|p(λ)| = sup

µ∈∂K̂
|p(µ)| = sup

λ∈∂K
|p(λ)|

for every polynomial p, and ∂̂K = K̂ . We write σ̂(x) for σ̂(x). The set σ̂(x)
is called the full spectrum of x. Using upper semicontinuity of ρ and (2.15),
it is easy to show that the map x 7→ σ̂(x) is upper semicontinuous on J .

By [10, Proposition 4.1.28], if J is a Banach Jordan algebra with unit 1
and if M is a closed subalgebra containing 1, then

σJ(x) ⊂ σM (x) and ∂σM (x) ⊂ ∂σJ(x) for any x ∈M,

whence σ̂M (x) = σ̂J(x). Hence S(L) = S(J)∩L for any closed subalgebra L
of J . In particular, each scattered closed subalgebra is a scattered Jordan
algebra. If J ⊂ A+ for a Banach associative algebra A then S(J) coincides
with S(A) ∩ J elementwise.

As the spectrum of any element in a normed Jordan algebra is not empty,
the Gelfand–Mazur Theorem [14, 1.2] shows that every division normed
Jordan algebra is isomorphic to C. So the socle of a normed non-degenerate
Jordan algebra J is the sum of the simple ideals generated by all minimal
projections; a projection p in J is called minimal if UpJ = Cp.

2.3. Sub-Banach Jordan algebras. A normed Jordan algebra J is
called a Q-algebra if Inv(J1) is open. By [29, Theorem 4], J is a Q-algebra
if and only if ρJ(a) ≤ ‖a‖ for every a ∈ J , and if and only if J1 is a

Q-subalgebra of its completion Ĵ1. It is easy to see (from ρJ(·) ≤ ‖ · ‖)
that J is a Q-algebra if and only if the same is true of Aic(x; J1) for every
x ∈ J . As any normed associative algebra is a Q-algebra if and only if it is a
spectral subalgebra of its completion (see [21, Lemma 20.9] and [28, Theorem

4.2.10]), J is a Q-algebra if and only if it is a spectral subalgebra of Ĵ , and
if and only if ρJ(a) = ρ(a) for any a ∈ J (see also [10, Theorem 4.6.11]).

Let J be a normed Jordan Q-algebra. Then any inverse closed subal-
gebra of J is spectral. Let I be an ideal of J and x ∈ I. As Aic(x; I1) ⊂
Aic(x; J1) ∩ I + C, we have

σI(x) ∪ {0} = σJ(x) ∪ {0} for each x ∈ I.
Hence I is a spectral subalgebra of J , S(I) = S(J) ∩ I, and if I consists of
scattered elements then I is a scattered normed Jordan algebra.

A normed Jordan algebra J is a normed Jordan Q-algebra if and only
if all maximal modular inner ideals are closed [10, Theorem 4.4.72]. So all
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primitive ideals and the Jacobson radical of a normed Jordan Q-algebra are
closed. In particular, if I is an ideal of a normed Jordan Q-algebra J then
I ⊂ P for every primitive ideal of J such that I ⊂ P . Hence (also in the
associative setting)

(2.16) I ⊂ kh(I) = kh(I) = kh(I).

Let L be a unital normed, Jordan or associative, Q-algebra. Then σL(x)
is equal to σ

L̂
(x) or to σ

L̂
(x)∪{0} for each x ∈ L. Hence, for every function f

analytic on some neighborhood of σL(x), f(x) given by (2.11) is an element

of the completion L̂ by analytic functional calculus.
We say that analytic functional calculus exists in L if, for each x ∈ L and

each function f analytic on some neighborhood of σL(x), the element f(x)

of the completion L̂ belongs to L. It should be noted that in this case
σL(x) = σ

L̂
(x) for each x ∈ L. Indeed, if x is invertible in L̂ then the

inverse x−1 in L̂ is the value of the integral of the form (2.11) and must
belong to L by assumption.

Lemma 2.4. Let L be a normed Jordan or associative Q-algebra and I
be a proper ideal of L. Then:

(1) If p is a projection in L and p ∈ I then p ∈ I.
(2) Assume that analytic functional calculus exists in L1. Then:

(a) If x ∈ I then f(x) − f(0) ∈ I for every function f analytic
on some neighborhood V of σ(x). That is, analytic functional
calculus exists in I1.

(b) If M is a unital closed full subalgebra of L1 then analytic func-
tional calculus exists in M .

(c) If x, y ∈ L and x− y ∈ I then f(x)− f(y) ∈ I for each function
f analytic on some neighborhood of σ(x) ∪ σ(y). In particular,
if ∂N(λ, δ) ⊂ Res(x) ∩ Res(y) then pλ,δ(x)− pλ,δ(y) ∈ I.

Proof. (1) As p ∈ I, we have p ∈ kh(I) by (2.16). By Lemma 2.1, p ∈ I.
(2a) As I is proper, x is not invertible. So f is defined at zero for every

function f analytic on some neighborhood of σL(x).
As (ξ − x)−1 = ξ−1 + ξ−1x(ξ − x)−1 for every non-zero ξ ∈ Res(x), we

have

f(x)− f(0) =
1

2πi

�

Γ

f(ξ)

ξ
dξ +

x

2πi

�

Γ

f(ξ)

ξ
(ξ − x)−1 dξ − f(0).

From the Cauchy integral formula

f(0) =
1

2πi

�

Γ

f(ξ)

ξ
dξ,

so f(x)− f(0) ∈ I.
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(2b) If x ∈M then (ξ − x)−1 ∈M for each ξ ∈ Res(x). So partial sums
of (2.11) belong to M . As M is closed, f(x) ∈M .

(2c) By (2.3), (ξ − x)−1 − (ξ − y)−1 ∈ I for every ξ ∈ Res(x) ∩ Res(y).
As f(x)− f(y) = (2πi)−1

	
Γ f(ξ)((ξ − x)−1 − (ξ − y)−1) dξ (see (2.11)), the

partial sums of this integral lie in I. So f(x)− f(y) belongs to I.

Let L be a Jordan or associative algebra. Recall that a subalgebra M
of L is called a subideal of L if there is a finite chain Kn ⊂ · · · ⊂ K1 ⊂ K0

of subalgebras of L such that Ki+1 is an ideal of Ki for any i and M = Kn,
L = K0. A normed algebra is called a Banach subideal if it is a subideal of
some Banach algebra; it is clear that such an algebra may not be complete.

We call an algebra M a sub-Banach algebra if there is a complete normed
algebra L with a finite chain Kn ⊂ · · · ⊂ K1 ⊂ K0 of subalgebras of L such
that M = Kn, L = K0, and for each i, either Ki+1 is an ideal of Ki, or K1

i+1

is a closed full subalgebra of K1
i . Identifying K1

i+1 with a subalgebra of K1
i

for each i, we obtain

(2.17) M1 = K1
n ⊂ K1

n−1 ⊂ · · · ⊂ K1
1 ⊂ K1

0 = L1.

Clearly, each ideal and each closed full subalgebra of a unital sub-Banach
algebra are sub-Banach algebras.

Lemma 2.5. Let M be a sub-Banach Jordan or associative algebra. Then:

(1) M is a normed Q-algebra.
(2) Analytic functional calculus exists in M1.

(3) M1 = N1 for some normed algebra N that is a subideal of N̂ .
(4) If I is a proper ideal of M then I is a Banach subideal.
(5) If I is a closed ideal of M then

(a) M/I is (isometrically isomorphic to) a sub-Banach algebra;
(b) if M is unital then

⋂
y∈I σ(x+ y) ⊂ σ̂(x/I) for every x ∈M .

Proof. (1) follows from the fact that every Banach Jordan or associative
algebra is a normed Q-algebra, and every ideal or closed full subalgebra of
a unital normed Q-algebra is again a normed Q-algebra.

(2) follows from Lemma 2.4 by induction on n in (2.17).

(3) Let M1 be taken from (2.17). As L1 is complete normed, one may

consider its completion M̂1 as a closed subalgebra of L1. Hence

(2.18) M1 = N1
n ⊂ N1

n−1 ⊂ · · · ⊂ N1
1 ⊂ N1

0 = M̂1,

where Ni = Ki ∩ M̂1 for any i. If Ki+1 is an ideal of Ki for some i then
Ni+1 is an ideal of Ni.

Suppose that K1
i+1 is a closed full subalgebra of K1

i . Then N1
i+1 is a

closed subalgebra of N1
i . But it follows from (2.18) that N1

i+1 is dense in N1
i .
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Hence N1
i+1 = N1

i . Let N = Nn. Then M is either N or N1, and N is a

subideal of N̂ .
(4) follows from (3).
(5a) Assume that (2.18) holds where each Ni+1 is an ideal of Ni. One

may clearly consider Î as a closed ideal in M̂1. Then consider the following
chain of subalgebras of M̂1:

M1 + Î = F 1
n ⊂ F 1

n−1 ⊂ · · · ⊂ F 1
1 ⊂ F 1

0 = M̂1,

where Fi = Ni + Î for any i. It is clear that each Fi+1 is an ideal of Fi, and
Î is a closed ideal of each algebra F 1

i . As a result, we obtain the following

chain of subalgebras of M̂1/Î:

(M1 + Î)/Î = F 1
n/Î ⊂ F 1

n−1/Î ⊂ · · · ⊂ F 1
1 /Î ⊂ F 1

0 /Î = M̂1/Î.

Here M̂1/Î is complete normed, and it is easy to see that M/I and Fn/Î are

isometrically isomorphic under x/I 7→ x/Î. Identifying them we conclude
that M/I is a sub-Banach algebra.

(5b) Let λ /∈ σ̂(x/I). As σ̂(x/I) = σ̂
M̂/I

(x/I) and 0 is in an unbounded

component of Res((λ−x)/I), [30, 10.30] shows that (λ−x)/I has a logarithm

in M̂/I. By (2), it has a logarithm in M/I. Thus there is z ∈ M such that
(λ − x)/I = exp(z/I) = exp(z)/I. So there is y ∈ I such that λ − x =
exp(z) + y. Hence λ− x− y is invertible and λ /∈ σ(x+ y).

Let J be a unital sub-Banach Jordan algebra, and define

Ω1(J) =
⋃
n∈N
{Uexp(a1) · · ·Uexp(an)1 : a1, . . . , an ∈ J}.

It follows from (2.4) that Ω1(J) ⊂ Inv(J), and exp(a) = Uexp(a/2)1 lies in
Ω1(J) for any a ∈ J . Hence {x ∈ J : ‖1 − x‖ < 1} ⊂ Ω1(J) (because
if ‖1 − x‖ < 1 then 0 /∈ σ̂(x), whence x has a logarithm in J). If a =
Uexp(a1) · · ·Uexp(an)1 and f(λ) = Uexp(λa1) · · ·Uexp(λan)1 then f(λ) lies in

Inv(J) for every λ ∈ C, the functions f and λ 7→ f(λ)−1 are analytic on C,
f(1) = a−1 and f(0) = f(0)−1 = 1. Hence

(2.19) a−1, Uab ∈ Ω1(J) if a, b ∈ Ω1(J),

and Ω1(J) is a connected component of Inv(J) containing 1. If J is complete
normed, Ω1(J) is a principal component of Inv(J) by [24].

Note that, for a unital sub-Banach associative algebra A, Ω1(A) can be
defined by

Ω1(A) =
⋃
n∈N
{exp(a1) · · · exp(an) : a1, . . . , an ∈ J}.

Then Ω1(A) is a subgroup of Inv(A) and a connected component of Inv(A)
containing 1.
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2.4. Topological radicals. Let U be a class of normed (not necessar-
ily associative) algebras. We may assume that U is closed under images of
topological morphisms: If θ : L1 → L2 is an open continuous homomorphism
of L1 onto L2, and U contains one of them, then it contains the other. It
is convenient to identify two algebras if there is an isometric isomorphism
between them. By default, by a morphism we mean a topological morphism.

A class U of normed algebras is called ground if it contains all closed
ideals and the corresponding quotients of all algebras from U, and universal
if it is ground and contains arbitrary ideals of all algebras from U. The
class Ubj of all Banach Jordan algebras is ground, and the class Unj of all
normed Jordan algebras is universal. By Lemma 2.5, the class of all Banach
Jordan subideals and the class Usbj of all sub-Banach Jordan algebras are
universal; the same is valid for the class of all Banach associative subideals
and the class Usba of all sub-Banach associative algebras.

Let U be a ground or universal class of normed algebras. The map P
on U that associates with each algebra L a closed ideal P (L) of L is called
a topological radical on U if it satisfies the following conditions (called the
topological radical axioms):

1. θ(P (L1)) ⊂ P (L2) for any morphism θ : L1 → L2 of algebras from U;
2. P (L/P (L)) = 0;
3. P (P (L)) = P (L);
4. P (I) is an ideal of L contained in P (L), for any ideal I ∈ U of L.

An algebra L ∈ U is called P -semisimple if P (L) = 0, and P -radical if
L = P (L).

The most famous radical in the class Uj of all Jordan algebras, as well
as in the class Ua of all associative algebras, is the Jacobson radical rad. An
algebra L from Uj or Ua is called semisimple if rad(L) = 0, and radical if
L = rad(L). The Jacobson radical is a radical in the Amitsur–Kurosh sense
and also an algebraic radical in Dixon’s sense: it satisfies the algebraic radical
axioms that repeat Axioms 1–4 with one exception: in Axiom 1 algebraic
morphisms are assumed, i.e. onto homomorphisms.

Let us introduce now the following useful notions. A map P on U such
that P (L) is an ideal of L, for each L ∈ U, is called an (algebraic) preradical
[36] if it satisfies (algebraic) Axiom 1. For normed algebras, a preradical
P is topological if P (L) is a closed ideal of L for each L. A preradical P
is hereditary if P (I) = I ∩ P (L) for any ideal I ∈ U of L ∈ U. For any
hereditary topological radical P on Ubj , the assignment P 7→ P r defined by

P r(J) = J ∩ P (Ĵ) maps P into a hereditary topological radical P r on Unj .
(For normed associative algebras this was proved in [33, Theorem 2.21]; the
same proof is valid for normed non-associative algebras, in particular for
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normed Jordan algebras.) This procedure is called regular. For more details
of the theory of topological and algebraic radicals we refer to [36].

The Jacobson radical is not a topological radical in the class Unj or in
the class of all normed associative algebras, but it is an algebraic hereditary
preradical. In fact, Dixon [13, Example 10.1] constructed an algebra A ∈ Una
for which rad(A) is not closed, whence A+ ∈ Unj and rad(A+) = rad(A)+

is not closed in A+. However, rad is a hereditary topological radical on the
class of all normed Jordan Q-algebras because rad is a hereditary algebraic
radical on Uj and rad(J) is closed in J for any normed Jordan Q-algebra J .

Let Rad be the restriction of rad to the classes Ubj of all Banach Jordan
algebras and Uba of all Banach associative algebras. Then Rad is a heredi-
tary topological radical on both of these classes. Then Radr is a hereditary
topological radical on Unj and Una; it is called the regular Jacobson radical.

One of the most useful tools for the theory of radicals of Jordan algebras
is the Slin’ko Theorem [42, Theorem 14.12] that states that if J is a Jordan
algebra, I is an ideal of J and K is an ideal of I, and if I/K has no nilpotent
ideals, then K is an ideal of J .

2.5. Analytic multifunctions. By a multifunction we mean any
map K from an open subset D of C into the set of all non-empty compacts
in C; K is analytic on D if K is upper semicontinuous on D and if for any
open set G in D and for any function ψ plurisubharmonic on a neighborhood
of {(λ, z) : λ ∈ G, z ∈ K(λ)} the function ϕ(λ) = sup{ψ(λ, z) : z ∈ K(λ)}
is subharmonic on G. The other names in the literature are analytic multi-
valued (or set-valued), functions.

Recall two facts from the theory of analytic multifunctions [1, Chapter 7].
Let K be an analytic multifunction from an open set D ⊂ C into C. Then
either {λ ∈ D : K(λ) is countable} has capacity zero, or K(λ) is countable
for all λ ∈ D, by the Scarcity Theorem [1, Theorem 7.2.8]. In the last case,
for a fixed η ∈ C, the set {λ ∈ D : η ∈ K(λ)} is either countable or equal
to D, by the Aupetit–Zemánek Theorem [1, Theorem 7.2.13]. We also note
the important Localization Principle [1, Theorem 7.1.5].

It is important for us to underline that the Aupetit–Zräıbi Theorem [5,
Theorem 1] is valid for a sub-Banach Jordan (or associative) algebra L: if
f : D → L is an analytic function then the map λ 7→ σ(f(λ)) is an analytic

multifunction. Indeed, as L is a full subalgebra of its completion L̂ (see
Lemma 2.5), it follows that σ(f(λ)) = σ

L̂
(f(λ)) for every λ ∈ D. So we

can refer to the Aupetit–Zräıbi Theorem for Banach Jordan (or associative)
algebras.

Remark 2.6. If L is a normed Jordan (or associative) Q-algebra and if
f : D → L is an analytic function and K(λ) = σ(f(λ)) for any λ ∈ D, then
the Scarcity Theorem and the Aupetit–Zemánek Theorem are applicable
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to K. Indeed, let K ′(λ) = σ
L̂

(f(λ)) for λ ∈ D. Then K ′ is an analytic
multifunction, and (the conclusions of) these theorems hold simultaneously

for K and K ′, because L is a spectral subalgebra of L̂.

3. The scattered radical

3.1. Preparatory lemma. We start with the following important re-
sults.

Lemma 3.1. Let J be a unital sub-Banach Jordan algebra and a, b ∈ J .
Then:

(1) For each λ /∈ σ̂(a) there exist a number δ(λ) > 0 and an ana-
lytic function g : N(λ, δ(λ)) → Aic(a; J) such that, for every µ in
N(λ, δ(λ)),

(a) g(µ) is invertible in J and g−2(µ) = a− µ;
(b) g(µ) = fµ(a) for some analytic C-valued function fµ defined on

a suitable neighborhood of σ(a).

(2) If Ug(µ)b is scattered for each µ ∈ N(λ, δ(λ)) and λ /∈ σ̂(a) then the
set σ(a+ b) \ σ̂(a) is countable.

(3) If A is a normed associative Q-algebra, a, b ∈ A and (a − λ)−1b is
scattered for any λ /∈ σ̂(a) then σ(a+ b) \ σ̂(a) is countable.

Proof. (1) Let λ /∈ σ̂(a). As 0 lies in an unbounded component of
Res(a− λ), choose a simply connected open set Ω with 0 /∈ Ω and σ(a− λ)
⊂ Ω. (For instance, take Ω = C \ E where E is a simple continuous curve
in Res(a−λ) joining 0 and ∞.) By [12, Theorem 7.2.2], there is an analytic
function f : Ω → C such that exp(f(η)) = η for each η ∈ Ω. As x 7→ σ(x)
is upper semicontinuous, there is δ(λ) > 0 such that σ(b− λ) ⊂ Ω for every
b ∈ J with ‖a − b‖ < δ(λ). By holomorphic functional calculus for such b,
the elements f(b− λ) are well defined; in particular, f(a− µ) exists for all
µ ∈ N(λ, δ(λ)).

Set g(µ) = exp(−f(a − µ)/2) for µ ∈ N(λ, δ(λ)). It is easy to see that
g−2(µ) = a − µ. The function g(µ) is analytic on N(λ, δ(λ)) as it is the
composition of analytic functions exp(−f/2) and µ 7→ a− µ.

If fµ is the composition of the analytic functions exp(−f/2) and ξ 7→ ξ−µ
(defined on a suitable neighborhood of σ(a)) then fµ is an analytic C-valued
function with fµ(a) = g(µ) for any µ ∈ N(λ, δ(λ)).

(2) Let λ /∈ σ̂(a), and let γ : [0, 1]→ C\ σ̂(a) be a continuous curve join-
ing λ and some point η where |η| > ρ(a+b). By (1), for every point γ(t) there
are δ(t) > 0 and an analytic function gt : N(γ(t), δ(t)) → Aic(a) satisfying
g−2t (µ) = a−µ for every µ ∈ N(γ(t), δ(t)). As γ([0, 1]) is a compact set cov-
ered by the open sets N(γ(t), δ(t)), there are reals t0 = 0 < t1 < · · · < tn = 1
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such that

γ([0, 1]) ⊂
n⋃
j=0

N(γ(tj), δ(tj)).

Let Dj = N(γ(tj), δ(tj)) and fj(µ) = Ugtj (µ)b for any µ ∈ Dj , for j =

0, 1, . . . , n. As fj is evidently analytic, the map Kj : µ 7→ σ(fj(µ)) is an
analytic multifunction on Dj by [5, Theorem 1]. As Ugtj (µ) is invertible, we
deduce (by using a − µ = g−2tj (µ) = Ug−1

tj
(µ)1 and b = U−1gtj (µ)

Ugtj (µ)b =

Ug−1
tj

(µ)Ugtj (µ)b) that

a+ b− µ = Ug−1
tj

(µ)(1 + Ugtj (µ)b) = Ug−1
tj

(µ)(1 + fj(µ))

for every µ ∈ Dj , and a + b − µ is not invertible if and only if 1 + fj(µ) is
not invertible. Hence

(3.1) σ(a+ b) ∩Dj = {µ ∈ Dj : −1 ∈ Kj(µ)}.

By assumption, Kj(µ) is countable for any µ ∈ Dj . By the Aupetit–Zemánek
Theorem, Gj := {µ ∈ Dj : −1 ∈ Kj(µ)} is either countable or equal to Dj ,
for j = 0, 1, . . . , n.

Assume that G0 = D0. Then D0 ⊂ σ(a+b) by (3.1). As D0∩D1 consists
of an uncountable number of points of σ(a+ b), the set G1 = σ(a+ b) ∩D1

cannot be countable. Therefore, by the Aupetit–Zemánek Theorem, G1 =
D1 ⊂ σ(a + b). Repeating this argument a finite number of times, we find
that Gn = Dn ⊂ σ(a + b). As η ∈ Dn and ρ(a + b) < |η|, we obtain a
contradiction.

Therefore, by the Aupetit–Zemánek Theorem, G0 is at most count-
able, and so also is σ(a + b) ∩ D0 by (3.1). We have proved in fact that
σ(a+ b) ∩N(λ, δ(λ)) is countable for any λ /∈ σ̂(a). As C \ σ̂(a) is a separ-
able metric space, there is a countable covering by inscribed open sets each
of which contains a countable number of points of σ(a+b). So σ(a+b)\ σ̂(a)
is countable.

(3) Let D = C \ σ̂(a) and K(λ) = σ((a − λ)−1b) for λ ∈ D. Then
K is a multifunction on D, and K(λ) is countable for any λ ∈ D. Since
a + b − λ = (a − λ)(1 + (a − λ)−1b) for λ ∈ D, we have σ(a + b) ∩D = G
where G = {λ ∈ D : −1 ∈ K(λ)}. By the Aupetit–Zemánek Theorem
(see Remark 2.6), G is either countable or equal to D. The latter case is
impossible because σ(a+b) is bounded, but D is not. Therefore σ(a+b)\σ̂(a)
is countable.

Under the assumptions of Lemma 3.1, σ(a+ b) \ σ̂(a) is countable if and
only if σ̂(a+ b) \ σ̂(a) is countable, and in this case

(3.2) σ(a+ b) \ σ̂(a) = σ̂(a+ b) \ σ̂(a) for all a, b.
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This follows from the fact that if a compact set in C is the union of a
polynomially convex set K and a countable set Z then it is polynomially

convex. Indeed, let λ ∈ K̂ ∪ Z. If λ ∈ K̂ then clearly λ ∈ K. Assume now
that λ /∈ K. As K is polynomially convex, there is a polynomial p such that

max
µ∈K
|p(µ)| < |p(λ)| ≤ max

µ∈Z
|p(µ)| .

Let Z ′ = {µ ∈ Z : |p(λ)| ≤ |p(µ)|}. It is easy to see that Z ′ is a compact set

and λ ∈ Ẑ ′. But every countable compact set in C is polynomially convex.
So λ ∈ Z ′ ⊂ Z.

3.2. Scattered ideals

3.2.1. First we introduce a useful technical notion. Let L be a unital
sub-Banach Jordan or associative algebra, I an ideal of L, x an arbitrary
element of L, and G a polynomially convex compact set containing σ̂(x).
An open disk N(λ, δ) with δ > 0 is called (x,G, I)-special if G ∩ N(λ, δ)
is countable, the contour Γλ,δ := ∂N(λ, δ) lies in C \ G, and the spectral
projection pλ,δ(x) := (2πi)−1

	
Γλ,δ

(ξ − x)−1 dξ of x corresponding to the set

σ(x)∩N(λ, δ) belongs to I. We say that λ ∈ C has an (x,G, I)-special disk
if there is an (x,G, I)-special disk N(λ, δ) for some δ > 0.

Lemma 3.2. Let L be a unital sub-Banach Jordan or associative algebra,
let I be an ideal of L, let x ∈ L, and suppose σ̂(x) ⊂ G = Ĝ for some compact
set G ⊂ C. Assume that N(λ, δ) is an (x,G, I)-special disk. Then:

(1) In any interval [t1, t2] ⊂ R with 0 < t1 < t2 < δ there is t > 0 such
that N(λ, t) is an (x,G, I)-special disk.

(2) If µ ∈ N(λ, δ) then µ has an (x,G, I)-special disk.
(3) If M is a polynomially convex compact set in C and M \G is count-

able then λ has an (x,G ∪M, I)-special disk.

Proof. Without loss of generality one can assume that L is complete
normed.

(1) Assume, to the contrary, that there is an interval [t1, t2] with 0 <
t1 < t2 < δ such that N(λ, t) is not a (λ,G, I)-special disk. Then for every
t ∈ [t1, t2] either ∂N(λ, t)∩G 6= ∅ or ∂N(λ, t) ⊂ C\G and pλ,t(x) does not lie
in I. In the latter case pλ,t(x) = pλ,t(x)·pλ,δ(x) belongs to I, a contradiction.
So the former case must hold for all t ∈ [t1, t2]. But then G ∩ N(λ, δ) is
uncountable, also a contradiction.

(2) If µ ∈ N(λ, δ) then there is t′ > 0 such that N(µ, t) ⊂ N(λ, δ) for
any t < t′. Then G ∩ N(µ, t) is countable. Arguing as in (1), we conclude
that there is a positive t < t′ such that ∂N(µ, t) ⊂ C \ G and pµ,t(x) ∈ I.
Therefore N(µ, t) is an (x,G, I)-special disk.
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(3) Let F = G ∪M . Then σ̂(x) ⊂ F = F̂ and F ∩N(λ, δ) is countable.
If ∂N(λ, δ)∩F 6= ∅, there is a positive t < δ such that ∂N(λ, t) ⊂ C\F and
pλ,t(x) ∈ I. Hence N(λ, t) is an (x, F, I)-special disk.

Let I be an ideal of L and x ∈ L. Let ω(x; I) be the set of all λ ∈ σ̂(x)
having no (x, σ̂(x), I)-special disks. Taking into account that σ̂(x − η) =
σ̂(x) − η, it is easy to see that ω(x − η; I) = ω(x; I) − η for every η ∈ C
whenever ω(x; I) is not empty. The following theorem generalizes [1, Theo-
rem 5.7.4].

Theorem 3.3. Let L be a unital sub-Banach Jordan or associative
algebra, let I be an ideal of L and x ∈ L. Then:

(1) ω(x; I) is a polynomially convex compact set.
(2) σ̂(x) \ ω(x; I) is countable.
(3) If ω(x; I) is not empty then ∂ω(x; I) ⊂ σ(x).
(4) If I is scattered then

(a) ω(x; I) = ω(x+ y; I) for every y ∈ I;

(b) if ω(x; I) is empty then σ̂(x/Î) = {0} (Î is the closure of I

in L̂);

(c) if ω(x; I) is not empty then ω(x; I) = σ̂(x/Î).

Proof. (1) The set C \ ω(x; I) is covered by open disks each of which
is inscribed in C \ ω(x; I) and intersects σ̂(x) in a countable set, whence
C \ ω(x; I) is open and ω(x; I) is closed. So ω(x; I) is a compact set. If
λ ∈ C \ω(x; I) then there is an (x, σ̂(x), I)-special disk N(λ, δ). Let E(µ) =
{tλ+ (1− t)µ : 0 < t < 1} for µ ∈ ∂N(λ, δ). As σ̂(x)∩N(λ, δ) is countable,
there is µ′ ∈ ∂N(λ, δ) such that E(µ′) ⊂ C \ σ̂(x). As µ′ ∈ ∂N(λ, δ) ⊂
C \ σ̂(x), there is a simple continuous curve in C \ σ̂(x) joining µ′ and ∞.
Therefore λ lies in an unbounded component of C \ ω(x; I). Hence ω(x; I)
is polynomially convex by [15, Lemma 3.1.3].

(2) As C \ ω(x; I) is a separable metric space which is covered by
(x, σ̂(x), I)-special disks, it admits an inscribed countable covering, whence
it intersects σ̂(x) in a countable set. Thus σ̂(x) \ ω(x; I) is countable.

(3) Let us show that ∂ω(x; I) ⊂ σ(x). Assume, to the contrary, that
λ ∈ ∂ω(x; I) but λ ∈ Res(x). Hence V ⊂ Res(x) for some neighborhood V
of λ. As λ ∈ ∂ω(x; I), as we saw in (1), V contains a point µ that lies in
C \ σ̂(x). Hence λ ∈ C \ σ̂(x), a contradiction. So ∂ω(x; I) ⊂ σ(x).

(4a) The case when L = J , a unital sub-Banach Jordan algebra. By
Lemma 3.1(1), for any λ ∈ C \ σ̂(x) there exist an open disk N(λ, δ) and an
analytic function g : N(λ, δ) → Aic(x) such that g−2(µ) = x − µ for every
µ ∈ N(λ, δ). As y ∈ I, the element Ug(µ)y is scattered for every µ ∈ N(λ, δ).
By Lemma 3.1(2), σ(x+ y) \ σ̂(x) is countable. By (3.2), σ̂(x+ y) \ σ̂(x) is
countable.
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Assume, to the contrary, that there is a point η ∈ ω(x + y; I) \ ω(x; I).
Then η has an (x, σ̂(x), I)-special disk N(η, δ). By Lemma 3.2(3), the point η
also has an (x, σ̂(x)∪σ̂(x+y), I)-special diskN(η, t). Then pη,t(x+y)−pη,t(x)

∈ I by Lemma 2.4(2c). As pη,t(x) ∈ I, we obtain pη,t(x + y) ∈ I. By
Lemma 2.4(1), pη,t(x+ y) ∈ I, whence η ∈ C \ ω(x+ y; I), a contradiction.

Therefore ω(x+ y; I) ⊂ ω(x; I). Exchanging x and x+ y, we also obtain
the converse inclusion ω(x; I) ⊂ ω(x+ y; I).

(4a) The case when L = A is a unital sub-Banach associative algebra.
As y ∈ I, the element (λ − x)−1y is scattered for any λ ∈ C \ σ̂(x). By
Lemma 3.1(3), σ(x+ y) \ σ̂(x) is countable. The rest of the proof is similar
to the case when L = J .

(4b)&(4c) If λ ∈ σ(x) \ ω(x; I) then there is an (x, σ̂(x), I)-special disk
N(λ, δ). So the spectral projection pλ,δ(x) corresponding to σ = σ(x) ∩
N(λ, δ) lies in I. Then λ ∈ σ and

σ(x/Î) = σ
(
(x · (1− pλ,δ(x)))/Î

)
⊂ σ

L̂
(x · (1− pλ,δ(x)))

= σ(x · (1− pλ,δ(x))) ⊂ {0} ∪ (σ(x) \ σ).

So, if λ 6= 0 then x/Î − λ is invertible, whence σ \ {0} ⊂ Res(x/Î). Thus

(3.3) σ(x/Î) ⊂ {0} ∪ ω(x; I).

If ω(x; I) is empty then σ(x/Î) = {0}.
Assume that ω(x; I) is not empty. By (3.3) applied to a = x + µ with

|µ| > ρ(x), we see that σ(a/Î) ⊂ ω(a; I), whence σ(x/Î) ⊂ ω(x; I). As

ω(x; I) is polynomially convex, σ̂(x/Î) ⊂ ω(x; I).
By (3) and (4a), ω(x; I) = ω(x+ y; I) and ∂ω(x; I) ⊂ σ(x+ y) for each

y ∈ I. Hence ∂ω(x; I) ⊂ σ(x+ y) for each y ∈ Î by upper semicontinuity of

the map z 7→ σ(z) on L̂. By Lemma 2.5(5b),

∂ω(x; I) ⊂
⋂
y∈Î

σ(x+ y) ⊂ σ̂(x/Î) ⊂ ω(x; I),

whence σ̂(x/Î) = ω(x; I).

3.2.2. Thin ideals. Let L be a sub-Banach Jordan or associative algebra.
A closed ideal I of L is called thin [36] if σ(a)\ σ̂(a/I) is countable for each
a ∈ L; an arbitrary ideal is called thin if its closure is thin. Each thin ideal
is scattered. The converse follows from Theorem 3.3(2)&(4).

Corollary 3.4. Let L be a sub-Banach Jordan or associative algebra.
If I is a scattered ideal of L then Î is a thin ideal of L̂. In particular, if L
is scattered then L̂ is scattered.

Corollary 3.4 cannot be extended to normed Jordan or associative Q-
algebras. Indeed, by the example due to Dixon [13, Example 9.3], there is a
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radical normed associative algebra A such that Â is semisimple. It is obvious

that A is a Q-algebra, and Â cannot be scattered.

Let L be a normed Jordan or associative Q-algebra, I an ideal of J and
qI : J → J/I the quotient map. In particular,

(3.4) I ⊂ kh(I)

(for Jordan algebras, see (2.16); in normed associative Q-algebras all prim-
itive ideals are closed (see, for instance, [33, Theorem 2.1]), which im-
plies (3.4)).

Corollary 3.5. Let L, L1, L2 be sub-Banach Jordan (or associative)
algebras. Then:

(1) If I is a scattered ideal of L then kh(Î) is a scattered ideal of L̂ and
q−1
I
S(L/I) = S(L).

(2) If I1 and I2 are scattered ideals of L then I1 + I2 is a scattered ideal.
(3) There is the largest scattered ideal for L and it is closed.
(4) If Rs(L) denotes the largest scattered ideal of L then

(a) θ(Rs(L1)) ⊂ Rs(L2) for any algebraic morphism θ from J1
onto J2;

(b) Rs(L/Rs(L)) = {0};
(c) Rs(Rs(L)) = Rs(L);
(d) if I is an ideal of L then Rs(I) = I ∩Rs(L);

(e) Rs(L) = L ∩Rs(L̂).

Proof. (1) Let x ∈ kh(Î). By Theorem 3.3, σ(x/Î) = {0} = σ̂(x/Î),
whence ω(x; I) is empty or {0}. Therefore σ̂(x) is countable and x is scat-
tered.

Now suppose x/I is scattered for some x ∈ L. By Theorem 3.3, ω(x; I)
and σ̂(x) \ ω(x; I) are countable. So σ̂(x) is countable and x is scattered.
This proves q−1

I
S(L/I) ⊂ S(L). The converse inclusion is obvious.

(2) By (1) and (3.4), one can assume that I1 and I2 are closed. Let
x = a+b with a ∈ I1 and b ∈ I2. It is easy to see that Res(a) ⊂ Res(x/I2), so
x/I2 is scattered. Then ω(x; I2) is countable. By Theorem 3.3, σ̂(x)\ω(x; I2)
is countable, whence x is scattered.

(3) If (Iα) is a chain of scattered ideals of L then the ideal
⋃
Iα is clearly

scattered in L. So, by Zorn’s Lemma, there are maximal scattered ideals
of L. It follows from (2) that they all coincide, so there is only one maximal
scattered ideal K, and this ideal is largest. By (1), K is closed.

(4a) Clearly, σ(θ(a)) ⊂ σ(a) for each a ∈ L1, whence θ(Rs(L1)) is a
scattered ideal of L2. Hence it is contained in Rs(L2).
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(4b) Let I = Rs(L) and qI : L → L/I be the quotient map. Let I ′ =
q−1I (Rs(L/I)). By (1), I ′ ⊂ S(L), i.e. I ′ is a scattered ideal of L, whence
I ′ ⊂ Rs(L) = I and Rs(L/I) = {0}.

(4c) is obvious.

(4d) The case when I is an ideal of a sub-Banach Jordan algebra J . It
is clear that I ∩Rs(J) ⊂ Rs(I). Since Rs(I/Rs(I)) = {0} by (4b), I/Rs(I)
is semisimple and has no non-zero nilpotent ideals. So Rs(I) is an ideal of J
by Slin’ko’s Theorem [42, Theorem 14.12], whence Rs(I) ⊂ Rs(J).

The case when I is an ideal of a sub-Banach associative algebra A. Let M
be an ideal of A generated by Rs(I). As M3 ⊂ Rs(I) ⊂ M , M3 and hence

M3 are scattered ideals of A. As M/ M3 is nilpotent, M is a scattered
ideal of A by (1). Hence Rs(I) ⊂ M ⊂ Rs(A) and Rs(I) ⊂ I ∩ Rs(A). As
I ∩Rs(A) ⊂ Rs(I), we obtain equality.

(4e) As L∩Rs(L̂) is a scattered ideal of L, we get L∩Rs(L̂) ⊂ Rs(L). On

the other hand, the completion R̂s(L) can be identified with a scattered ideal

of L̂ by Corollary 3.4. SoRs(L) ⊂ R̂s(L) ⊂ Rs(L̂) andRs(L) ⊂ L∩Rs(L̂).

Corollary 3.5(4a)–(4d) yields

Corollary 3.6. The map Rs : L 7→ Rs(L) is a hereditary topologi-
cal radical on the class Usbj of all sub-Banach Jordan algebras and on the
class Usba of all sub-Banach associative algebras.

The map Rs is called the scattered radical. For every normed Jordan
algebra J , the ideal J∩Rs(Ĵ) is scattered and closed in J . The mapRrs : J 7→
J ∩Rs(Ĵ) is a hereditary topological radical on the class Unj of all normed
Jordan algebras (see Section 2.4). This radical is called the regular scattered
radical. Proposition 2.28 of [33] shows that Rrs(A) may be smaller than the
largest scattered ideal for a normed associative Q-algebra A. Taking into
account Corollary 3.12 below, we obtain such an example for the normed
Jordan Q-algebra A+.

3.2.3. Structure theorem for the scattered radical

Theorem 3.7. Let L be a sub-Banach Jordan or associative algebra.
Then:

(1) There is an increasing transfinite chain (Pα(L))α≤γ of closed ideals
of L such that P0(L) = kh(0), Pα+1(L) = kh(q−1Pα(L)(soc(L/Pα(L))))

for any α, Pβ(L) = kh(
⋃
α<β Pα(L)) for any limit ordinal β, and

Pγ(L) = Rs(L).
(2) If L is scattered and semisimple then L has a non-zero socle.

Proof. We will only give the proof for Jordan algebras; for associative
algebras, the assertion is well known. Let Iα = Pα(L) for all α.
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(1) The case when L is complete normed. First we show that all ideals
Iα are scattered. Let I be a scattered closed ideal of L such that L/I is
semisimple, and let I ′ = q−1I (soc(L/I)). By Theorem 3.3, ω(x; I) = σ̂(x/I)
and σ̂(x) \ ω(x; I) is countable for every x ∈ L. As x ∈ I ′ if and only if
x/I ∈ soc(L/I), the set σ̂(x/I) is finite for every x ∈ I ′ by [3, Theorem 3.11].
Hence σ̂(x) and σ(x) are countable for every x ∈ I ′. Therefore I ′ and I ′ are
scattered ideals of L. Further, kh(I ′) = kh(I ′) is also a scattered ideal.
As kh(I ′) = q−1

I′
(rad(L/I ′)), L/kh(I ′) is semisimple. This proves that if Iα

is scattered then so is Iα+1. Taking into account that I0 is scattered, we
can assume that Iα are scattered for α < β where β is a limit ordinal. As
such ideals lie in Rs(L), the ideals

⋃
α<β Iα and Iβ are also scattered. By

transfinite induction, all ideals Iα are scattered.
As L is a set, the transfinite sequence stabilizes at some ordinal γ: Iγ =

Iγ+1. As Iγ is scattered, we have Iγ ⊂ Rs(L). Assume, to the contrary, that
Iγ 6= Rs(L). Then Rs(L)/Iγ is non-zero, scattered and semisimple. By [4,
Theorem 19], soc(Rs(L)/Iγ) is non-zero. By Lemma 2.2, soc(Rs(L)/Iγ) ⊂
soc(L/Iγ). Hence we can add to (Iα)α≤γ an ideal Iγ+1 := kh(q−1Iγ (soc(L/Iγ)))

6= Iγ , a contradiction. So Iγ = Rs(L).

(2) By Lemma 2.5, L1 = N1 where N is a subideal of N̂ . We can assume

that N 6= N̂ . Since N is scattered, it follows from Corollary 3.4 that N̂
is also scattered. Then for N̂ there is a chain (Iα)α≤γ of ideals described
in (1). Let β be a smallest ordinal for which N ∩ Iβ 6= {0}. Clearly, N ∩ Iβ
is an ideal of N . As N is semisimple, N contains an element a ∈ N ∩ Iβ
with non-zero spectrum. As N is scattered, σ(a) is countable and there is
a non-zero λ ∈ σ(a) such that N(λ, δ) \ {λ} ⊂ Res(a) \ {0}. As N ∩ Iβ
is a sub-Banach algebra, analytic functional culculus exists in (N ∩ Iβ)1

by Lemma 2.5. Then the spectral projection p := pλ,δ of a corresponding to
σ(a)∩N(λ, δ) belongs to (N ∩Iβ)1. As λ is a non-zero isolated point of σ(a),
p is a value of some analytic function f(a) with f(0) = 0. Then p ∈ N ∩ Iβ
by Lemma 2.4(2a).

It is clear that β > 0. If β is a limit ordinal then, by Lemma 2.1, p ∈ Iα
for some α < β, but N ∩ Iα = {0}, a contradiction. Hence β = α + 1

for some α and p ∈ q−1Iα (soc(N̂/Iα)) ⊂ Iα+1. By assumption, soc(N̂/Iα) ⊂
Iα+1/Iα, and by Lemma 2.2(2), soc(Iα+1/Iα) = soc(N̂/Iα). Hence p/Iα is
in soc(Iα+1/Iα).

It is clear that N ∩ Iα+1 and (N ∩ Iα+1 + Iα) are subideals of Iα+1.
Then M := (N ∩ Iα+1 + Iα)/Iα is a subideal of Iα+1/Iα, whence soc(M) =
M ∩ soc(Iα+1/Iα) by Lemma 2.2(2). As p/Iα ∈ M , we get p/Iα ∈ soc(M).
Let θ : x 7→ x/Iα be a homomorphism from N ∩ Iα+1 onto M . It follows
that if x/Iα = y/Iα for x, y ∈ N ∩ Iα+1 then x − y ∈ N ∩ Iα = {0}. So θ
is injective and θ−1 is a homomorphism from M onto N ∩ Iα+1. By Lemma
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2.2(1), we have p ∈ θ−1(soc(M)) ⊂ soc(N ∩ Iα+1). As N ∩ Iα+1 is an ideal
of L, we conclude that p ∈ soc(L) by Lemma 2.2(1).

(1) The general case follows exactly as in the above case of complete
normed algebras by using (2).

The maps Pα : L 7→ Pα(L) in Theorem 3.7 may be applied to any
Jordan or associative algebra. Recall that the algebraic radical axioms repeat
Axioms 1–4 word for word, only in Axiom 1 it is necessary to take algebraic
morphisms. Let P, T be maps on the class U of algebras such that P (L) and
T (L) are ideals of L for any L. Then P is called an (algebraic) under radical
[13] if P satisfies all (algebraic) radical axioms apart from Axiom 2. Let us
define the convolution P ∗T of P and T by (P ∗T )(L) = q−1T (L)(P (L/T (L)))

for any L, where qT (L) is the quotient map L→ L/T (L). For details on the
convolution we refer to [36, Section 4].

Let R(L) = kh((soc ∗ rad)(L)) for any Jordan or associative algebra L.
Define the ideals Rα(L) by induction as follows: R1(L) = 0 and Rα+1(L) =
(R∗Rα)(L) for any ordinal α. If β is a limit ordinal, set Rβ(L)=

⋃
α<β Rα(L).

Lemma 3.8. Let R and Rα be defined as above, and let Pα be defined as
in Theorem 3.7, for any ordinal α. Then:

(1) If T and P are algebraic hereditary preradicals then T ∗ P is an
algebraic hereditary preradical.

(2) R : L 7→ R(L) is an algebraic hereditary preradical on Uj and Ua.
(3) All Ra and Pα are algebraic hereditary preradicals.
(4) Pα+k = Rα+k for any α and k > 0.

Proof. (1) By [36, Lemma 4.10], which also holds in the non-associative
algebra context, the convolution of preradicals is a preradical. So T ∗P is a
preradical.

Let I be an ideal of L. As P (I) = I ∩ P (L), we infer that I/P (I)
is isomorphic to the ideal I ′ := (I + P (L))/P (L) of L/P (L), and that
T (I/P (I)) is isomorphic to T (I ′) = I ′ ∩ T (L/P (L)). Now if x ∈ (T ∗ P )(I)
then qP (I)(x) ∈ T (I/P (I)), whence qP (L)(x) ∈ T (L/P (L)), and therefore
x ∈ I ∩ (T ∗ P )(L). Conversely, if y ∈ I ∩ (T ∗ P )(L) then qP (L)(y) ∈ T (I ′),
whence qP (I)(y) ∈ T (I/P (I)). As y ∈ I, we have y ∈ (T ∗ P )(I). Therefore

(3.5) (T ∗ P )(I) = I ∩ (T ∗ P )(L).

(2) Let T = soc and P = rad, and let psoc(L) = (T ∗P )(L), the presocle
of L. Although soc has the properties of a hereditary preradical on semi-
simple algebras (see Lemma 2.2), an argument similar to one in (1) shows
that (3.5) holds.

Let us check that psoc is a preradical. Let f : L1 → L2 be an al-
gebraic morphism. As f(P (L1)) ⊂ P (L2), there is an algebraic morphism
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g : L1/P (L1)→ L2/P (L2) with qP (L2) ◦ f = g ◦ qP (L1), and g(T (L1/P (L1)))
⊂ T (L2/P (L2)), whence

f((T ∗ P )(L1)) = f
(
q−1P (L1)

(T (L/P (L1)))
)
⊂ q−1P (L2)

(g(T (L1/P (L1))))

⊂ q−1P (L2)
(T (L2/P (L2))) = (T ∗ P )(L2).

So psoc is a hereditary preradical. As R = rad ∗psoc, R is a hereditary
preradical by (1).

(3) Assume that we have already proved that Rα and Pα are hereditary
preradicals for all α < β. If β = α + 1, it follows from (1) that Rα+1 and
Pα+1 are hereditary preradicals. The case of a limit ordinal β is evident.

(4) Clearly, R1 = R = rad ∗(soc ∗ rad) and P1 = (rad ∗ soc) ∗ rad. By [36,
Lemma 4.10], convolution is associative for preradicals. In our case it is easy
to check that P1 = R1.

Further, R2 = rad ∗ soc ∗ rad ∗R1 and P2 = rad ∗ soc ∗P1. But as rad is
a radical, it is evident that rad = rad ∗ rad, whence P2 = R2. Hence, if
Pα = Rα for some ordinal α then clearly Pα+1 = Rα+1. If Pα = Rα for all
α < β, where β is a limit ordinal, it is easy to see that Pβ = rad ∗Rβ and
Pβ+1 = Rβ+1.

Corollary 3.9. The scattered radical Rs is the restriction of some al-
gebraic radical (denoted by radsoc) from the classes Uj and Ua to the classes
Usbj and Usba, respectively.

Proof. Let Pα and Rα be defined for any ordinal α as in Lemma 3.8. As
Pα and Rα are hereditary preradicals by Lemma 3.8, it is easy to see that
they are under radicals. Note that [13, Theorem 6.6] is also valid for non-
associative algebras. By that result, for any Jordan or associative algebra L,
the sequence (Rα(L)) stabilizes at some γ and Rγ is an algebraic radical.
We denote this radical by radsoc. By using Lemma 3.8(4), we conclude that
the sequence (Pα(L)) stabilizes at γ+1 and Pγ+1(L) = Rγ+1(L) = Rγ(L) =
radsoc(L). It follows from Theorem 3.7 that Rs is the restriction of rad to
the classes Usbj and Usba.

3.3. Characterization of the largest scattered ideal. First we con-
sider the case of sub-Banach Jordan algebras.

Theorem 3.10. Let J be a sub-Banach Jordan algebra and x ∈ J . The
following are equivalent:

(1) x ∈ Rs(J).
(2) Uax is scattered for every a ∈ J1.
(3) σ̂(x+ a) \ σ̂(a) is countable for every a ∈ J .
(4) {λ ∈ C : 0 ∈ σ(a+ λx)} is countable for every a ∈ J1 with 0 /∈ σ̂(a).
(5) {λ ∈ C : 0 ∈ σ(a+ λx)} is countable for every a ∈ Ω1(J

1).
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Proof. (1)⇒(2) is obvious, and (2)⇒(3) follows from Lemma 3.1.

(3)⇒(4): Condition (3) can be written as follows: σ̂(a + λx) \ σ̂(a) is
countable for all a ∈ J1 and λ ∈ C. Let a ∈ J1 and 0 /∈ σ̂(a). Let G be the
set of all η ∈ C such that 0 ∈ σ(a + ηx). Let λ ∈ G. As σ̂(a + λx) \ σ̂(a)
is countable, there are disjoint open sets V1, V2 ⊂ C such that σ(a+ λx) ⊂
V1∪V2 and 0 ∈ V1 ⊂ C\σ̂(a). As the map y 7→ σ(y) is upper semicontinuous,
there is δ(λ) > 0 such that σ(a+ µx) ⊂ V1 ∪ V2 for any µ ∈ N(λ, δ(λ)). Let
K(µ) := σ(a+µx)∩V1 for µ ∈ N(λ, δ(λ)). By the Localization Principle [1,
Theorem 7.1.5], K(µ) is either empty or not empty, simultaneously for all
µ ∈ N(λ, δ(λ)), and in the latter case K(µ) is an analytic multifunction on
N(λ, δ(λ)). Since 0 ∈ K(λ), we conclude that K is an analytic multifunction
on N(λ, δ(λ)). As K(µ) ⊂ C\σ̂(a), K(µ) is countable for any µ ∈ N(λ, δ(λ)).
By the Aupetit–Zemánek Theorem [1, Theorem 7.2.13], G ∩ N(λ, δ(λ)) is
either countable or equal to N(λ, δ(λ)).

Now let Q = {λ ∈ G : N(λ, δ(λ)) ⊂ G}. It is evident that Q is open
in C. On the other hand, if λn → λ as n → ∞ for some {λn} ⊂ Q then
λ ∈ G (because the limit Ua+λx of non-invertible operators Ua+λnx is not
invertible). As N(λ, δ(λ))∩N(λn, δ(λn)) contains an uncountable number of
points of G for all sufficiently large n, we have N(λ, δ(λ)) ⊂ G and therefore
λ ∈ Q. So Q is also closed in C. Hence Q is equal to ∅ or C. If Q = C then
0 ∈ σ̂(a), a contradiction.

So Q = ∅, whence G∩N(λ, δ(λ)) is countable for every λ ∈ G. As G is a
separable metric space, it admits a countable covering by disks N(λ, δ(λ)),
whence it is countable.

(2)⇒(5): Let a ∈ Ω1(J
1) be such that ‖1 − a‖ < 1. Then 0 /∈ σ̂(a) and

a has a logarithm in Ĵ1 by [30, Theorem 10.30], whence a has a logarithm
in J1 since analytic functional calculus exists in J1 by Lemma 2.5. Then
a = exp(b) for some b ∈ J1. Let c = exp(−b/2). Then c is invertible and
lies in J1, and also a = c−2. As a + λx = Uc−1(1 + λUcx), for λ 6= 0 this
element is not invertible if and only if −1/λ ∈ σ(Ucx). As Ucx is scattered,
{λ ∈ C : 0 ∈ σ(a+ λx)} is countable.

Let now a ∈ Ω1(J
1) be arbitrary. Then a = Uexp(bn) · · ·Uexp(b1)1 for

some b1, . . . , bn ∈ J1. Let f(µ) = Uexp(µbn) · · ·Uexp(µb1)1 for µ ∈ C. Then
f is an analytic function, f(0) = 1, f(1) = a, and there is δ > 0 such
that ‖1 − f(µ)‖ < 1 for each µ ∈ N(1, δ). By the above, {λ ∈ C :
0 ∈ σ(f(µ)+λx)} is countable for any µ ∈ N(1, δ). Let F (µ) be the operator
Uexp(−µb1) · · ·Uexp(−µbn) on J for µ ∈ C. As

F (µ) = U−1exp(µb1)
· · ·U−1exp(µbn)

= (Uexp(µbn) · · ·Uexp(µb1))
−1,

we see that F (µ)f(µ) = 1 and

(3.6) F (µ)(f(µ) + λx) = 1 + λF (µ)x.
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It follows from (2.5) and (3.6) that, for λ 6= 0, the element f(µ) + λx is not
invertible if and only if −1/λ ∈ σ(F (µ)x). Therefore σ(F (µ)x) is countable
for any µ ∈ N(1, δ). As µ 7→ σ(F (µ)x) is an analytic multifunction and the
capacity of N(1, δ) is not zero, σ(F (µ)x) is countable for any µ ∈ C by the
Scarcity Theorem [1, Theorem 7.2.8]. In particular, σ(F (1)x) is countable,
whence so is {λ ∈ C : 0 ∈ σ(a+ λx)}.

(5)⇒(4): If 0 /∈ σ̂(a) then a = exp(b) for some b ∈ J1 as above. Hence
a ∈ Ω1(J

1), and by (5), the set {λ ∈ C : 0 ∈ σ(a+ λx)} is countable.
(4)⇒(2): Let a ∈ J1. Define g, f : C \ σ̂(a) → J by g(µ) = a − µ and

f(µ) = g−2(µ) for any µ ∈ C \ σ̂(a). It is easy to check that 0 /∈ σ̂(f(µ)) for
any µ ∈ C \ σ̂(a). Since

Ug(µ)(f(µ) + λx) = Ug(µ)Ug(µ)−11 + λUg(µ)x = 1 + λUg(µ)x,

for λ 6= 0, f(µ) + λx is not invertible if and only if −1/λ ∈ σ(Ug(µ)x). As
{λ ∈ C : 0 ∈ σ(f(µ) + λx)} is countable, so is K(µ) := σ(Ug(µ)x) for any
µ ∈ C \ σ̂(a). As the multifunction µ 7→ K(µ) is analytic on C and K(µ)
is countable on the sets of positive capacity in C \ σ̂(a), we conclude that
K(µ) is countable for any µ ∈ C by the Scarcity Theorem. In particular,
Uax is scattered.

(2)⇒(1): Let M = {z ∈ J : Uaz is scattered for any a ∈ J1} and let
x, y ∈M . We have just proved that (2) is equivalent to (3) and (5). By (3)
applied to x and y, the sets σ̂(x+ y + a) \ σ̂(a+ y) and σ̂(a+ y) \ σ̂(a) are
countable for any a ∈ J , whence so is σ̂(x+ y+ a) \ σ̂(a). Hence x+ y ∈M .
So M is a linear subspace of J .

Let b, c ∈ Ω1(J). By (2.19), Ub−1c ∈ Ω1(J). As c+λUbx = Ub(Ub−1c+λx)
for any λ ∈ C, we infer from (5) that {λ ∈ C : 0 ∈ σ(c+λUbx)} is countable.
By (2), UdUbx is scattered for any b ∈ Ω1(J

1) and d ∈ J1.
Let a ∈ J1. Then a− λ ∈ Ω1(J

1) for every λ ∈ C \ σ̂(a). So UdUa−λx is
scattered for any λ taken from a set of positive capacity. By the Scarcity The-
orem, UdUa−λx is scattered for every λ ∈ C and d ∈ J1, whence Ua−λx ∈M
for every λ ∈ C. AsM ⊂ J , by (2.7) we have Lax = (Uax−Ua−1x+x)/2 ∈M
for every a ∈ J1. Therefore M is a scattered ideal of J1. Thus M ⊂
Rs(J1) ∩ J = Rs(J), whence x ∈ Rs(J).

Theorem 3.11. Let A be a sub-Banach associative algebra and x ∈ A.
The following are equivalent :

(1) x ∈ Rs(A).
(2) (a− λ)−1x is scattered for every a ∈ A and λ /∈ σ̂(a).
(3) σ̂(x+ a) \ σ̂(a) is countable for every a ∈ A.
(4) {λ ∈ C : 0 ∈ σ(a+λx)} is countable for every a ∈ A1 with 0 /∈ σ̂(a).

Proof. It is clear that (2) can be written as follows:

(2′) a−1x is scattered for every a ∈ A1 with 0 /∈ σ̂(a).
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Further, (1)⇒(2) is obvious, (2)⇒(3) follows from Lemma 3.1(3), and
(3)⇒(4) can be proved word for word as the corresponding conditions in
Theorem 3.10.

(4)⇒(2): Let a ∈ A and D = C \ σ̂(a). As

a− µ+ λx = (a− µ)(1 + λ(a− µ)−1x)

for every µ ∈ D, it follows that, for λ 6= 0, µ ∈ σ(a + λx) if and if λ−1 ∈
σ((a − µ)−1x). Since {λ ∈ C : 0 ∈ σ(a − µ + λx)} is countable for every
µ ∈ D, so is σ((a− µ)−1x) for every µ ∈ D.

So (2′), (2), (3) and (4) are mutually equivalent.
(3)⇒(1): Let M be the set of all z ∈ A for which σ̂(z + a) \ σ̂(a) is

countable for any a ∈ A1. Let x, y ∈ M . Then σ̂(x + y + a) \ σ̂(y + a) and
σ̂(y+a)\σ̂(a) are countable for every a ∈ A1, whence so is σ̂(x+y+a)\σ̂(a).
This means that x+ y ∈M . So M is a subspace of A.

Let a ∈ A1 and D = C \ σ̂(a). Then 0 /∈ σ̂((a − λ)−1) and a − λ is the
inverse element to (a − λ)−1 for any λ ∈ D, whence (a − λ)x is scattered
for any λ ∈ D by (2′). As D contains sets of positive capacity, (a − λ)x is
scattered for any λ ∈ C by the Scarcity Theorem. Hence ax is scattered for
any a ∈ A1. As σ(uv)\{0} = σ(vu)\{0} for all u, v ∈ A, in particular, b−1ax
and b−1xa are scattered for every b ∈ A1 with 0 /∈ σ̂(b). As (2′) and (3) are
equivalent, σ̂(ax+c)\ σ̂(c) and σ̂(xa+c)\ σ̂(c) are countable for any c ∈ A1.
Therefore ax, xa ∈ M for any a ∈ A1, whence M is an ideal of A. As M is
scattered, M ⊂ Rs(A) and x ∈ Rs(A).

In general, the condition x ∈ Rs(A) does not imply that σ(x+ a) \ σ(a)
is countable for every a ∈ A. Indeed, let A be the algebra of all bounded
operators on the Hilbert space H = l2(Z), U the shift ek 7→ ek+1 for any ek
from the standard orthonormal basis of l2(Z), and K = −e∗0 ⊗ e1 where
e∗0 is the functional e∗0(x) = (x, e0) for any x ∈ H. As Rs(A) is the ideal
of compact operators on H, we have K ∈ Rs(A). It is easy to see that the
spectrum of U is the unit circle, but the spectrum of K+U is the closed unit
disk (see also the observation after [7, Theorem 12]). So σ(K +U) \ σ(U) is
not countable.

Corollary 3.12. Let A be a sub-Banach associative algebra and x ∈ A.
Then:

(1) If I is a one-sided scattered ideal of A then I ⊂ Rs(A).
(2) x ∈ Rs(A) if and only if x ∈ Rs(A+), and if and only if axa is

scattered for every a ∈ A1.

Proof. (1) follows from the implication (2)⇒(1) of Theorem 3.11.
(2) follows from comparing Theorems 3.10 and 3.11. Indeed, the spectra

of the same element in A and A+ coincide, and conditions (3) and (4) are
the same for both of these theorems.
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4. Perturbation class of scattered elements

4.1. If X is a linear space and Y ⊂ X, the perturbation class Per(Y )
of Y is the set of all x ∈ X such that x + y ∈ Y for all y ∈ Y . Clearly,
Per(Y ) + Per(Y ) ⊂ Per(Y ); if CY ⊂ Y then Per(Y ) is a subspace of X.

Let L be either a normed Jordan Q-algebra J or a normed associative
Q-algebra A, and let Z(L) = Per(S(L)) be the perturbation class of the
set S(L) of all scattered elements of L. It is a subspace of L. As σA(x) =
σA+(x) for each x ∈ A, it follows that x ∈ Z(A) if and only if x ∈ Z(A+).
By [11], for a unital Banach associative algebra A, Z(A) is a full subalgebra
of A and a Lie ideal of A. Moreover, [Z(A), A] ⊂ Rs(A), and for x ∈ A, the
element ax is scattered for each scattered a ∈ A if and only if x ∈ Z(A).

It is well known that the set of all scattered elements is not closed in
general. For instance, in the famous Kakutani example of discontinuity of
spectrum (see the solution of [17, Problem 104]) some sequence of nilpotent
operators tends to a non-scattered operator. Now we are going to show that,
for a Banach associative algebra A, Z(A) may also be non-closed even if it
is commutative.

Theorem 4.1. Let X be a Cantor set, and let A be the algebra C(X)
of all continuous complex-valued functions on X. Then Rs(A) = {0}, and
Z(A) coincides with S(A) and is dense but not closed in A.

Proof. In the proof we use the fact that σ(a) = a(X) for every a ∈ C(X).
Assume that Rs(A) is not zero. Then, by Theorem 3.7, A has a non-zero

socle, so there is a minimal projection p of A. As Ap is one-dimensional,
there is only one ξ ∈ X such that p(ξ) = 1. As σ(p) = {0, 1}, we have
p(ς) = 0 for every ς ∈ X \ {ξ}. It is easy to see that ξ is an isolated point
in X. But X is a perfect compact set, a contradiction. Thus Rs(A) = {0}.

Let E be the set of all functions in A having finite image. Then it is a
symmetric subalgebra of A. For all distinct ξ, ς ∈ X there is a decomposition
of X into two disjoint closed sets G and F such that ξ ∈ G and ς ∈ F . So
E separates the points of X. By Stone’s Theorem, E is dense in A.

Let a, b ∈ A. It is clear that if a(X) and b(X) are countable then so
is (a + b)(X). Hence E ⊂ Z(A) = S(A). As the function x : ξ 7→ ξ has
uncountable spectrum X, Z(A) is not closed in A.

Note that Z(A) from Theorem 4.1 is an example of a commutative scat-
tered Q-algebra having an Rs-semisimple completion.

Theorem 4.2. Let L be either a normed Jordan Q-algebra J or an
associative Q-algebra A. Then:

(1) If L is not unital then Z(L) = Z(L1) ∩ L and Z(L1) = Z(L) + C,
and if L is sub-Banach and I is a closed scattered ideal of L, then
Z(L) = q−1I (Z(L/I)).
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(2) If L = J and x ∈ J then

(a) if x ∈ Z(J) then Uax is scattered for all scattered a ∈ J1;
(b) if J is sub-Banach and Uax is scattered for all scattered a ∈ J1

then x ∈ Z(J).

(3) If L = A and x ∈ A, then x ∈ Z(A) if and only if ax is scattered for
any scattered a ∈ A.

Proof. (1) The first assertion follows from the fact that 1 ∈ Z(J1).
Let us prove the second one. By Corollary 3.5(1), since L is a sub-Banach

algebra, S(L) = q−1I (S(L/I)). If x ∈ Z(L) then x + a is scattered for any
a ∈ S(L), whence qI(x) + qI(a) is scattered. Since S(L/I) = qI(S(L)), we
have qI(x) ∈ Z(L/I).

Conversely, let x ∈ q−1I (Z(L/I)). As qI(x + a) is scattered for any a ∈
S(L) = q−1I (S(L/I)), x+ a is also scattered, whence x ∈ Z(L).

(2a) Let x ∈ Z(J) and a ∈ S(J). Assume that a is invertible. As Uax−λ
= Ua(x− λa−2), we have

(4.1) σ(Uax) = {λ ∈ C : 0 ∈ σ(x− λa−2)}.
Let f(λ) = x− λa−2 and K(λ) = σ(f(λ)) for λ ∈ C. Then f(λ) is an entire
function, and K is a multifunction. As a−2 ∈ S(J), we have f(λ) ∈ S(J)
and K(λ) is countable, for any λ ∈ C. By the Aupetit–Zemánek Theorem
and Remark 2.6, {λ ∈ C : 0 ∈ K(λ)} is either countable or equal to C. By
(4.1), the latter case is impossible since σ(Uax) is bounded, so σ(Uax) is
countable.

Let now a ∈ S(J) be arbitrary. Then the multifunction L(λ) :=σ(Ua−λx)
(defined on C) is countable for any λ ∈ Res(a), and Res(a) contains sets of
positive capacity. By the Scarcity Theorem and Remark 2.6, L(λ) is count-
able for any λ ∈ C, whence Uax is scattered.

(2b) Let x ∈ J be such that Uax ∈ S(J) for every a ∈ S(J). Let a ∈ J be
scattered. Then σ(a) = σ̂(a), whence, by Lemma 3.1(1), for every λ ∈ Res(a)
there are an open disk N(λ, δ) and an analytic function g : N(λ, δ)→ Aic(a)
such that g(µ) = fµ(a) for some analytic C-valued function fµ defined on a
suitable neighborhood of σ(a), and g−2(µ) = a− µ for any µ ∈ N(λ, δ). As
σ(fµ(a)) = fµ(σ(a)) by the Spectral Mapping Theorem, g(µ) is scattered
for any µ ∈ N(λ, δ), whence so is Ug(µ)x by assumption. By Lemma 3.1,
σ(x + a) ∩ Res(a) is countable. As a is scattered, σ(x + a) ∩ σ(a) is also
countable. Hence x+ a is scattered.

(3) Let x ∈ Z(A) and a ∈ S(A). Then we have x − µ(a − λ)−1 =
(a−λ)−1((a−λ)x−µ) for any λ ∈ Res(a) and µ ∈ C, whence σ((a−λ)x) =
{µ ∈ C : 0 ∈ K(µ)} where K(µ) = σ(x− µ(a− λ)−1). As K(µ) is countable
for each µ ∈ C, {µ ∈ C : 0 ∈ K(µ)} is either countable or equal to C by
the Aupetit–Zemánek Theorem and Remark 2.6. In the latter case, since
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ηx − (a − λ)−1 → −(a − λ)−1 as η → 0, we infer that (a − λ)−1 is not
invertible, a contradiction. Hence (a− λ)x is scattered for each λ ∈ Res(a).
By the Scarcity Theorem and Remark 2.6, (a − λ)x is scattered for any
λ ∈ C, whence ax is scattered.

Now let x ∈ A be such that ax is scattered for any a ∈ S(A). Then
(a − λ)−1 is also a scattered element of A for every λ /∈ σ̂(a). By Lemma
3.1(3), σ(x+ a) \ σ̂(a) is countable. As σ̂(a) is countable, x+ a is scattered
for any a ∈ S(A). Therefore x ∈ Z(A).

Theorem 4.3. Let J be a unital sub-Banach Jordan algebra. The fol-
lowing statements are equivalent:

(1) x ∈ Z(J).
(2) {λ : 0 ∈ σ(y + λx)} is countable for every y ∈ S(J) ∩ Inv(J).

Proof. (1)⇒(2): Since x ∈ Z(J), it follows that y + λx is scattered for
every y ∈ S(J) ∩ Inv(J) and λ ∈ C. Let f(λ) = σ(y + λx) for λ ∈ C. Then
λ 7→ f(λ) is an analytic multifunction. As f(λ) countable for any λ ∈ C,
the set E := {λ : 0 ∈ σ(y + λx)} is either countable or equal to C by the
Aupetit–Zemánek Theorem. As y is invertible, E is not equal to C, whence
it is countable.

(2)⇒(1): For a ∈ S(J) and µ ∈ Res(a), let y = (a − µ)−2. Then
y ∈ S(J) ∩ Inv(J) by analytic functional calculus (see Lemma 2.5). As
Ua−µ(y+λx) = 1+λUa−µx, y+λx is not invertible if and only if 1+λUa−µx
is not invertible, i.e. −1/λ ∈ σ(Ua−µx). By (2), {λ : 0 ∈ σ(y+λx)} is count-
able, whence so is σ(Ua−µx). Let h(µ) = σ(Ua−µ(x)) for µ ∈ C. Then h(·) is
an analytic multifunction on C. As h(µ) is countable for every µ ∈ Res(a),
h(µ) is countable for every µ ∈ C by the Scarcity Theorem. For µ = 0 we
find that Uax is scattered. So x ∈ Z(J) by Theorem 4.2(2b).

Theorem 4.4. Let L be a unital sub-Banach Jordan algebra or a unital
normed associative Q-algebra. Then Z(L) is a full subalgebra of L.

Proof. The case when L = J , a sub-Banach Jordan algebra. Let u ∈
Z(J) be invertible. If a ∈ J is scattered and invertible then a−1 is scattered
by Lemma 2.3, and Ua−1u is scattered by Theorem 4.2(2a). As Uau

−1 =
(Ua−1u)−1 by (2.6), Uau

−1 is scattered.
If a is not invertible then it follows from the above that Ua−λu

−1 is
scattered for every λ ∈ Res(a). Define G(λ) = σ(Ua−λu

−1) for λ ∈ C.
As G is an analytic multifunction, G(λ) is countable for every λ ∈ C by
the Scarcity Theorem. In particular, Uau

−1 is scattered. As a ∈ S(J) is
arbitrary, u−1 ∈ Z(J) for every invertible u ∈ Z(J) by Theorem 4.2(2b).

Let now x, y ∈ Z(J). Assume first that y is invertible. For a scattered
and invertible element a ∈ J , using analytic functional calculus, one can
find scattered and invertible elements b, z ∈ J such that b2 = a and z2 = y.
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As Uby is scattered by Theorem 4.2(2a) and σ(Uza) = σ(Uby) by Lemma
2.3, Uza is scattered. Also Uza is invertible, whence {λ : 0 ∈ σ(Uza + λx)}
is countable by Theorem 4.3. It is clear that Uza + λx is invertible if and
only if a+ λUz−1x is. As a is an arbitrary element of S(J) ∩ Inv(J), we see
that Uz−1x ∈ Z(J) by Theorem 4.3. As y−1 ∈ Z(J) by the above, we have
similarly Uz−1y−1 ∈ Z(J), but Uz−1y−1 = Uz−1(z−1)2 = (z−1)4 = (y2)−1.
So we conclude that y2 ∈ Z(J).

By Lemma 2.3, σ(Uy−1a) = σ(Uby
−2), and Uby

−2 is scattered by The-
orem 4.2(2a). Thus Uy−1a is scattered. Also Uy−1a is invertible, whence
{λ : 0 ∈ σ(Uy−1a + λx)} is countable by Theorem 4.3. As a + λUyx =
Uy(Uy−1a+λx), Uy−1a+λx is invertible if and only if a+λUyx is. As a is an
arbitrary element of S(J) ∩ Inv(J), we obtain Uyx ∈ Z(J) by Theorem 4.3.

Assume now that y ∈ Z(J) is arbitrary and K(λ) = σ(Uy−λx + a) for
λ ∈ C. As usual, K(λ) is countable for any λ ∈ Res(y), and Res(y) contains
sets of positive capacity. By the Scarcity Theorem, K(λ) is countable for
any λ ∈ C. Therefore Uyx ∈ Z(J) for all x, y ∈ Z(J).

Now it is easy to show that Z(J) is a subalgebra of J . Indeed, if x, y ∈
Z(J) then Uxy, Ux−1y ∈ Z(J), so that

x · y = Lxy = (Uxy − Ux−1y + y)/2 ∈ Z(J).

As Z(J) contains the inverses of its elements, it is a full subalgebra of J .

The case when L = A is a normed associative Q-algebra. Let x, y ∈
Z(A). By Theorem 4.2(3), xyS(A) ⊂ xS(A) ⊂ S(A), whence xy ∈ Z(A).
So Z(A) is a subalgebra of A. Assume that x is invertible. Then x(a − λ)
is scattered for any a ∈ S(A) and λ ∈ C. Hence (a − λ)−1x−1 is scattered
for any λ ∈ Res(a). By Lemma 3.1(3), x−1 ∈ Z(A). Therefore Z(A) is a full
subalgebra of A.

The proof of Theorem 4.4 yields

Corollary 4.5. Let J be a unital sub-Banach Jordan algebra. If
x ∈ Z(J) then Uxa ∈ S(J) for every a ∈ S(J).

Proof. We know that x2 ∈ Z(J) by Theorem 4.4. If a is invertible then
there is an invertible and scattered element b with b2 = a. As σ(Uxa) =
σ(Ubx

2) by Lemma 2.3, and Ubx
2 is scattered by Theorem 4.2(2a), it follows

that Uxa is scattered.

If a is not invertible, Ux(a − λ) is scattered for each λ ∈ Res(a). As
λ 7→ σ(Ux(a − λ)) is an analytic multifunction, σ(Ux(a − λ)) is countable
for each λ ∈ C by the Scarcity Theorem. So Uxa is scattered.

The converse is not always true. For example, it is easy to find an oper-
ator x in B(H) such that x2 = 0 and x /∈ K(H) + C. Then (Uxa)2 = 0 for
each a ∈ B(H) but x /∈ Z(B(H)) (see Corollary 4.7).
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4.2. Derivations. Let L be complete normed, and let D be a bounded
derivation of L. Then exp(λD) is a bounded automorphism of L [10, Lemma
2.2.1]. If D2x = 0 for some x ∈ L then Dx is a quasinilpotent element
of L. The last statement is a well-known variant of the Kleinecke–Shirokov
Theorem (and holds even if D is unbounded: see [38, Theorem 2.9] and [39,
Theorem]). One can argue in the spirit of [1] as follows. If D2x = 0 then
exp(λD)x = x + λDx and ρ(µx + Dx) = |µ| ρ(exp(µ−1D)x) = |µ| ρ(x) for
any non-zero µ ∈ C. As the function µ 7→ ρ(µx + Dx) is subharmonic, by
[1, Theorem A.1.2] we have

(4.2) ρ(Dx) = lim sup
06=µ→0

ρ(µx+Dx) = lim sup
06=µ→0

|µ| ρ(x) = 0.

For a normed Jordan algebra the spectral radius does not change under
passing to the completion of the algebra, so the statement itself and (4.2)
also hold for normed Jordan algebras.

Theorem 4.6. Let L be either a Banach Jordan algebra J or a Banach
associative algebra A, and let D be a bounded derivation of L. Then:

(1) Rs(L) and Z(L) are invariant for D. In particular, if L = J then
[a, x, b] ∈ Z(J) for any a, b ∈ J and x ∈ Z(J).

(2) If L = A and D(A) ⊂ Z(A) then D(A) ⊂ Rs(A).

Proof. (1) As exp(λD) is an automorphism of L, it preserves spectrum.
So, for L=J , it is easy to see from Theorem 3.10(2) that Uexp(λD)a exp(λD)x
is scattered for any a ∈ J and x ∈ Rs(J). Hence exp(λD)x ∈ Rs(J). As
x ∈ Rs(J) and Rs(J) is closed, it follows that Dx ∈ Rs(J). For L = A, the
corresponding result is proved similarly.

Further, it is clear that exp(λD)S(L) = S(L) and exp(λD)Z(L) = Z(L).
Let x ∈ Z(L), a ∈ S(L),

f(λ) := (exp(λD)x− x)/λ+ a for λ 6= 0 and f(0) := D(x) + a.

Then f is an entire function, and the multifunction λ 7→ σ(f(λ)) is analytic
on C and countable for any λ 6= 0. By the Aupetit–Zemánek Theorem,
σ(f(0)) is also countable. Therefore D(x) + a is scattered for any a ∈ S(L),
i.e. D(x) ∈ Z(L) for any x ∈ Z(L).

In particular, for L = J , as x 7→ [a, x, b] = (a ·x) · b−a · (x · b) is an inner
derivation for any a, b ∈ J , we have [a, x, b] ∈ Z(J) for any x ∈ Z(J).

(2) Let D(A) ⊂ Z(A) and x ∈ S(A). Then D(xa), Da ∈ Z(A) and
xDa ∈ S(A) for any a ∈ A. Hence

(Dx)a = D(xa)− xDa ∈ Z(A) + S(A) ⊂ S(A).

Therefore Dx ∈ Rs(A).
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As D preserves Rs(A), in view of Theorem 4.2(1) one can assume that
Rs(A) = {0}. Thus we need only show that D = 0. For any y ∈ A, we have
Dy ∈ Z(A) ⊂ S(A), whence D2y ∈ Rs(A) = {0}. Thus Dy is quasinilpotent
for any y ∈ A by (4.2). By [31, Proposition 2.2], D(A) ⊂ rad(A) = {0}.

Corollary 4.7. Let A be a Banach associative algebra, and let x be a
scattered element of A. Then x ∈ Z(A) if and only if xa − ax ∈ Rs(A) for
every a ∈ A. In particular, Z(A) is the set of scattered elements that lie in
the center CRs(A)(A) of A modulo the scattered radical.

Proof. Passing to cosets modulo Rs(A), one may assume that the scat-
tered radical of A is zero by Theorem 4.2(1).

For every a ∈ A, the inner derivation z 7→ az − za preserves Z(A) by
Theorem 4.6(1). So if x ∈ Z(A) then the inner derivation a 7→ xa − ax
maps A into Z(A). By Theorem 4.6(2), xa − ax ∈ Rs(A) = {0} for every
a ∈ A.

Conversely, let x ∈ S(A) and xa − ax ∈ Rs(A) = {0} for each a ∈ A.
Then x commutes with any scattered element b of A. As σ(x + b) ⊂
σ(x) + σ(b), x+ b is a scattered element of A. Hence x ∈ Z(A).

Returning to the initial assumptions of the corollary, we conclude from
above that Z(A) = S(A) ∩ CRs(A)(A).

It is not clear whether statement (2) of Theorem 4.6 is valid for Banach
Jordan algebras.

Theorem 4.8. Let J be a Banach Jordan algebra. Then:

(1) [Z(J), Z(J), Z(J)]⊂Rs(J),
[
Z(J), J, Z(J)

]
⊂S(J) and

[
J, Z(J), J

]
⊂ S(J).

(2) If Rs(J) = {0} then
[
Z(J), J, Z(J)

]
and

[
J, Z(J), J

]
consist of

quasinilpotents of J .

Proof. (1) Without loss of generality we may assume that J is unital.
Let a, b, c ∈ Z(J) and x ∈ J . Then [x, a, b], [a, b, x] ∈ Z(J) by Theorem
4.6(1). By (2.2), we have [b, x, a] ∈ Z(J). Thus

(4.3) [Z(J), J, Z(J)] ⊂ Z(J).

As T(a,c) : y 7→ [a, y, c] is a derivation on J , and as T(a,c)(b ·x), T(a,c)x ∈ Z(J)
by (4.3) and b · T(a,c)x ∈ Z(J) by Theorem 4.4, we obtain

(T(a,c)b) · x = T(a,c)(b · x)− b · T(a,c)x ∈ Z(J).

This immediately shows that

(4.4) [Z(J), Z(J), Z(J)] · J ⊂ Z(J).
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Further, T(a,c) is also a derivation in the associator Lie triple system
of J . Recall that the latter is a vector space inherited from J considered
with the map (u, v, w) 7→ [u, v, w] (see [19, Section 8.1]). So it is easy to see
that

T(a,c)[x, x, b] = [T(a,c)x, x, b] + [x, T(a,c)x, b] + [x, x, T(a,c)b].

As T(a,c)x ∈ Z(J) by (4.3), we have [T(a,c)x, x, b] ∈ Z(J) again by (4.3),
and [x, T(a,c)x, b] ∈ Z(J) by Theorem 4.6(1). As also T(a,c)[x, x, b] ∈ Z(J)
by (4.3), we have

(4.5) [x, x, T(a,c)b] = T(a,c)[x, x, b]− [T(a,c)x, x, b]− [x, T(a,c)x, b] ∈ Z(J).

As Lx2T(a,c)b ∈ Z(J) by (4.4), we obtain

UxT(a,c)b = 2(L2
x − Lx2)T(a,c)b+ Lx2T(a,c)b

= −2[x, x, T(a,c)b] + Lx2T(a,c)b ∈ Z(J).

In other words, UxT(a,c)b ∈ S(J) for every x ∈ J . By Theorem 3.10, we have
T(a,c)b ∈ Rs(J).

As Rs(J) is a thin ideal of J , to complete the proof of (1) it suffices to
prove (2).

(2) Assume that Rs(J) = {0}. It follows from the above that

(4.6)
[
Z(J), Z(J), Z(J)

]
⊂ [Z(J), Z(J), Z(J)] = {0},

whence T(a,c)b ∈ Z(J) for every b ∈ J and a, c ∈ Z(J) by (4.3). By (4.6),

T(d,e)T(a,c) = 0 for all d, e ∈ Z(J). In particular, T 2
(a,c)b = 0 and T(a,c)b

is a quasinilpotent (see (4.2)). This shows that [Z(J), J, Z(J)] consists of
quasinilpotents of J .

Let x, y ∈ J . Then T(x,y)(Z(J) ) ⊂ Z(J) by Theorem 4.6. As Z(J) is

a Banach commutative associative algebra, T(x,y)(Z(J)) ⊂ rad(Z(J)) by

the Singer–Wermer Theorem [37]. This shows that [J, Z(J), J ] consists of
quasinilpotents of J .

Let J be a Banach Jordan algebra, and let D be a bounded derivation
on J . Assume that D(J) consists of quasinilpotents or even D2 = 0. Then
[9, Examples 4.7 and 4.8] shows that D does not necessarily map J into
rad(J).

Let L be complete normed. We consider the conditions that guarantee
equality of S(L) and Z(L).

Corollary 4.9. Let J be a Banach Jordan algebra. Then the following
conditions are equivalent:

(1) a+ b is scattered for any scattered a, b ∈ J .
(2) Uab is scattered for any scattered a, b ∈ J1.

Proof. Follows from Theorem 4.2(2).
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Corollary 4.10. Let A be a Banach associative algebra. Then the fol-
lowing conditions are equivalent:

(1) a+ b is scattered for any scattered a, b ∈ A.
(2) ab is scattered for any scattered a, b ∈ A.
(3) S(A) is a Lie ideal (a subalgebra) of A.
(4) [S(A+), S(A+), S(A+)] ⊂ Rs(A+).
(5) ax − xa has finite spectrum modulo Rs(A) for every x ∈ A and

a ∈ S(A).
(6) S(A) is commutative modulo Rs(A).
(7) S(A) lies in the center of A modulo Rs(A).

Proof. By Corollary 3.5(1) and Theorem 4.2(1), it suffices to show the
required implications under the condition Rs(A) = {0}. So we assume in
what follows that A is Rs-semisimple. By Corollary 3.12, so is A+.

(1)⇔(7) follows from Corollary 4.7, and (1)⇔(2) from Theorem 4.2(3).
The implications (3)⇒(1), (7)⇒(3), (7)⇒(5) and (7)⇒(6) are obvious, and
(6)⇒(1) follows from the inclusion σ(a+b) ⊂ σ(a)+σ(b) for any commuting
a, b ∈ A.

(7)⇒(4): It is clear that S(A) is a commutative subalgebra of A. Hence
the Jordan product induced in S(A) from A+ coincides with the usual prod-
uct in S(A). Therefore S(A)+ is an associative algebra. But S(A)+ = S(A+).

(4)⇒(6): Note that [a, b, b] = 0 implies [b, [b, a]] = 0. Then, by the
Kleinecke–Shirokov Theorem, [b, a] is quasinilpotent for any scattered (in
particular, quasinilpotent) elements a, b ∈ A. Hence the set of quasinilpotent
elements of A coincides with rad(A) by [20, Theorem 2]. As A is semisimple,
S(A) is commutative.

(5)⇒(7): Assume that ax − xa has finite spectrum for each x ∈ A and
a ∈ S(A). Let Da be the derivation x 7→ ax− xa for a ∈ S(A). Then Da(A)
consists of elements with finite spectrum. As A is semisimple, Da maps A
into soc(A) by [8, Theorem 3.2]. But soc(A) ⊂ Rs(A) = {0}. So ax = xa
for each x ∈ A and a ∈ S(A).

Corollary 4.11. Let A be an Rs-semisimple associative Banach al-
gebra. Then for any non-zero quasinilpotent a ∈ A there is a quasinilpotent
b ∈ A such that σ(a+ b) is infinite.

Proof. Assume, to the contrary, that there is a non-zero quasinilpotent
a ∈ A such that a+ b has finite spectrum for any quasinilpotent b ∈ A. For
every c ∈ A, define f(λ) = (a− exp(−λc)a exp(λc))/λ for 0 6= λ ∈ C and set
f(0) = ca− ac. Then f is analytic on C, and f(λ)− a is quasinilpotent for
any λ ∈ C. By the scarcity of elements with finite spectrum (see [1, Theorem
3.4.25]), the set of λ ∈ C with finite σ(f(λ)) either has zero capacity or is
the whole C. Hence ca − ac has finite spectrum for any c ∈ A. Repeating
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the proof of (5)⇒(7) in Corollary 4.10, we see that a is in the center of A.
So ax is a quasinilpotent for any x ∈ A, whence a ∈ rad(J) ⊂ Rs(A) = {0},
a contradiction.

Corollary 4.12. Let H be a Hilbert space and A = B(H)/K(H). Then
for any non-zero quasinilpotent element of A there is a quasinilpotent ele-
ment of A such that their sum has infinite spectrum.

Proof. Note that A is Rs-semisimple and apply Corollary 4.11.
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