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Abstract. We outline the construction of the holonomy groupoid of a locally Lie groupoid

and the monodromy groupoid of a Lie groupoid. These specialize to the well known holonomy

and monodromy groupoids of a foliation, when the groupoid is just an equivalence relation.

Introduction. The holonomy and monodromy groupoids of foliations are well known,

and with their smooth structure are usually attributed toWinkelnkemper [41] and Phillips

[37]. The purpose of this paper is to advertise the fact, due to Pradines in 1966 [38],

that these constructions are special cases of constructions which apply to wide classes of

structured groupoids, where the foliation case is essentially that where the groupoid is

the equivalence relation determined by the leaves of the foliation. In the final section, we

suggest a number of wider questions and possible directions for investigation, in partic-

ular the possible relation with generalised Galois theory, and the potentiality of higher

dimensional analogues.

An important feature of Pradines’ work is that these constructions of holonomy and

monodromy groupoids come with universal properties of a local-to-global form. The as-

sociation of monodromy with a universal principle is classical, see for example Chevalley
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[18]. The monodromy principle asserts roughly that, in a simply connected situation,

for example a simply connected group, or an equivalence relation on a simply connected

space, a local morphism extends to a global morphism. More generally, a local morphism

can be lifted to a global morphism on the universal cover.

The association of holonomy with a universal principle is less well known. It is stated

in terms of an adjoint pair of functors, but not explained in detail, in [38]. It involves the

notion of what Pradines called ‘un morceau d’un groupöıde différentiables’ and which

we prefer to call a ‘locally Lie groupoid’. This is a groupoid G and a subset W of G

containing the identities and such that W has the structure of a manifold. Conditions are

imposed so that the groupoid structure is as ‘smooth as possible’ on W . There is a kind

of ‘holonomy principle’ that, in the ‘locally sectionable’ case (see below), the manifold

structure on W extends to a Lie groupoid structure not on G but on an overgroupoid

Hol(G,W ) of G, and in which W is an open subspace.

The case when Hol(G,W ) = G is also of interest, since this gives a condition for

the pair (G,W ) to be extendible. This is used crucially to obtain a Lie structure on the

monodromy groupoid of a Lie groupoid. Thus whereas usually the holonomy groupoid

is constructed as a quotient of the monodromy groupoid, here we regard the holonomy

construction as fundamental. This difference of approach seems of interest.

Another question arising from this work is the applicability of the notion of locally Lie

groupoid for encapsulating ideas of local structures. It is proven by Brown and Mucuk

in [17] that the charts of a foliation on a paracompact manifold gives rise to a locally

Lie groupoid. This process is generalised by Brown and İçen in [9] to the case of a local

subgroupoid. We also note recent work of Claire Debord [20] which studies the case of

singular foliations, and has constructions whose relation to those given here would be

interesting to determine.

One aim for Pradines of this notion of what we call a locally Lie groupoid was as a

half way house between a Lie algebroid and a Lie groupoid. We have not found a clear

statement of which Lie algebroids give rise to a locally Lie groupoid, but the two steps

of holonomy and monodromy groupoid were designed to model two of the three steps in

getting an essentially unique Lie group from a Lie algebra, namely: produce from the Lie

algebra a locally Lie group; from this produce a Lie group; finally, take the universal cover

of this Lie group. It is remarkable that Pradines’ intuitions on these steps was so strong.

The main ideas of the results and proofs for the holonomy and monodromy groupoids

were described by Pradines to Brown in the early 1980s, and an incomplete account was

written in [5]. A full account of the holonomy construction and related material was

given in Aof’s Bangor thesis [2] and published in [3]. A full account of the monodromy

construction was given in Mucuk’s Bangor thesis [36] and published in [17]. It should be

emphasised that this gives useful conditions for the groupoid M(G), obtained from a Lie

groupoid by taking the universal covers of the stars of G at the identities, to be given the

structure of Lie groupoid so that the projection M(G) → G gives the universal covering

map on each star.

A key aspect of the construction is that M(G) is initially defined by a universal

construction which ensures that it comes with a monodromy principle on the extendibility

to M(G) of certain local morphisms on G. The problem is to get a topology on M(G)
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and this, remarkably, is solved by the holonomy construction, but in the case where the

holonomy is trivial. This seems a roundabout method. The point, however, seems to be

that the construction of the topology involves local smooth admissible sections, and the

proof that this method works seems to be no simpler in the case of trivial holonomy than

in the general case. Thus it is important to be clear about the general method.

The use of local admissible sections for these constructions seems essential. To see this

we contrast with the group case. If G is a topological group, then left multiplication Lg by

an element g of G maps open sets of G to open sets, and in fact Lg is a homeomorphism

of G. This is no longer the case if G is topological groupoid, for obvious domain reasons.

To remedy this situation, Ehresmann introduced the notion of ‘smooth local contin-

uous admissible section’ σ of a Lie groupoid G. This is a smooth section of the source

map α defined on some open set U of the object space OG and such that βσ maps U

diffeomorphically to an open set of OG. Then left multiplication Lσ can be defined on G

and does map open sets of G to open sets of G. We say that left multiplication by an

element has to be ‘localised’, that is ‘spread’ to a local area. Intuitively, we regard σ and

its associated Lσ as a ‘local procedure’ on the Lie groupoid G.

In the case of a locally Lie groupoid (G,W ) there is a new twist. We can say that σ is

smooth only if the image of σ lies in W , since only W has a manifold structure. We call

such a σ a ‘local procedure’. The composition in the groupoid G extends to a composition

of local admissible sections, and so such a composition can be regarded as a ‘composite

of local procedures’, but such a composition may not have values in W and so is not a

‘local procedure’. In fact in the literature, more so in physics than in mathematics, the

notion of holonomy is regarded as an iteration of local procedures which returns to the

starting point but not to the starting value. We will see this interpreted as a germ [σ]x
of such a composite for which σ(x) = 1x but there is no neighbourhood U of x for which

σ(U) is contained in W and σ|U is smooth. That is, the iteration does not even locally

give a local procedure.

The convenient formal description of the above is in terms of inverse semigroups and

groupoids of germs. The nice point is that the formal description does exactly encapsulate

the intuition, and it is the intention of this paper to convey this point.

Now we give some precise definitions.

1. Definitions. We fix our notation. A groupoid consists of a setG and two functions,

the source and target maps, α, β : G → G such that αβ = β, βα = α (whence α2 =

α, β2 = β, and α and β have the same image). We often write g : αg → βg. Further,

there is a multiplication written, say, gh, for g, h ∈ G, with the property that gh is defined

if and only if βg = αh, and then α(gh) = αg, β(gh) = βh. The set αG is called the set of

identities, or objects, of the groupoid G, and is written OG. If x ∈ αG one often writes

1x for x to emphasise that such an x acts as an identity. We also require associativity

of the multiplication, and the existence of an inverse to every element of G. It is often

convenient to think of OG as disjoint from G. Thus a groupoid is also a small category

in which every morphism is an isomorphism.

A groupoid in which α = β is called a bundle of groups, while a groupoid in which

the anchor map (α, β) : G→ OG ×OG is injective is just an equivalence relation.
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In order to cover both the topological and differentiable cases, we use the term Cr

manifold for r > −1, where the case r = −1 deals with the case of topological spaces and

continuous maps, with no local assumptions, while the case r > 0 deals as usual with Cr

manifolds and Cr maps. Of course, a C0 map is just a continuous map. We then abbreviate

Cr to smooth. The terms Lie group or Lie groupoid will then involve smoothness in this

extended sense.

The following definition is due to Ehresmann [24].

Definition 1.1. Let G be a groupoid and let X = OG be a smooth manifold. An

admissible local section of G is a function σ : U → G from an open set in X such that

(i) ασ(x) = x for all x ∈ U ;

(ii) βσ(U) is open in X , and

(iii) βσ maps U diffeomorphically to βσ(U).

Let W be a subset of G and let W have the structure of a smooth manifold such that

X is a submanifold. We say that (α, β,W ) is locally sectionable if for each w ∈ W there

is an admissible local section σ : U → G of G such that (i) σα(w) = w, (ii) σ(U) ⊆ W

and (iii) σ is smooth as a function from U to W . Such a σ is called a smooth admissible

local section.

The following definition is due to Pradines [38] under the name “morceau de groupöıde

différentiable”. Recall that if G is a groupoid then the difference map δ is δ : G×β G→

G, (g, h) 7→ gh−1.

Definition 1.2. A locally Lie groupoid is a pair (G,W ) consisting of a groupoid G

and a smooth manifold W such that:

G1) OG ⊆W ⊆ G;

G2) W =W−1;

G3) the set W (δ) = (W ×β W ) ∩ δ−1(W ) is open in W ×β W and the restriction of δ

to W (δ) is smooth;

G4) the restrictions to W of the source and target maps α and β are smooth and the

triple (α, β,W ) is locally sectionable;

G5) W generates G as a groupoid.

Note that, in this definition, G is a groupoid but does not need to have a topology.

The locally Lie groupoid (G,W ) is said to be extendible if there can be found a topology

on G making it a Lie groupoid and for which W is an open submanifold.

The main result of [17] (which was known to Pradines) is that a foliation F on a

paracompact manifold M gives rise to a locally Lie groupoid (G,W ) where G is the

equivalence relation of the leaves of the foliation, andW is constructed from a refinement

of the local charts of the foliation. In general such (G,W ) are not extendible. A standard

example is the foliation of the Möbius Band M by circles. In this case the equivalence

relation determined by the leaves is not a submanifold of M ×M [17]. Foliations have

also been shown to lead to local equivalence relations [40].

Here is an example of non extendibility due to Pradines [2].

Example 1.3. Consider the bundle of groups F given by the first projection p :

R × R → R, where the real line R is considered as a topological abelian group under
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addition. We regard F as a groupoid, and in fact as a topological groupoid in the obvious

sense. Now let N be the subgroupoid of F generated by (x, 0) if x < 0 and (x, 1) if

x > 0.

−1

}W
′

1

0

Fig. 1

Let G be the quotient groupoid F/N , and let q : F → G be the quotient mor-

phism of groupoids. Then the stars α−1(x) of G are bijective with R if x < 0 and

with R/Z if x > 0. Let W ′ be the subspace R × (−1/4, 1/4) of F , and let W = qW ′.

The topology on W ′ may easily be transferred to a topology on W so that (G,W ) be-

comes a locally Lie groupoid. However, it is not possible to extend this topology so

as to get even a topological groupoid structure on G, for which W is an open sub-

space. This can be seen by noting that the section s of the map α of G given by

x 7→ q(x, 1/8) is continuous but 9s is not. Instead, there is another groupoid H =

Hol(G,W ), called the holonomy groupoid of the locally topological groupoid (G,W ),

which is a topological groupoid, and which containsW as an open subspace. The groupoid

H is equipped with a surjective morphism φ : H → G which is the identity on ob-

jects. In this case the kernel of φ is non trivial only at 0 and is there of the form

{0} × Z.

Example 1.4. There is a variant of this last example in which F is as above, but

this time N is the union of the groups {x} × (1 + |x|)Z for all x ∈ R. One defines W as

before, but this time considersW as a differential manifold. The topological structure on

W can be extended to give a topological groupoid structure on the quotient G = F/N .

The differential structure, however, cannot be so extended, because the section s given as

in the previous example is such that 9s is not smooth. In this case one gets a differential

holonomy groupoid, with a projection morphism φ : H → G whose kernel is as in the

previous example. One can get similar examples with varying degrees of differentiability

considered. In this and the previous example, the holonomy groupoids constructed are

non-Hausdorff topological (or Lie) groupoids.
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2. The holonomy construction. The main result of Aof and Brown [3] is a version

of Théorème 1 of Pradines [38] and was stated in the topological case. In the smooth case

it states:

Theorem 2.1 (Pradines [38], Aof and Brown [3]) (Globalisability theorem). Let

(G,W ) be a locally Lie groupoid. Then there is a Lie groupoid H, a morphism φ : H → G

of groupoids and an embedding i : W → H of W to an open neighborhood of OH such

that the following conditions are satisfied.

i) φ is the identity on objects, φi = idW , φ−1(W ) is open in H, and the restriction

φW : φ−1(W ) →W of φ is smooth;

ii) if A is a Lie groupoid and ξ : A→ G is a morphism of groupoids such that:

a) ξ is the identity on objects;

b) the restriction ξW : ξ−1(W ) → W of ξ is smooth and ξ−1(W ) is open in A and

generates A;

c) the triple (αA, βA, A) is locally sectionable,

then there is a unique morphism ξ′ : A → H of Lie groupoids such that φξ′ = ξ and

ξ′a = iξa for a ∈ ξ−1(W ).

The groupoidH is called the holonomy groupoidHol(G,W ) of the locally Lie groupoid

(G,W ). It is thus the minimal overgroupoid of G which can be made into a Lie groupoid

with W as open subspace.

We should also say that Pradines actually states more since his is a theorem on germs

of such (G,W ). So there is still more work to be done on giving a full account of this

result and illustrating it with examples.

Sketch of the proof of Theorem 2.1. An important construction due to Ehresmann is

a multiplication on the set Γ(G) of local admissible sections of G in which if x ∈ X

(στ)(x) = (σx)(τβσx).

With this multiplication, Γ(G) is a monoid, and in fact an inverse monoid, in the sense

that every σ has a unique (generalised) inverse σ′ such that

σσ′σ = σ, σ′σσ′ = σ′.

Since σ′x = (σ(βσ)−1x)−1, we write σ−1 for σ′. An important reason for introducing

these sections is that if G is a topological groupoid, then translation by a continuous

local admissible section does map open sets of G to open sets of G.

Let Γc(W ) be the subset of Γ(G) consisting of local admissible sections which (i) have

values in W and (ii) are smooth. Of course the first condition is necessary for the second

condition to make sense. Let Γc(G,W ) be the sub-inverse monoid of Γ(G) generated by

Γc(W ). At this stage it is convenient to assume that W = W−1. It is proved in [2] that

this is no loss of generality.

Now let Jc(G,W ) be the sheaf of germs of the elements of Γc(G,W ), and let Jc(W )

be the sheaf of germs of the elements of Γc(W ). The germ of a local section σ at the

point x of its domain is written [σ]x. Then the inverse monoid structure on Γ(G) induces

on Jc(G,W ) the structure of groupoid, in which [σ]x[τ ]y = [στ ]x is defined if and only if

y = βσx.
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The sets Γc(W ) and Jc(W ) have a rôle as codifying a local procedure. The inverse

monoid Γc(G,W ) and the groupoid Jc(G,W ) then codify the iteration of local procedures.

It is in this sense that we are dealing with local-to-global techniques.

There is a morphism of groupoids, the ‘final map’, ψ : Jc(G,W ) → G, [σ]x 7→ σx,

which is the identity on objects. We set

J0 = Jc(W ) ∩ (Kerψ),

so that J0 consists of germs [σ]x of continuous local admissible sections σ with values in

W and such that σx = 1x. The aim is to define the holonomy groupoid of the locally Lie

groupoid (G,W ) to be the quotient groupoid

Hol(G,W ) = Jc(G,W )/J0.

For this we need to prove:

Lemma 2.2. The set J0 is a normal subgroupoid of Jc(G,W ).

The main point of the proof is that because of the definitions of J0 and of Jc(G,W )

one has only to check that if [ρ]x, [σ]x ∈ J0 and [τ ]x ∈ Jc(W ), then [ρσ−1]x ∈ J0, and

[τ ]x[σ]x[τ ]
−1

x ∈ J0. This follows from continuity considerations and the facts that

(ρσ)x = 1x = (τστ−1)x.

Let p : Jc(G,W ) → Hol(G,W ) be the quotient morphism. We write H forHol(G,W )

and write 〈σ〉x for p([σ]x). ThusH is a groupoid. Note that the morphism ψ : Jc(G,W ) →

G induces a morphism which we write φ : H → G, 〈σ〉x 7→ σx. For this morphism to be

surjective, it is sufficient to assume that W generates G as a groupoid, and that for every

element w of W there is a continuous admissible local section of G through w.

Let f ∈ Γc(G,W ). We define a partial function χf : W → H , by

w 7→ 〈f〉x〈σw〉x,

where σw is an admissible local section of s through w. Again, one has to assume that

such a section exists for all w ∈ W , and one has to prove that this value is independent

of the choice of local section σw, and that χf is injective with domain an open subset

of W .

A key lemma is that if f, g ∈ Γc(G,W ) then (χf )
−1(χg) = Lh, left multiplication by

the section f−1g. This shows that (χf )
−1(χg) maps an open set of W diffeomorphically

to an open set of W . This algebraic format for the change of charts is also convenient for

proving Hol(G,W ) becomes a Lie groupoid, see [3].

We also need that every element of the holonomy groupoid arises in this way, and

for this we also need that W generates G. Such an assumption is in practice not so

great a restriction. A result of Pradines (compare [2, Proposition 1.5.16]) is that if each

star α−1(x) of G meets W in a connected set, then any open neighbourhood of x in W

generates G.

These results allow the χf for all f ∈ Γc(G,W ) to be used as charts for a topology on

the holonomy groupoid H . Notice that every element of H is of the form χf (x) for some

f ∈ Γc(G,W ) and x ∈ Df . Consequently, given f ∈ Γc(G,W ), the function x 7→ χfx for

x ∈ Df is a continuous admissible local section of H . Also, H is generated as a groupoid
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by χ1(W ) where 1 here denotes the identity section with domain X . This completes the

sketch proof.

Readers of the Bourbaki account for Lie groups ([4] p.210) may be puzzled by the

lack of a condition involving conjugacy, of the type that for all g ∈ G there is an open

neighbourhood U of αg such that gUg−1 is contained in W . Pradines argues (private

communication) that in the first place this condition is unrealistic, since it involves ‘global’

elements g of G. In the second place, this condition is not needed, by virtue of the

assumptions on generation.

The above construction can be followed through to give the results of Examples 5

and 6.

There is a surprising application of the holonomy groupoid construction, namely to

give a condition that a locally Lie groupoid (G,W ) is extendible, i.e. determines a topol-

ogy on G making it a Lie groupoid for whichW is an open subspace. In terms of previous

notation, this condition is simply that Ker ψ is contained in Jc(W ), which is equivalent

to the condition that if σ is any product of admissible continuous local sections about x

each with values in W , and σ(x) = 1x, then some restriction of σ to a neighbourhood

of x has values in W and is smooth. It is not clear that there is any easier proof of this

extendibility result than that obtained from the construction of the holonomy groupoid.

This extendibility result is used, as suggested by Pradines (see [5]), in constructing a

topology on the monodromy groupoid of a topological groupoid. The basic method is as

follows.

Let now G be a topological groupoid and let W be an open subset of G containing

the identities. The groupoid structure on G makes W into a pregroupoid, by which is

meant that the product uv of two elements u, v of W is not always defined (in W ). There

is a standard way of making any pregroupoid W into a groupoid M with a morphism of

pregroupoids i : W → M such that any pregroupoid morphism from W to a groupoid

K extends uniquely to a morphism M → K. Since W embeds in a groupoid (namely

G), the morphism i : W → M is an embedding. Methods of [23] may be extended to

show that under suitable local conditions on G, the topology on W may be extended to

a topology on each s−1

M x, x ∈ X , such that each projection s−1

M x → s−1

G x is a universal

cover. The previously mentioned universal property now gives a version of the classical

Monodromy Principle [18], but stated in terms of groupoids, rather than equivalence

relations or groups as in [18].

The problem is now to make M into a topological groupoid so that the universal

property yields a continuous morphism on M if K is a topological groupoid and the

pregroupoid morphism W → K is continuous. The surprising, but simple to prove, result

is that the pair (M,W ) satisfies the condition for extendibility stated above, basically

because G is already a Lie groupoid. So the holonomy method outlined above is used

to extend the topology on W to a topology on M , assuming that G has enough contin-

uous admissible local sections. (This is Pradines’ method for Théorème 2 of [38], 1966,

explained to Brown in 1981.)

The monodromy groupoid construction yields the homotopy groupoid of a foliation,

discussed in [37]. It also yields this groupoid with the universal property of globalising a
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morphism defined locally. Once again we see a local-to-global feature which fits naturally

into the context of groupoids.

These methods also give an answer to the following question: given a Lie groupoid

G, let Cov(G) be the union of the universal covers at 1x of the star of G at x, for all

x ∈ G. Let q : Cov(G) → G be the projection. Assume we can choose a neighbourhood

W of OG so that the inclusion W → G lifts to W → Cov(G). The monodromy principle

then yields a morphism of groupoids φ : M(G) → Cov(G) which is continuous on stars.

But p : M(G) → G is a covering map on each star, and so φ is a bijection on each

star, and hence is an isomorphism. This isomorphism induces a topology on Cov(G)

making it a topological groupoid, or, in appropriate circumstances, a Lie groupoid. Such

a construction is given by Mackenzie in [32] by a different method, in the locally trivial

case.

The full details of the above arguments are given in [16].

The use of the monodromy groupoid and Cov(G) also enables us to explain the holon-

omy groupoid of Example 1.3. The monodromy groupoid of Hol(G,W ) is the original

groupoid F and so Hol(G,W ) is isomorphic to the quotient of F by the subgroupoid

generated by (x, 0) for x 6 0 and (x, 1) for x > 0.

3. Local subgroupoids. There is considerable work on local equivalence relations,

part of the motivation being that a foliation on a manifold M determines a local equiv-

alence relation on M [40]. Now an equivalence relation on M is just a subgroupoid of

the indiscrete groupoid M × M which has the object set M (this is also known as a

wide subgroupoid of M ×M). It thus seems natural to consider an arbitrary groupoid

Q with object set M and to consider the sheaf p : LQ → M associated to the presheaf

U 7→ LQ(U) where LQ(U) is the set of wide subgroupoids of Q|U . This notion is studied

in [9, 11]. In [9] there are given conditions on a local subgroupoid of a Lie groupoid so

that it leads to a locally Lie groupoid and hence to holonomy and monodromy groupoids.

In particular, this leads to a monodromy principle for local subgroupoids.

4. Questions

Question 4.1. We have already mentioned the question of extending the work on

holonomy and monodromy to germs, thus giving a complete account of the theorems in

the first of Pradines’ notes [38], which are stated as the existence of adjoint functors.

Some remarks on this are given in [39].

Question 4.2. It would be interesting to know (i) how useful is the notion of locally

Lie groupoid in formulating local properties, and (ii) what is its relation to the notion of

Lie algebroid.

Question 4.3. The following question could be of interest. Grothendieck has devel-

oped extensive work on the fundamental group in the context of algebraic geometry. The

notion of monodromy is also often vital in these arithmetic questions. Can the above

approach to monodromy and covering spaces be of use in these arithmetic problems?

This would be an interesting further vindication of Pradines’ approach, and is related to

the next question.
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Question 4.4. It is known that covering spaces and Galois theory are closely related,

see for example [22, 12]. The last paper relates the generalised Galois theory of Janelidze

[30] to covering space theory. It would be very interesting to tie in notions of monodromy

for groupoids with these broader aspects of Galois theory and of descent [31].

Question 4.5. For the present writers, the most intriguing, and possibly the most

difficult, question is that of higher dimensional analogues of these results. Background

to the idea that multiple groupoids form candidates for ‘higher dimensional groups’ is

given in [8]. A starting point was that since higher homotopy groups are abelian because

‘group objects in groups’ are just abelian groups, it is therefore natural to look at objects

of the type of ‘group objects in groupoids’ or ‘groupoid objects in groupoids’. These are

more complicated objects than groups, and the complication of n-fold groupoids increases

directly with n. Indeed, it is known that n-fold groupoids model homotopy n-types. Such

n-dimensional structures lend themselves to the consideration of ‘algebraic inverses to

subdivision’; since subdivision is a fundamental process in local-to-global questions, the

possibility of detailed algebraic control over the inverse process in certain circumstances

would be expected to lead to surprising new results, and involving essentially non abelian

considerations. These objects do arise naturally in homotopy theory, where they lead

to new algebraic constructions such as a non abelian tensor product of groups and to

calculations in homotopy theory not possible by other means [14, 8]. These algebraic

objects, or analogous ones, also arise in many other algebraic and geometric situations

[15, 13, 33, 35].

Thus it is natural to consider the possibility of higher dimensional forms of holonomy

and monodromy. A tentative step in this direction is given in [10], which covers part of

[29]. The basic intuition is that for a groupoid an admissible section can also be considered

as a homotopy. A reasonable generalisation of an admissible section should therefore be

a notion of a homotopy, i.e. a deformation. This notion exists for various forms of double

groupoid. Thus the existence of multiple geometric structures (double foliations, foliated

bundles, etc.) should in principle be properly reflected by multiple algebraic structures.

It is surely intuitively significant in this respect that multiple categories arise in the

context of concurrency in computer science, where the multiple processors are thought of

as each giving another time dimension. The algebraic analysis seems naturally to involve

a generalisation of the notion of free category on a graph to a certain notion of a free

cubical ω-category on a cubical set. The analysis of this situation is still incomplete, but

is studied in [28, 27].

It is possible that a description of the relation between holonomy in the sense of this

paper and holonomy for principal bundles with connection, and hence the relation with

curvature, requires some higher dimensional algebraic treatment.
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[10] R. Brown and I. İçen, Towards a 2-dimensional notion of holonomy , http://arXiv.org/

abs/math.DG/0009082

[11] R. Brown, I. İçen and O. Mucuk, Local subgroupoids II: Examples and properties,

http://arXiv.org/abs/math.DG/0008165

[12] R. Brown and G. Janelidze, Van Kampen theorems for categories of covering morphisms

in lextensive categories, J. Pure Appl. Algebra 119 (1997), 255–263.

[13] R. Brown and G. Janelidze, Galois theory of second order covering maps of simplicial

sets, J. Pure Appl. Algebra 135 (1999), 83–91.

[14] R. Brown and J.-L. Loday, Van Kampen theorems for diagrams of spaces, Topology 26

(1987), 311–334.

[15] R. Brown and K. C. H. Mackenzie, Determination of a double Lie groupoid by its core

diagram, J. Pure Appl. Algebra 80 (1992), 237–272.

[16] R. Brown and O. Mucuk, The monodromy groupoid of a Lie groupoid , Cahiers Top. Géom.
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