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Abstract. In this paper we will, first, give a local splitting theorem for Lie algebroids which

shows that we have a splitting in the product of a tangent bundle and a rank 0 Lie algebroid. We

give a very simple way to prove the unicity of the transversal structures. We also give a lineariza-

tion theorem for these rank 0 algebroids. All these results are part of the “folklore” of the domain

and are not very difficult, but, to my present knowledge, they are unavailable in the literature.

1. Splitting theorem. A Lie algebroid is a vector fiber bundle A, fibering over the

base manifold M, equipped with two extra structures:

a- a Lie bracket structure [ , ] on the space ΓA of sections of A

b- a C∞(M)-linear mapping ♯ : ΓA → X (M), which is called the anchor of the Lie

algebroid,

which satisfy the following two properties:

c- ♯ is a Lie algebra homomorphism (♯[α, β] = [♯α, ♯β] for every sections α and β),

d- [α, fβ] = ♯α(f)β + f [α, β] for every sections α and β and f ∈ C∞(M).

This notion plays an important role in domains such that foliations (with or without

singularities), Poisson manifolds, super-manifolds. . . (see, for example, [CW], [M], [W2]).

Theorem 1. Let A be a Lie algebroid on the base manifold M with anchor ♯ and sec-

tion bracket [ , ]. If the rank of Im♯ at the point m of M is q, then there is a trivialization

of A, on a neighborhood of m with local coordinates (x1, . . . , xq, y1, . . . , ys), and a basis

of sections (α1, . . . , αq, β1, . . . , βr) such that ♯αi = ∂
∂xi and ♯βj are independent of the xk

for every i, k = 1, . . . , q and j = 1, . . . , r. Moreover we have the relations

[αi, αj ] = [αi, βu] = 0

for every i, j = 1, . . . , q and u = 1, . . . , r and
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[βu, βv] =

r
∑

w=1

γuv
w βw

for every u, v = 1, . . . , r, where the γuv
w are functions which depend only on the coordinates

y1, . . . , ys.

Proof. To prove our result we will proceed by induction. There is nothing to prove

if q = 0, so we work with q > 0. We suppose that there is an integer k with 0 ≤

k < q satisfying the following condition: There is a trivialization of A, on a neighbor-

hood of m with local coordinates (x1, . . . , xk, y1, . . . , ys+q−k), and a basis of sections

(α1, . . . , αk, β1, . . . , βr+q−k) such that

[αi, αj ] = [αi, βu] = 0 , ♯αi =
∂

∂xi

and ♯βu are independent of the xj , for every i ≤ k, j ≤ k and u = 1, . . . , r + q − k.

Under this induction hypothesis, we have

[βu, βv] =

k
∑

i=1

auvi αi +

r+q−k
∑

w=1

γuv
w βw

where the auvi and the γuv
w are some functions of, a priori, x := (x1, . . . , xk) and y :=

(y1, . . . , ys+q−k). If we take the anchors of the two members of this equation, ∂
∂xi doesn’t

appear in the first member but appears in the second member with coefficient auvi ; so we

get that these coefficients all vanish. Moreover, Jacobi identity gives that [αj , [βu, βv]]

vanishes, but this is also equal to
∑

w(
∂

∂xj γ
uv
w )βw. Finally, up to a shrinking of the

neighborhood of m we consider, we can suppose

[βu, βv] =

r+q−k
∑

w=1

γuv
w βw

where the γuv
w are functions of y only.

As we have taken k < q, we can suppose, up to a reindexation, ♯β1(m) 6= 0. Then we

can straighten this vector field: precisely, under a coordinate change y 7→ (t, z) (z belongs

to R
s+q−k−1; we don’t touch x), we can suppose ♯β1 = ∂

∂t
.

We add local sections of the form a(t, z)β1 such that ♯βu, written in the coordinates

(t, z), doesn’t have component in ∂
∂t.

Now we will change the βu, for u > 1, in β̃u =
∑r+q−k

v=2 θuvβ
v where Θ := (θuv ) is an

invertible matrix with coefficients depending smoothly in (t, z). We want to choose Θ

such that [β1, β̃u] = 0 for every u > 1. This constraint reduces to the O.D.E.

∂Θ

∂t
+ΘΓ1 = 0

where Γ1 is the matrix with coefficients γ1v
u , for u > 1 and v > 1. Up to a shrinking of

the neighborhood of m on which we work, we have good solutions to this O.D.E..

Remark that we have still [αi, β̃u] = 0 for every u > 1 and i ≤ k.

Now we can change notations and put αk+1 := β1, xk+1 := t, and we have replaced

k by k+1 in our starting hypothesis (the old βu for u > 1 being replaced by β̃u and the

old y replaced by z).
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Starting with k = 0, we can continue this procedure until k = q and so, prove the

theorem.

This theorem shows that A decomposes locally as the direct product of a tangent

algebroid and an algebroid with 0-rank at the origin. This “splitting theorem” improves

the one presented in [F], though the proof is essentially the same.

A simple particular type of Lie algebroid is a bundle of Lie algebras: this is the case

where every fiber is endowed with a Lie algebra structure, depending smoothly on the

fiber; in that case the anchor is null.

Corollary 2. If the distribution Im♯ has constant rank q near m ∈ M, then the Lie

algebroid A is, over some neighborhood of m, the product of TRq with a bundle of Lie

algebras.

Proof. First use the splitting theorem. Then remark that the rank condition implies

that the ♯βi must vanish identically. This leads to the result.

In particular, if the rank at m is maximal, i.e. equal to the dimension of the base, then

A is locally the product of a tangent algebroid and a (finite dimensional) Lie algebra.

2. Lie algebroid structure along the leaves. The distribution Im♯ is involutive,

and gives a foliation with singularities on the basis M. A leaf F of the Lie algebroid A

is, by definition, a maximal integral submanifold of this distribution ([F]). Because, at

any point of F , the anchor of any section is tangent to F it makes sense to consider the

Lie algebroid A|F , which is the restriction of A to F.

Now we consider Ker♯|F which is the fiber bundle over F which has, at any point

m ∈ F, the fiber Ker(♯m : Am → TmM) (for any fiber bundle B, we denote by Bx its

fiber at x). We can use the splitting theorem to show that this is a true fiber bundle,

moreover it shows also that Ker♯|F is a bundle of Lie algebras where the Lie algebra

structure of each fiber Ker♯|Fm can be defined by [αm, βm]m = [α̃, β̃](m) where α̃ and β̃

are any sections with α̃(m) = αm and β̃(m) = βm.

Lemma 3. Up to isomorphism, the Lie algebra structure of each fiber of Ker♯|F is

independent of the fiber.

Proof. We work with the coordinates and the basis given by the splitting the-

orem. Then F has the equation y = 0 and Ker♯|F has the local basis of sections

(β1|F , . . . , β
r|F ) and the Lie algebra structure is, in every fiber, given by [βu(x), βv(x)] =

∑r

w=1 γ
uv
w (0)βw(x). So the structure constants are independent of the fiber.

Proposition 4. We have the following exact sequence of Lie algebroids over F :

0 → Ker♯|F → A|F → TF → 0

where the second mapping is the inclusion and the third mapping is given by ♯.

This easy proposition gives a description of the Lie algebroid structure along the leaf

F. In particular we see that A|F is locally the product of TF with a finite dimensional Lie

algebra. There is an equivalence class of (rankA-dimF )-dimensional Lie algebra attached

to each leaf F.
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3. Transversal structure. Let F be a leaf of our algebroid and m a point of F. If

N is any transversal manifold to F at m, we define ([F]) the transversal algebroid AN

by the formula

(AN )m = {α ∈ Am; ♯α ∈ TmN}.

The anchor of AN is, by definition, the restriction of the one of A and the bracket of

sections α and β being defined by [α, β]N (m) = [α̃, β̃](m) where α̃ and β̃ are any extension

of α and β to a neighborhood of m. Using, for example, our local splitting, it is easy to

show that this defines AN without ambiguity. If N is exactly the manifold given by

x = 0 in our local splitting coordinates, then AN has the local trivialization given by the

sections β1|N , . . . , βr|N , the base N admits local coordinates y = (y1, . . . , ys) and the

“transversal” bracket is precisely given by

[βu|N , βv|N ] =

r
∑

w=1

γuv
w (y)βw |N .

Now remark that any transversal manifold N to F at m has local equations xi = f i(y)

in the coordinates of the splitting theorem. We write f(y) := (f1(y), . . . , f q(y)). The

following proposition gives a very elementary way to prove that AN is, up to an algebroid

isomorphism, independent of the chosen transversal N which passes to m.

Proposition 5. The smooth mapping

Φ :=

q
∑

i=1

aiα
i(x, y) +

r
∑

u=1

buβ
u(x, y) 7→

q
∑

i=1

(ai −

r
∑

v=1

bv♯β
v(f i)(y))αi(x− f(y), y)+

r
∑

u=1

buβ
u(x− f(y), y)

defines a local isomorphism of the algebroid A which sends the transversal N to x = 0.

Proof. By definition Φ is a vector bundle isomorphism over the local diffeomorphism

φ := (x, y) 7→ (x− f(y), y). By construction, this φ maps N to x = 0. To show that Φ is

an algebroid isomorphism we have first to prove the fromulae ♯(Φ ◦ α ◦ φ−1) = φ∗♯α for

any section α. It suffices to prove this for the sections of our basis. For α = αi we get

♯(Φ ◦ α ◦ φ−1(x− f(y), y)) = ♯αi(x− f(y), y) =
∂

∂xi
(x− f(y), y) = φ∗♯α(x − f(y), y)

as expected; for α = βu we get

♯(Φ ◦ α ◦ φ−1(x− f(y), y)) = ♯βu(x− f(y), y)−

q
∑

i=1

♯βu(f i)(y)αi(x − f(y), y)) =

♯(βu(x− f(y), y)−

q
∑

i=1

♯βu(f i)(y)
∂

∂xi
(x− f(y), y) = φ∗♯β

u(x − f(y), y)

as expected also.

To achieve the result it remains to prove the formulae

[Φ ◦ α ◦ φ−1,Φ ◦ β ◦ φ−1] = Φ ◦ [α, β] ◦ φ−1
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for every pair (α, β) of sections. It suffices to verify this for sections in the basis. The two

members of these equations are 0 if one of these sections is αi, so we have only to explore

the case where α = βu and β = βv. Doing this we obtain

[Φ ◦ α ◦ φ−1,Φ ◦ β ◦ φ−1] = [βu −

q
∑

i=1

♯βu(f i)αi, βv −

q
∑

j=1

♯βv(f j)αj ]

= [βu, βv]−

q
∑

i=1

[♯βu, ♯βv](f i)αi = Φ ◦ [α, β] ◦ φ−1

as expected.

In [F] the unicity, up to algebroid isomorphism, of the transversal algebroid to F

is proved (exactly as in the Poisson case in [W]) by a Moser’s type—not so simple—

argument. The preceding proposition simplifies the proof (in the algebroid case only). This

proposition says also that, in the splitting theorem, we can impose that the coordinates

x vanish on any given transversal to the leaf of m.

4. Linearization. The splitting theorem reduces the local study of Lie algebroids to

the case where the rank is 0. This is the purpose of this section. From now on we suppose

that our algebroid A has a basis M which is on open neighborhood of the origin in R
s,

with coordinates x = (x1, . . . , xs) and that we have a basis of sections (β1, . . . , βr). We

write ♯βi =
∑s

j=1 b
ij ∂

∂xj , with bij(0) = 0, and [βi, βj ] =
∑r

k=1 c
ij
k β

k.

The linear part ofA at the origin is the Lie algebroid obtained from A where we replace

bij by
∑s

k=1
∂bij(0)
∂xk xk and c

ij
k by c

ij
k (0). In fact this linear part has an intrinsic definition

(see [F]). Note that this linear part is what is called an “action algebroid” ([W2]): the

βi form the basis of a finite dimensional Lie algebra G (with [βi, βj ]G =
∑r

k=1 c
ij
k (0)β

k)

and the ♯βi give an infinitesimal action of G on M. Moreover, in that precise case, this

action is linear.

We say that A is linearizable if there is a change of coordinates and a change of the

basis of sections which reduceA to its linear part. In [W2] they are some basic insights con-

cerning this notion in the case whereG is semi-simple. We will give these results hereafter.

Theorem 6. With the notations above, if G is semi-simple we can formally linearize

A, i.e. we can linearize up to flat terms.

Proof. We will proceed by induction: we will suppose that we have Taylor expansions

c
ij
k = c

ij
k (0) + c

ij(q)
k + c

ij(q+1)
k + · · ·

where c
ij(n)
k are the terms of order n in the coordinates (x1, . . . , xs) and q is a fixed integer

greater or equal to 1.

We denote by A(q) the space of sections of A of the form
∑r

i=1 aiβ
i where the ai are

homogeneous polynomial coefficients of degree q. There is an infinitesimal action of G on

A(q) given by

βu.
(

r
∑

i=1

aiβ
i
)

:=

r
∑

i=1

ai[β
u, βi]G + ♯βu(1)(ai)β

i,

where ♯βu(1) is the linear part of ♯βu at the origin.
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The family (c
ij(q)
k )i,j,k=1,...,r determines a Chevalley 2-cochain c(q) : G×G → A(q) by

the rule

c(q)(βi, βj) =

r
∑

k=1

c
ij(q)
k βk.

It is elementary that the Jacobi identity for bracket of the algebroid gives that c(q) is

a Chevalley cocycle. Now the semi-simplicity of G ([Ch]) gives that it is a coboundary.

This means that there are homogeneous functions of degree q, θ
i(q)
j , for i, j = 1, . . . , r,

such that

c
ij(q)
k =

r
∑

u=1

(θj(q)u ciuk (0)− θi(q)u c
ju
k (0)− θ

u(q)
k ciju (0)) + ♯βi(1)θ

j(q)
k − ♯βj(1)θ

i(q)
k .

Now we consider the new basis of sections given by β̃i = βi −
∑r

j=1 θ
i(q)
j βj . An

elementary calculation shows that we have [β̃i, β̃j ] = c̃
ij
k β̃

k with

c̃
ij
k = c

ij
k (0) + c̃

ij(q+1)
k + · · · .

So, in this new basis, we have erased the terms of degree q.

This shows how to eliminate step by step terms of degree q via a polynomial change

of the basis of type Id + q-order terms. This suffices to show that, up to a formal change

of the basis of sections, we can suppose that the c
ij
k are constants. This says that we

are formally in the case of an action algebroid. Now it remains to linearize formally the

action by classical technics ([H]).

Remarks. It is possible to improve this theorem. When we work in the C∞-case and

when G is a compact algebra, the techniques of J. Conn ([C2]) permit to reduce smoothly

to the case of an action algebroid. Then the classical linearization theory for compact

actions (using averaging process) permits to linearize smoothly. When we work in the

analytic case, the same procedure (using then [C1]) permits to linearize analytically.

We note that the splitting theorem and this analytic linearization process can be

thought of as a special case of the ones which appeared in ([Ce]). Also this last formal

linearization theorem could be deduced from a result of A. Wade ([Wa]).
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