COHOMOLOGY OF KOSZUL-VINBERG ALGEBROIDS AND POISSON MANIFOLDS, I

MICHEL NGUIFFO BOYOM
UMR 5030 CNRS, Département de Mathématiques, Université Montpellier 2
34095 Montpellier Cedex 5, France
E-mail: boyom@math.univ-montp2.fr

Abstract. We introduce a cohomology theory of Koszul-Vinberg algebroids. The relationships between that cohomology and Poisson manifolds are investigated. We focus on the complex of chains of superorders [KJL1]. We prove that symbols of some sort of cycles give rise to so called bundlelike Poisson structures. In particular we show that if $E \to M$ is a transitive Koszul-Vinberg algebroid whose anchor is injective then a Koszul-Vinberg cocycle θ whose symbol has non-zero skew symmetric component defines a transversally Poissonian symplectic foliation in M.

1. Background material. Let A be a real algebra whose multiplication map is denoted by

$$(a, b) \to ab.$$

Given three elements a, b, c of A their associator in A is the quantity

$$(a, b, c) = a(bc) - (ab)c. \tag{1}$$

Definition 1.1. A real algebra A is called a Koszul-Vinberg algebra if its associator map satisfies the identity

$$(a, b, c) = (b, a, c).$$

N.B. Koszul-Vinberg algebras are also called left symmetric algebras [NB1], [PA].

Let A be a Koszul-Vinberg algebra and let W be a real vector space with two bilinear maps

$$A \times W \to W : (a, w) \to aw;$$

$$W \times A \to W : (w, a) \to wa. \tag{2}$$

2000 Mathematics Subject Classification: Primary 22A22, 53B05, 53C12, 53D17; Secondary 17B55, 17B63.

The paper is in final form and no version of it will be published elsewhere.
We will set the following: given \(a \in A \) and \(w \in W \)
\[
(a, b, w) = a(bw) - (ab)w,
\]
\[
(a, w, b) = a(wb) - (aw)b,
\]
\[
(w, a, b) = w(ab) - (wa)b.
\]

Definition 1.2. A vector space equipped with two bilinear maps (2) is called a Koszul-Vinberg module of \(A \) if the following identities hold for any \(a, b \in A \) and \(w \in W \):
\[
(a, b, w) = (b, a, w),
\]
\[
(a, w, b) = (w, a, b).
\]

Given a Koszul-Vinberg algebra \(A \) and a Koszul-Vinberg module \(W \) of \(A \), one of the following spaces:
\[
J(A) = \{ c \in A/(a, b, c) = 0, \forall a \in A, \forall b \in A \};
\]
\[
J(W) = \{ w \in W/(a, b, w) = 0, \forall a \in A, \forall b \in A \}.
\]

The subspace \(J(A) \subset A \) is a subalgebra of \(A \) and the induced multiplication map is associative. In general the vector subspace \(J(W) \) is not invariant under the actions (2).

Examples of Koszul-Vinberg algebras and their modules

(\(e_1 \)) Every associative algebra is a Koszul-Vinberg algebra.

(\(e_2 \)) Let \((M, D)\) be a locally flat manifold, [KJL3]; then the vector space \(\Gamma(TM) \) of smooth vector fields on \(M \) is a Koszul-Vinberg algebra; its multiplication map is defined by
\[
(X, Y) \rightarrow XY = DXY.
\]

(\(e_3 \)) Given a locally flat manifold \((M, D)\) let \(W \) be the vector space of real valued smooth functions on \(M \). For any \(f \in W \) and \(X \in \Gamma(TM) \) we define \(Xf \in W \) and \(fX \in W \) by putting
\[
(Xf)(x) = < df, X > (x), \quad (fX)(x) = 0 \in \mathbb{R}.
\]

With the above operations \(W \) becomes a Koszul-Vinberg module of \(A = \Gamma(TM) \).

Given a Koszul-Vinberg algebra \(A \) and two Koszul-Vinberg modules of \(A \), called \(V \) and \(W \), let \(Hom(W, V) \) be the vector space of linear maps from \(W \) to \(V \). We consider the following actions of \(A \) in \(Hom(W, V) \): let \(\theta \in Hom(W, V) \), \(a \in A \), \(w \in W \) then we set
\[
(a\theta)(w) = a(\theta(w)) - \theta(aw), \quad (\theta a)(w) = (\theta(w))a.
\]

Under the actions defined in (4) the vector space \(Hom(W, V) \) becomes a Koszul-Vinberg module of \(A \). More generally the vector space \(Hom(\oplus^q W, V) \) of \(q \)-linear mappings from \(W \) to \(V \) is a Koszul-Vinberg module of \(A \) under the following actions: let \(\theta \in Hom(\oplus^q W, V) \), \(a \in A \) and \(w_1, ..., w_q \in W \), we set
\[
(a\theta)(w_1, ..., w_q) = a(\theta(w_1, ..., w_q)) - \sum_{1 \leq j \leq q} \theta(...aw_j, ..., w_q),
\]
\[
(\theta a)(w_1, ..., w_q) = (\theta(w_1, ..., w_q))a.
\]

Let \(q \) be a positive integer every pair \((j, w_0)\) where \(j \) is a non-negative integer with \(j \leq q \) and \(w_0 \in W \) will define a linear map from \(Hom(\otimes^q V, V) \) to \(Hom(\otimes^{q-1} W, V) \), called \(e_j(w_0) \). Let \(\theta \in Hom(\otimes^q W, V) \) then \(e_j(w_0)\theta \in Hom(\otimes^{q-1} W, V) \) is defined by
\[
(e_j(w_0)\theta)(w_1, ..., w_{q-1}) = \theta(w_1, ..., w_{j-1}, w_0, w_j, w_{j+1}, ..., w_q).
\]
The linear map $e_j(w_0)$ commutes with the right action of A, viz

$$(e_j(w_0)\theta)a = e_j(w_0)(\theta a).$$

Thus the notation $e_j(w_0)\theta a$ will be well defined.

We are now in a position to recall the definition of the complex

$$\ldots \rightarrow C^q(A, W) \xrightarrow{\delta_q} C^{q+1}(A, W) \rightarrow \ldots$$

Let A be a Koszul-Vinberg algebra and let W be a Koszul-Vinberg module of A. For each positive integer q we set

$$C^q(A, W) = \text{Hom}(\otimes^q A, W)$$

and for $q = 0$ we set

$$C^0(A, W) = J(W).$$

Then the graded vector space

$$C(A, W) = \bigoplus_{q \geq 0} C^q(A, W)$$

is a cochain complex whose boundary operator is defined by

$$(\delta \theta)(a_1, \ldots, a_{q+1}) = \sum_{j \leq q} (-1)^j \{(a_j \theta)(\hat{a}_j \ldots a_{q+1}) + (e_q(a_j)\theta a_{q+1}(\ldots \hat{a}_j \ldots, \hat{a}_{q+1})\}.$$

The family $(\delta_q)_q$ satisfies the following identity

$$\delta_{q+1}\delta_q = 0.$$

The q^{th} cohomology space of the cochain complex $C(A, W)$ is denoted by $H^q(A, W)$. We have

$$H^q(A, W) = \ker(\delta_q)/\text{im}(\delta_{q-1})$$

for $q > 0$ and

$$H^0(A, W) = \ker(\delta_0).$$

Example. Let (M, D) be a locally flat manifold and let $A = \Gamma(TM)$ be the corresponding Koszul-Vinberg algebra. Regarding A as a Koszul-Vinberg module of itself the subspace $J(A)$ consists of affine vector fields. Thus $\ker(\delta_0)$ is the subspace of locally linear vector fields. One sees that in general $H^0(A, A)$ will be non-trivial; e.g. if (M, D) is the real flat torus then $\dim H^0(A, A) = \dim M$. On the other hand we have

$$H^1(A, A) = 0, \quad [\text{NB}_3].$$

2. Koszul-Vinberg algebroids and coalgebroids. Let M be a smooth manifold and E a vector bundle over M. The space of smooth sections of E is denoted by $\Gamma(E)$.

Definition 2.1. A Koszul-Vinberg algebroid over M is a vector bundle E over M with a bundle map $a : E \rightarrow TM$, called the anchor map, such that

(P1) $\Gamma(E)$ is a Koszul-Vinberg algebra;

(P2) The anchor $a : \Gamma(E) \rightarrow \Gamma(TM)$ satisfies the following identities: $\forall f \in C^\infty(M, \mathbb{R})$, $\forall s \in \Gamma(E)$, $\forall s' \in \Gamma(E)$

$$(fs)s' = f(ss'), \quad s(fs') = f(ss') + <df, a(s)> s'.$$
Remark. It follows from conditions (P1) and (P2) that the anchor map is a homomorphism of the associated Lie algebras.

Examples of Koszul-Vinberg algebroids

$$(e_1)$$ The tangent bundle of a locally flat manifold (M, D) is a Koszul-Vinberg algebroid. Its anchor is Identity map; given two sections of TM, called X, Y then

$$XY = D_XY.$$

$$(e_2)$$ Let \mathcal{F} be an affine foliation in a smooth manifold M and let $E_\mathcal{F}$ be the tangent bundle of \mathcal{F} in TM. Since each leaf of \mathcal{F} is a locally flat manifold $E_\mathcal{F}$ is a Koszul-Vinberg algebroid over M.

$$(e_3)$$ Each completely integrable system in an m-dimensional symplectic manifold (M, ω) gives rise to an action of \mathbb{R}^m in M. The orbits of that action are locally flat manifolds; thus every completely integrable system will generate a Koszul-Vinberg algebroid.

$$(e_4)$$ Given a lagrangian foliation \mathcal{F} in a symplectic manifold (M, ω) one defines a Koszul-Vinberg algebroid E as in (e_2). If $s, s' \in \Gamma(E)$ then ss' is defined by the relation

$$\iota(ss')\omega = L_s\iota(s')\omega$$

where $\iota(s')$ is the inner product by s' and L_s is the Lie derivation w.r.t. s. The multiplication in $\Gamma(E)$ given by (6) induces a locally flat structure in each leaf of \mathcal{F}.

Now given a Koszul-Vinberg algebroid E whose anchor map is injective, it is natural to ask whether the locally flat structure of leaves of E extends to a locally flat structure in M. The notion of Koszul-Vinberg co-algebroid together with cochain complex (5) help to study the extension that we just raised, [NBW] (see also [KI] for the notion of partial connection).

Definition 2.2. Given a Koszul-Vinberg algebroid $E \rightarrow M$, a Koszul-Vinberg coalgebroid of E is a vector bundle $N \rightarrow M$ together with a bundle map $\alpha : N \rightarrow TM$ satisfying the following conditions:

$$(c_1) \Gamma(N)$$ is a Koszul-Vinberg algebra.

$$(c_2)$$ There exists a linear map $j : \Gamma(TM) \rightarrow \Gamma(N)$ such that the sequence

$$\Gamma(E) \xrightarrow{\alpha} \Gamma(TM) \xrightarrow{j} \Gamma(N) \rightarrow 0$$

is exact and $j \circ \alpha(s) = s, \forall s \in \Gamma(N)$.

$$(c_3)$$ Let s, s' be elements of $\Gamma(N)$ and $f \in C^\infty(M, \mathbb{R})$; then

$$(fs)s' = f(ss')$$

and if $< df, \alpha(\sigma) > = 0$ for every $\sigma \in \Gamma(E)$ then

$$s(fs') = f(ss') + < df, \alpha(s) > s'.$$

Example. Let \mathcal{F} be a locally flat foliation which is a transversally affine foliation at the same time. Then the Koszul-Vinberg algebroid $E_\mathcal{F}$ corresponding to \mathcal{F} admits a Koszul-Vinberg coalgebroid, [NBW].

Indeed let \mathcal{L} be the sheaf of locally linear sections of $E_\mathcal{F}$, i.e. $s \in \mathcal{L}$ iff $s's = 0$, $\forall s' \in \Gamma(E_\mathcal{F})$. We consider the quotient vector bundle $TM/E_\mathcal{F}$. Since \mathcal{F} is transversally
affine the space of smooth sections of $N = TM/E_F$ admits a structure of Koszul-Vinberg algebra (every germ of submanifold which is transverse to F is a germ of affine manifold). Thus $\Gamma(N)$ admits a Koszul-Vinberg algebra structure. Let us write $J(N) = J(\Gamma(N))$.

Then $C^\infty(M, \mathbb{R})J(N) = \Gamma(N)$. Using a riemannian metric on M one constructs a section $\alpha : N \to TM$ of the exact sequence

$$0 \to E_F \xrightarrow{\alpha} TM \xrightarrow{j} N \to 0$$

where j is the canonical projection.

In [NBW] we have used the Lie algebra $A = \text{norm}(L) \cap j^{-1}(J(N))$ to study the extension problem of the locally flat structure of F; $\text{norm}(L)$ is the normalizer of L in the Lie algebra $\Gamma(TM)$.

Remark that every Koszul-Vinberg algebroid E gives rise to a Lie algebroid E_L; the total space of E_L is E; for s and s' in $\Gamma(E_L)$ the bracket is defined by

$$[s, s'] = ss' - s's.$$

The anchor map of E satisfies the identity

$$a([s, s']) = [a(s), a(s')].$$

Indeed let s, s', s'' be elements of $\Gamma(E)$ and $f \in C^\infty(M, \mathbb{R})$, then

$$[s, s'](fs'') = (ss')(fs'') - (s's)(fs'') = s(s'(fs'')) - s'(s(fs''))$$

and property (P_2) of definition 2.1 implies that

$$< df, a([s, s']) > = a(s)(a(s')f) - a(s')(a(s)f),$$

where $a(s)f = < df, a(s) >$.

3. Real cohomology of Koszul-Vinberg algebroids. Let $E \to M$ be a Koszul-Vinberg algebroid. The vector space $W = C^\infty(M, \mathbb{R})$ is a Koszul-Vinberg module of $A = \Gamma(E)$. The left action and the right action are defined by

$$(sf)(x) = < df, a(s) >, \quad (f.s)(x) = 0,$$

where a is the anchor map of E.

We will focus on the cochain complex

$$\cdots \to C^q(A, W) \xrightarrow{\delta_q} C^{q+1}(A, W) \to \cdots$$

The q^{th} cohomology space of (8) is denoted by $H^q(E, \mathbb{R})$, i.e. $H^q(E, \mathbb{R}) = H^q(A, W)$.

Definition 2.3. The vector space $H^q(E, \mathbb{R})$ is called the q^{th} cohomology space of the Koszul-Vinberg algebroid $E \to M$.

Example. Let E be a regular Koszul-Vinberg algebroid whose anchor map is denoted by a. Then $a(E)$ defines a foliation on M. A function f belongs to $J(W)$ iff $L_{a(s)} \circ$
$L_{a(s')}(f) = 0$ for arbitrary sections s, s' of E. Thus if the anchor is injective then $J(W)$ consists of smooth functions which are affine along each leaf of $a(E)$. Since $H^0(E, \mathbb{R}) = ker(\delta_0)$ we see that $H^0(E, \mathbb{R})$ is just the vector space of first integrals of $a(E)$.

Theorem 3.1. If a regular Koszul-Vinberg algebroid $E \to M$ admits a dense leaf then $\dim H^0(E, \mathbb{R}) = 1$.

4. Koszul-Vinberg algebroids and Poisson manifolds. To every Koszul-Vinberg algebroid $E \to M$ we attach the following new Koszul-Vinberg algebroid $\mathcal{E} = E \times \mathcal{R}$ where \mathcal{R} is the trivial vector bundle $\mathcal{R} = M \times \mathbb{R}$. We identify $\Gamma(\mathcal{R})$ with the associative algebra $C^\infty(M, \mathbb{R})$ of smooth real valued functions on M. Thus we will identify $\Gamma(\mathcal{E})$ with $\Gamma(\mathcal{E}) \times C^\infty(M, \mathbb{R})$ as well.

Henceforth $\Gamma(\mathcal{E})$ is an algebra whose multiplication is

$$ (s, f)(s', f') = (ss', ff' + < df', a(s)>). $$

It is easy to see that (9) endows $\Gamma(\mathcal{E})$ with a structure of Koszul-Vinberg algebra. Moreover if $g \in C^\infty(M, \mathbb{R})$ then we have

$$(g(s, f))(s', f') = g((s, f)(s', f'))$$

and

$$(s, f)(g(s', f')) = g((s, f)(s', f')) + < dg, a(s)>(s', f').$$

Naturally the anchor map of \mathcal{E} is defined by

$$a_\epsilon(s, f) = a(s)$$

where a is the anchor of $E \to M$. The Koszul-Vinberg algebra $\Gamma(\mathcal{E})$ is the semi-product $\Gamma(E) \times C^\infty(M, \mathbb{R})$.

Now let V be a vector space, let r be a non-negative integer; we will put $T^r(V) = \otimes^r V$.

Henceforth we are concerned with the cochain complex

$$\ldots \to C^q(\mathcal{G}, W) \overset{\delta_q}{\to} C^q(\mathcal{G}, W) \to \ldots$$

where \mathcal{G} is the Koszul-Vinberg algebra (9) and $W = C^\infty(M, \mathbb{R})$. For each non-negative integer q the vector space $C^q(\mathcal{G}, W)$ is bigraded

$$C^q(\mathcal{G}, W) = \oplus_{r+s=q} C^{r,s}(\mathcal{G}, W)$$

with

$$C^{r,s}(\mathcal{G}, W) = Hom(T^r A \otimes T^s W, W).$$

r and s being non-negative integers.

The boundary operator δ_q goes from $C^{r,s}(\mathcal{G}, W)$ to the direct sum $C^{r+1,s}(\mathcal{G}, W) \oplus C^{r,s+1}(\mathcal{G}, W)$. Thus we will equip the cohomology space $H^q(\mathcal{G}, W)$ with the bigradation

$$H^q(\mathcal{G}, W) = \oplus_{r+s=q} H^{r,s}(\mathcal{G}, W)$$
with
\[H^{r,s}(\mathcal{G}, W) = \frac{\ker(\delta_q : C^{r,s}(\mathcal{G}, W) \to C^{r+1,s}(\mathcal{G}, W) \oplus C^{r,s+1}(\mathcal{G}, W))}{\delta_{q-1}(C^{q-1}(\mathcal{G}, W)) \cap C^{r,s}(\mathcal{G}, W)} \].

Naturally one sees that
\[\delta_{q-1}(C^{q-1}(\mathcal{G}, W)) \cap C^{r,s}(\mathcal{G}, W) = \delta_{q-1}(C^{r-1,s}(\mathcal{G}, W) + C^{r,s-1}(\mathcal{G}, W)) \cap C^{r,s}(\mathcal{G}, W). \]

We will develop the analogue of the complex of differential forms of superorder introduced by Jean-Louis Koszul, [KJL2].

To begin with, let \(\xi \in \mathcal{G} \), for a non-negative integer \(k \) and \(x \in M \) \(j_x^k \xi \) is the \(k \)-th jet at \(x \) of \(\xi \in \mathcal{G} \). We will present \(j_x^k \xi \) by
\[j_x^k \xi = (d_x^1 \xi, ..., d_x^k \xi) \]
where \(d_x^l \xi \) is the \(l \)-th differential at \(x \) of the section \(\xi \in \Gamma(\mathcal{E}) \).

Definition [KJL2]. A cochain \(\theta \in C^q(\mathcal{G}, W) \) is of order \(\leq k \) if at every \(x \in M \) and for \(\xi_1, ..., \xi_q \in \mathcal{G} \) the value at \(x \) of \(\theta(\xi_1, ..., \xi_q) \) depends on \(j_x^k \xi_1, ..., j_x^k \xi_q \).

Let \(I = (i_1, ..., i_q) \) be a \(q \)-tuple of non-negative integers such that \(i_l \leq k \). Given a \(q \)-cochain \(\theta \in C^q(\mathcal{G}, W) \) of order \(\leq k \), we set
\[\theta^I(\xi_1, ..., \xi_q)(x) = \theta(d_x^{i_1} \xi_1, ..., d_x^{i_q} \xi_q). \]

Since \(\theta \) is \(q \)-multilinear (11) makes sense.

Thus every \(\theta \in C^q(\mathcal{G}, W) \) which is of order \(\leq k \) will be decomposed as follows
\[\theta(\xi_1, ..., \xi_q) = \sum I \theta^I(\xi_1, ..., \xi_q) \]
where \(I = (i_1, ..., i_q) \) with \(0 \leq i_1, ..., i_q \leq k \).

We call \(\theta^I \) the component of type \(I \) of \(\theta \).

The following definition is crucial for the forthcoming applications.

Definition 4.1 Given a cochain of order \(\leq k \), say \(\theta \in C^q(\mathcal{G}, W) \), then its component of type \((k, ..., k)\) is called the symbol of \(\theta \).

Notice that the symbol of \(\theta \) may be zero.

Proposition [NB4]. The symbol \(\sigma(\theta) \) of every \(q \)-cocycle \(\theta \in C^{0,q}(\mathcal{G}, W) \) is \(\delta_q \)-closed and satisfies the identity
\[s \sigma(\theta) = 0 \]
for any arbitrary element \(s \in \Gamma(E) \).

We recall that
\[(s(\sigma(\theta)))(\xi_1, ..., \xi_q) = a(s)(\sigma(\theta)(\xi_1, ..., \xi_q)) - \sum_{j \leq q} \sigma(\theta)(...s\xi_j, ..., \xi_q). \]

For every non-negative integer \(r \), \(H^{r,0}(\mathcal{G}, W) = 0 \). (That phenomenon may be explained by using an appropriate spectral sequence.)

We are going now to relate symbols of so called Koszul-Vinberg cocycle to Poisson manifolds structures.

We will deal with the vector spaces \(C^{r,s}(\mathcal{G}, W) \) such that \(rs = 0 \). For instance \(C^{0,2}(\mathcal{G}, W) \) may contain Poisson tensors as well as Jacobi tensors.
On the other hand let us suppose that the Koszul-Vinberg algebroid $E \to M$ has an injective anchor map. Then Riemannian metrics or symplectic structures on the vector bundle $E \to M$ give rise to elements of $C^{2,0}(G, W)$.

Definition 4.2. (i) A cochain $\theta \in C^2(G, W)$ is called a Koszul-Vinberg cochain if for arbitrary elements ξ_1, ξ_2, ξ_3 of G one has

$$(\xi_1, \xi_2, \xi_3)_\theta = (\xi_2, \xi_1, \xi_3)_\theta$$

where

$$(\xi_1, \xi_2, \xi_3)_\theta = \theta(\xi_1, \theta(\xi_2, \xi_3)) - \theta(\theta(\xi_1, \xi_2), \xi_3).$$

(ii) $\theta \in C^2(G, W)$ is a Koszul-Vinberg cocycle if $\delta \Pi_\theta = \delta.\theta = 0$ and $(\xi_1, \xi_2, \xi_3)_\theta = (\xi_2, \xi_1, \xi_3)_\theta$.

Definition 4.2 makes sense because W may be regarded as a subspace of G.

Every Koszul-Vinberg cochain $\theta \in C^2(G, W)$ defines a Koszul-Vinberg algebra structure whose multiplication is given by

$$\xi_1 \xi_2 = \theta(\xi_1, \xi_2).$$

Therefore we define in G a new Lie algebra structure called G_{θ}, whose bracket is given by

$$[\xi_1, \xi_2]_{\theta} = \theta(\xi_1, \xi_2) - \theta(\xi_2, \xi_1).$$

Before continuing we will recall some differential geometry structures related to the cohomology of Koszul-Vinberg algebroids.

Definition 4.3. (i) A Poisson foliation in a manifold M is a foliation \mathcal{F} whose leaves are Poisson manifolds.

(ii) A transversally Poisson foliation in M is a foliation whose sheaf of basic functions is a sheaf of Poisson algebra.

Part (ii) in definition 4.3 has the following meaning: the sheaf of local first integrals of \mathcal{F} admits a Lie algebra bracket

$$(f, g) \to \{f, g\}$$

such that

$$\{f, gh\} = g\{f, h\} + \{f, g\}h.$$
is a derivation of the algebra A. This elementary result has deep consequences; for example given a smooth manifold M with a star product in $C^\infty(M, \mathbb{R})$, say
\[f \ast g = fg + \sum_{k>0} h^k B_k(f, g) \]
the bilinear map $B_1 : C^\infty(M, \mathbb{R})^2 \to C^\infty(M, \mathbb{R})$ is a cocycle of the Hochschild complex of $C^\infty(M, \mathbb{R})$. One deduces that B_1 is a bidifferential operator of order 1 whose skew symmetric component defines a Poisson manifold structure on M, [KM]. The same claim doesn’t hold in the cohomology theory of Koszul-Vinberg algebras. For instance in a Koszul-Vinberg algebra A the multiplication map
\[(a, b) \to ab \]
is an exact cocycle of $C(A, A)$, but the linear map
\[b \to ab - ba \]
for a fixed a is a derivation of A iff $a \in J(A)$. That makes relevant the theorem which is stated below.

Let $E \to M$ be a Koszul-Vinberg algebroid and let $C(G, W)$ be the complex associated to $G = \Gamma(E)$.

Theorem I [NB_4]. Let $\theta \in C^{0,2}(G, W)$ be a cocycle of order $\leq k$. If the skew symmetric component of the symbol $\sigma(\theta)$ is non-zero, then $k = 1$.

An important consequence of theorem is the following statement:

Theorem II [NB_4]. The skew symmetric component of the symbol $\sigma(\theta)$ of every Koszul-Vinberg cocycle $\theta \in C^{0,2}(G, W)$ is a Poisson tensor.

Now let us assume the Koszul-Vinberg algebroid $E \to M$ to be regular. Then E defines a foliation E_F in M. Given any Koszul-Vinberg cocycle $\theta \in C^{0,2}(G, W)$ of order $\leq k$ we denote by Π_θ the skew symmetric component of $\sigma(\theta)$. The following corollary follows directly from theorem II.

Corollary 4.4. Every germ of submanifold in M which is normal to F_E is a germ of Poisson submanifold of (M, Π_θ). In particular if F_E is simple then the quotient manifold M/F_E admits a Poisson manifold structure $(M/F_E, \hat{\Pi}_\theta)$ such that the canonical projection from M to M/F_E is a Poisson morphism from (M, Π_θ) to $(M/F_E, \hat{\Pi}_\theta)$.

Considering the case of Koszul-Vinberg algebroids with injective anchor maps, we see that such algebroids define locally flat foliations in their base manifolds. Thus we can state the following

Theorem III [NB_4]. Let $E \to M$ be a Koszul-Vinberg algebroid whose anchor map is injective. If E is transitive, then every Koszul-Vinberg cocycle $\theta \in C^{0,2}(G, W)$ defines a regular Poisson structure on M.

Remark that W being a Koszul-Vinberg submodule of G every Koszul-Vinberg cochain $\hat{\theta} \in C^2(G, G)$ induces a Koszul-Vinberg cochain $\theta \in C^{0,2}(G, W)$.
5. The Koszul-Vinberg analogues of star product. Let \(M \) be a smooth manifold and let \(W \) be the vector space \(C^\infty(M, \mathbb{R}) \) endowed with its natural structure of associative and commutative algebra.

Given a start product in \(W \), say
\[
 f \ast f' = ff' + \sum_{k>0} h^k B_k(f, f')
\]
it is well known that the skew symmetric component of \(B_1 \) is a Poisson tensor on \(M \), [KM]. Regarding theorem II a natural question arises: does the same phenomenon persist in Koszul-Vinberg algebra structures.

Henceforth we will consider a Koszul-Vinberg algebroid \(E \rightarrow M \). As before we denote by \(G \) the vector space of smooth sections of the Wihtney sum \(E \oplus \mathbb{R} \). We consider the multiplication already defined by (9), i.e. for \(\xi = (s, f), \xi' = (s', f') \)
\[
 \xi \xi' = (ss', ff' + < df', a(s) >)
\]
where \(a \) is the anchor map of \(E \). Let \(h \) be some parameter; we will focus on the family of multiplication in \(G \)
\[
 \xi_\ast_h \xi' = \xi \xi' + \sum_{k>0} h^k \theta_k(f, f')
\]
with \(\theta_k \in C^2(G, G) \). We suppose the multiplication (12) to satisfy Definition 1.1, viz
\[
 (\xi_1, \xi_2, \xi_3) \ast_h = (\xi_2, \xi_1, \xi_3) \ast_h
\]
for elements \(\xi_1, \xi_2, \xi_3 \) of \(G \). Thus we obtain a family \(G_h \) of Koszul-Vinberg algebras. The coefficient \(\theta_1 \) is a cocycle of the complex \(C(G, G) \).

Each Koszul-Vinberg algebra \(G_h \) give rise to a Lie algebra whose bracket is given by
\[
 [\xi, \xi']_h = [\xi, \xi']_h - \xi' \ast_h \xi = [\xi, \xi'] + \sum_{k>0} h^k \Lambda_k(\xi, \xi')
\]
with \(\Lambda_k(\xi, \xi') = \theta_k(\xi, \xi') - \theta_k(\xi', \xi) \).

In order that the pair \((E \oplus \mathbb{R}, G_h) \) define a Koszul-Vinberg algebroid with the same anchor map \(a \) as the pair \((E \oplus \mathbb{R}, G) \) it is necessary that
\[
 a([\xi, \xi']_h) = a([\xi, \xi]).
\]
Thus we must have
\[
 a(\sum_{k>0} h^k \Lambda_k(\xi, \xi')) = 0.
\]
Therefore we see that for every positive integer \(k \) one has \(a(\Lambda_k(\xi, \xi')) = 0 \). On the other hand recall that \(W \) is a two-sided ideal of the Koszul-Vinberg algebra \(G \) whose multiplication is (9). Then the \(W \)-component of the cocycle \(\theta_1 \) is a \(W \)-valued 2-cocycle of the cochain complex \(C(G, W) \). By assuming that the map \(a \) is also the anchor map of the pair
\[
 (E \oplus \mathbb{R}, G_h)
\]
we deduce from the condition
\[
 \xi(f \ast_h \xi') = f(\xi \ast \xi') + < df, a(\xi) > \xi'
\]
that the chains θ_k are of order zero, that is to say that each θ_k is tensorial. This phenomenon is in contrast to the case of star products in the associative and commutative algebra $C^\infty(M, \mathbb{R})$.

To end the present paper we deduce from (13) the following statement.

Proposition 5.1. Let $E \to M$ be a Koszul-Vinberg algebroid whose anchor map is injective. Suppose that the associated algebroid $E \oplus \mathbb{R}$ admits a one parameter family of deformations $(E \oplus \mathbb{R}, G_h)$ whose multiplication is

$$\xi \ast_h \xi' = \xi \xi' + \sum_{k>0} h^k \theta_k(\xi, \xi').$$

Then the coefficients θ_k are symmetric chains of the cochain complex $C(G, G)$.

References

