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Abstract. The aim of this paper is to extend from manifolds to vector bundles some classical

geometric objects, associated with Lagrange and Hamilton metrics. Considering vector bundles

endowed with almost Lie structures, defined in [24] by one of the authors, some geometric objects

like R-(semi)sprays and R-connections of Cartan type are defined and studied. It is proved that

the Lagrange equations deduced for Lie algebroids by A. Weinstein have a similar form for almost

Lie structures.

1. Introduction. An anchored vector bundle (AVB) (or a relative tangent space in

[23, 26]) is a couple (θ,D), where θ = (R, q,M) is a vector bundle and D : θ → τM is a

vector bundle morphism called an anchor (an arrow, or a tangent map), where the vector

bundle τM = (TM, p,M) is the tangent bundle of M .

A Lie algebroid on a vector bundle θ with a skew symmetric bracket [·, ·]θ : Γ(θ) ×

Γ(θ) → Γ(θ) on the module of sections is the most known situation involving an AVB.

The bracket of a Lie algebroid must verify some restrictive conditions, such as: the Leib-

niz identity, the compatibility with the Lie bracket and the Jacobi identity. If the last

two conditions are not fulfilled by a bracket on an AVB, then, following [24], the triple

(θ,D, [·, ·]θ) is called an almost Lie structure (ALS). An interpretation of an ALS is given

in [24], where it is proved that it is a one to one correspondence between ALS’s and

1-degree derivations on the exterior algebra of skew symmetric forms on θ. In this order

of ideas, a Lie algebroid corresponds to a 1-degree derivation with a null square (see also

[34, Lemma 2.2]).

In the case when the bracket of an ALS verifies all the conditions of a Lie algebroid,

except the Jacobi identity, the ALS is called an algebroid. Generalized algebroids with

arbitrary brackets (when the Leibniz’ and Jacobi’s conditions are not fulfilled) are stud-

ied in [27]. The Courant algebroids studied in [11] are particular cases of generalized

algebroids. The role played by the Jacobi identity in the case of Lie algebras and Lie

algebroids is underlined in [3].
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If θ is an arbitrary vector subbundle of τM (i.e. a geometric regular distribution) and

i : θ → τM is the inclusion morphism, then the AVB (θ, i) is a non-holonomic space of G.

Vrănceanu ([32]). This non-holonomic space was the background to consider geometric

objects related with mechanics, differential equations etc. The modern sub-Riemannian

geometry studies also the non-integrable regular distributions, but a metric tensor on the

fibers of the distribution is also given (see, for example, [30, 19]). Many problems which

arise in the sub-Riemannian geometry (for example in [30]) may be considered in a more

general situation of an arbitrary AVB.

The AVB is the background of linear pseudoconnections of Wong [33], which gener-

alize the usual linear connections. The non-linear R-connections introduced in [23] and

called below R-connections can be interpreted as (non-)linear pseudoconnections of Wong.

Moreover, a bracket on an AVB (i.e. an ALS) enables to consider also the curvature of an

R-connection (see [24]). In the particular case of Lie algebroids, the linear R-connections

(respectively linear pseudoconnections of Wong) are just the A-connections defined by

Fernandez in [4].

An R-(semi)spray is defined and it is interpreted in this paper as a second order

differential equation (SODE) on an ALS. The particular case of an R-spray (using another

equivalent definition) and of an injective anchor (i.e. when θ is isomorphic with a vector

subbundle of τM) is considered in [29], where the author generalizes a result of Ambrose-

Singer-Palais, proving that every R-spray can be associated with a linear connection on

θ. In the last section this result is extended for every R-spray which is not necessary

differentiable on the image of the null section.

From the algebraic view point, AVB’s correspond to finitely generated modules of

vector fields (a submodule M ⊂ X (M) is finitely generated iff there is an AVB (θ,D)

over the base M such that M = D(Γ(θ))). When M has a non-constant rank, then the

AVB (θ,D) can be considered as a desingularization of M.

The case of an infinite dimensional AVB is studied in [20], where it is proved that

every AVB defines a smooth distribution on the base manifold. As in the case of a finite

dimensional manifold, this distribution is generally non-regular (i.e. it is not defined by

a vector subbundle of the tangent bundle). In our paper we deal only with the finite

dimensional manifolds and bundles, but most of our constructions work in the infinite

dimensional case, too.

The aim of this paper is to show how the classical lagrangian and hamiltonian formal-

ism can be extended and developed for ALS’s, pointing out some aspects based on presym-

plectic forms, exterior calculus, second order differential equations and (non-linear) con-

nections considered in this frame. Notice that the lagrangian formalism on Lie algebroids

is described in [35] (related especially to Lie groupoids) and in [10].

In the second section we start from [23, 24], where it is shown that a given AVB or

an ALS can be used as a substitute of the tangent bundle of the base. Some adapted

ALS’s are considered and some presymplectic forms and symplectic connections (used in

the next sections) are studied.

In the third section we show that a Cartan-Kern R-connection can be associated with

a lagrangian on an ALS. This connection is a symplectic one and it corresponds to itself

when Proposition 2.4 is applied. We define also the Legendre transformation and we show
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that its R-differential is a symplectic morphism, which sends the Kern-Cartan connection

to a symplectic R-connection on the dual.

In the fourth section, a physical interpretation concerning the constructions performed

in the previous sections is given. Using the formalism presented in this paper, we prove

that the Lagrange equations for a Lie algebroid, given in [35], keep the same form in the

general case of an ALS. In order to emphasize the link between the two approaches, two

different proofs of the Lagrange equations are given: the first is a direct one, using the

previous constructions, and the second one follows the Weinstein’s ideas, using an almost

Lagrange Poisson bracket (see [35]). Thus, our construction is a natural extension of the

classical case and of the Lie algebroids case, too.

A result from [29], which, in turn, generalizes a theorem of Ambrose-Palais-Singer,

is extended in the last section. It refers to the possibility to define an R-spray using a

suitable homogeneous non-linear connection, in the case when the anchor is injective on

fibres. In [29] the R-spray S (called a spray-like) is differentiable on the entire R, while

in our paper S is differentiable on R̃ = R\{0}.

Notice that, in order to simplify the exposition, we use often local coordinates. In

spite of this fact, all the objects have global definitions. All the differentiable structures

considered below are of class C∞.

2. Lagrangian and hamiltonian geometry on anchored vector bundles. In

this section we start from [23, 24], where it is shown that a given AVB or an ALS can be

used as a substitute of the tangent bundle of the base. Some adapted ALS’s are considered

and some presymplectic forms and symplectic connections (used in the next sections) are

studied.

Let (θ,D) be an arbitrary AVB and ξ = (E, π,M) be another vector bundle on the

same base M . Let RE = TE ×TM R = {(x, y) ∈ TE × R : π∗(x) = D(y)} be the

fibered product of the differential tangent map π∗ : TE → TM and the given anchor

D : R → τM . Let ∆ : RE → TE be the canonical projection, π̄ the canonical projection

of the tangent bundle τE and s = π̄ ◦∆. Then the fibered manifold Rξ = (RE, s, E) is

a vector bundle, ∆ is an anchor on Rξ (called the canonical anchor) and (Rξ,∆) is an

AVB, called the R-AVB of ξ. The diagram:

R
q

−→ M

↑ t ↑ π

RE
s

−→ E

(1)

commutes; it has all the arrows as projections of vector bundles, the arrow t is a π-

morphism and the arrow s is a q-morphism of vector bundles. Notice that the diagram

(1) implies that (RE,R,E) is a double vector bundle (see [9, 5]). If ξ = θ, then (RR,R,R)

becomes also a double vector bundle.

Notice that the couple (Rξ,∆) is an AVB, too.

The R-vertical bundle of ξ related to the AVB (θ,D) is the vector subbundle ker t
not.
=

V Rξ ⊂ Rξ. Since V Rξ is canonically isomorphic with the vertical bundle V ξ, we identify

V Rξ with V ξ. A non-linear R-connection (or simply an R-connection) on ξ related to the

AVB (θ,D) is a left splitting of the inclusion morphism i : V ξ → Rξ, i.e. a vector bundle
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morphism C : Rξ → V ξ such that C ◦ i = idV ξ. Since C is a surjection, there is a vector

subbundle kerC
not.
= Hξ, called the R-horizontal bundle of ξ, which is supplementary to

V ξ in Rξ. Thus, to give an R-connection C on ξ is equivalent to give a vector subbundle

Hξ ⊂ Rξ which is supplementary to V ξ.

A linear R-connection (or a linear pseudoconnection of Wong [33]) on the vector

bundle ξ related to the AVB (θ,D) is a map ∇ : Γ(θ)×Γ(ξ) → Γ(ξ) such that the Koszul

conditions hold. As it is shown in [23, 25], a linear R-connection defines a homogeneous

R-connection.

Notice that (1) is a natural generalization of the diagram:

TM
q

−→ M

↑ π∗ ↑ π

TE
π̄

−→ E,

(2)

where the bottom and the top arrows were replaced by the canonical projections of certain

anchored vector bundles. This allows us to reconsider most of the basic constructions

related to tangent bundles.

A bracket (or a Lie map) on an AVB (θ,D) is a map [·, ·]θ : Γ(θ)×Γ(θ) → Γ(θ) which is

bilinear over IR, skew symmetric and [X, fY ]θ = (DX)(f)Y + f [X,Y ]θ, (∀)X,Y ∈ Γ(θ),

f ∈ F(M). The triple (θ,D, [·, ·]θ) is an almost Lie structure (ALS). The construction of

the exterior differential calculus on an ALS is performed in [24], where it is also proved

that there is a one to one correspondence between the ALS’s on a vector bundle θ and

the 1-degree derivations of the exterior algebra of the dual bundle θ∗. The 1-differential

dθ which corresponds to the ALS (θ,D, [·, ·]θ) is given by the following formula:

dθω (X0, . . . , Xp) =

p∑

i=0

(−1)i (DXi) (ω(X0, . . . , X̂i, . . . , Xp)) +

∑

0≤i<j≤p

(−1)i+j
ω
(
[Xi, Xj ]θ , X0, . . . , X̂i, . . . , X̂j, . . . , Xp

)
, (3)

(∀)X0, . . . , Xp ∈ Γ(θ), ω ∈ Ap(θ), for p ≥ 0,

where Ap(θ) is the exterior algebra of skew symmetric forms ω :Γ(θ)× · · · × Γ(θ)︸ ︷︷ ︸
p times

→

F(M). In the particular case p = 0, we have dθf(X) = (DX)(f), (∀)X ∈ Γ(θ), f ∈

F(M) = A0(θ).

An algebroid is an ALS (θ,D, [·, ·]θ) provided that [DX,DY ] = D([X,Y ]θ), (∀)X,Y ∈

Γ(θ), where the first bracket is the Lie bracket on X (M). A Lie algebroid is an algebroid

(θ,D, [·, ·]θ) such that the Jacobiator is null:

J (X,Y, Z) ≡
∑

cycl.

[[X,Yθ], Z]θ = 0, (∀)X,Y, Z ∈ Γ(θ).

Notice that an ALS (θ,D, [·, ·]θ), which defines the 1-derivation dθ, is:

- an algebroid iff d2θf = 0, (∀)f ∈ F(M);

- a Lie algebroid iff d2θf = 0 and d2θω = 0, (∀)f ∈ F(M), ω ∈ A1(θ), i.e. d2θ = 0.

But, for an arbitrary ALS, we have to remark that d2θ 6= 0.
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Let (θ,D, [·, ·]θ) be a given ALS and consider the AVB (θ ∧ θ,D), where D(X ∧ Y ) =

[D(X), D(Y )] −D([X,Y ]θ), (∀)X,Y ∈ Γ(θ). Let ξ = (E, π,M) be a vector bundle (or,

generally, a fibered manifold) over the same base. If {Lα
βγ} are the components of the

bracket [·, ·]θ in a local base of the sections of θ and {L̄a
βγ} are the components of an

R-connection on ξ, related to the AVB (θ ∧ θ,D) , then {L̄α
βγ = Lα

βγ, L̄
a
βγ, L̄

a
βc = L̄a

bc =

L̄α
βc = L̄α

bc = 0} are the components of an adapted bracket [·, ·]Rξ on Rξ. The ALS

(Rξ,∆, [·, ·]Rξ) on Rξ is called adapted. (See [24, 25] for more details.) In the particular

case of an algebroid (or a Lie algebroid), D = 0, thus {L̄a
βγ} are the components of a

mixed tensor and can be taken (canonically) zero.

In the sequel, using ALS’s, we extend the canonical symplectic form on the cotangent

space of a manifold to a presymplectic form on Rθ∗.

In this order of ideas, we recall some definitions. Given a vector bundle, one says that

a non-degenerate bilinear 2-form on the fibers is a Leibniz form and a skew symmetric

Leibniz form on the fibers is a presymplectic form; the vector bundle is called a symplectic

vector bundle (a Leibniz vector bundle) whenever it has a presymplectic form (a Leibniz

form) on fibers.

We start from a given AVB (θ,D), where θ = (R, q,M), and we consider the R-

anchored vector bundle Rθ∗ = (RR∗, s∗, R∗) of the dual bundle θ∗. In this case the

diagram (1) becomes:

R
q

−→ M

↑ t∗ ↑ π

RR∗ s∗

−→ R∗

. (4)

A canonical 1-form ω ∈ Γ(R∗θ∗) = A1(Rθ∗), where R∗θ∗ = (Rθ∗)∗, can be defined using

the formula ωu(Xu) = u(t∗u(Xu)), (∀)u ∈ R∗, Xu ∈ RR∗
u.

Using this canonical 1-form and an adapted ALS on Rθ∗ we prove the following result.

Proposition 2.1. If (θ,D, [·, ·]θ) is an ALS, then the 2-form Ω = dRθ∗ω ∈ A2(Rθ∗)

does not depend on the adapted ALS on Rθ∗ and it is non-degenerate, thus (Rθ∗,Ω) is a

symplectic vector bundle.

Proof. In an analogous way as in [24], we use the adapted local coordinates: (xi) on

M , (xi, Xα) on R, (xi, pα) on R∗, (xi, pα, X
β, Pγ) on RR∗ and (xi, pα, Uβ , Q

γ) on R∗R∗.

We denote by {ωβ, Sγ} and {sα} the local bases of Γ(R∗θ∗) and Γ(θ) respectively, which

correspond to the above coordinates and by {Lγ
αβ} the local functions on M defined by

the bracket on θ: [sα, sβ ]θ = L
γ
αβsγ . Then, using the local base {dRθ∗pα, ω

β} of A1(Rθ∗),

ω has the local form ω(xi,pα) = pαω
α and formula (3) gives dRθ∗ωα = − 1

2L
α
βγω

β ∧ ωγ . It

follows that

Ω = dRθ∗ω = dRθ∗pα ∧ ωα + pαdRθ∗ωα = dRθ∗pα ∧ ωα −
1

2
pαL

α
βγω

β ∧ ωγ , (5)

thus Ω is non-degenerate, since {dRθ∗pα ∧ dRθ∗pβ, dRθ∗pα ∧ ωβ, ωα ∧ ωβ} is a local base

in A2(Rθ∗).

In the particular case θ = τM we obtain that ω = pid x
i ∈ Γ(τ∗T ∗M) = X ∗(T ∗M)

is the canonical 1-form on the vector bundle τT ∗M . Then Ω = dω is the canonical

symplectic structure on T ∗M , which defines the well-known Poisson structure on T ∗M .
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In the case of an ALS (θ,D, [·, ·]θ), the presymplectic form Ω is related with an almost

Poisson structure on R∗, defined and studied below in section 4.

We recall now a very simple result from the linear algebra of symplectic vector spaces

[2, p. 40].

Lemma 2.1. Suppose that Ω : V × V → IR is a skew symmetric bilinear map which

is non-degenerate on the 2n-dimensional real vector space V . Let U ⊂ V be a lagrangian

subspace of V (i.e. ΩU×U = 0 and dimU = n) and W ⊂ V be another subspace which

is a complement to U . Then there is a lagrangian vector subspace canonically associated

with W and complement to U .

If θ is a symplectic vector bundle, we say that a lagrangian subbundle is a vector

subbundle µ ⊂ θ such that, at every point of the base, the fibre of µ is a lagrangian

subspace of the fibre of θ.

It is easy to see that the R-vertical subbundle V θ∗ is a lagrangian subbundle of the

symplectic bundle Rθ∗. We say that an R-connection on θ∗ is lagrangian if its horizontal

subbundle is lagrangian.

Using Lemma 2.1 we can state:

Proposition 2.2. Let (θ,D, [·, ·]θ) be an ALS and C be an R-connection on θ∗. There

is an R-connection C′ on θ∗, lagrangian with respect to Ω and canonically associated

with C.

In the case of the Lie algebroid θ = τM we obtain:

Corollary 2.1. If C is a connection on τ∗M , then there is a lagrangian connection

C′ on τ∗M , canonically associated with C.

For the given vector bundle θ = (R, q,M) the vertical bundle V θ is canonically

isomorphic with the induced bundle q∗θ and there is a canonical Lie algebroid structure

on V θ, where the anchor is the inclusion V θ →֒ τR and the bracket is induced by the

Lie bracket on X (R). If f : R → IR is a real function, then the vertical Hessian of f is

defined using local coordinates by:

Hessv(f)

(
Xa ∂

∂ya
, Y b ∂

∂yb

)
def
= XaY b ∂2f

∂ya∂yb
.

Notice that Hessv(f) is a symmetric bilinear form on the fibres of V θ ant its definition

does not depend on the adapted local coordinates.

A hamiltonian on the vector bundle θ∗ is a functionH : R∗ → IR which is differentiable

of class C∞ on R̃∗ = R∗\{0} (where {0} is the image of the null section) and continuous

on the null section. A regular hamiltonian on θ∗ is a hamiltonian H which has Hessv(H)

non-degenerate. According to [14, 15], a Hamilton space is a manifold M with a regular

hamiltonian H on the cotangent bundle τ∗M . In this case, a canonical connection can be

defined on T ∗M .

A lagrangian on the vector bundle θ is a function L : R → IR which is differentiable

of class C∞ on R̃ = R\{0} and continuous on the null section. A regular lagrangian on θ

is a lagrangian L which has Hessv(L) non-degenerate.
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Let (θ,D, [·, ·]θ) be an ALS and consider a real function f : R → IR. Using adapted

local coordinates, we define a linear vertical form ωf on Rθ by the formula ωf = ∂f
∂yα ω̄

α,

where {ωα, dRθy
β} is the dual base (of Γ(R∗θ)) of the adapted local base {sα,

∂
∂yα }. When

the adapted local coordinates change, we have ω̄α′

= gα
′

α ω̄α and ∂f

∂yα′ gα
′

α = ∂f
∂yα , thus ωf

is globally defined.

In the sequel we consider only adapted ALS’s on Rθ.

Proposition 2.3. If (θ,D, [·, ·]θ) is an ALS and L is a lagrangian on θ, then the

2-form ΩL = dRθωL ∈ A2(Rθ) does not depend on the adapted ALS on Rθ. If L is

a regular lagrangian, then ΩL is non-degenerate, thus (Rθ,ΩL) is a symplectic vector

bundle.

Proof. We have:

ΩL = dRθωL = dRθ

(
∂L

∂yα

)
∧ ωα +

∂L

∂yα
dRθω

α =

(
∂2L

∂yβ∂yα
dRθy

β +
∂2L

∂yα∂xi
Di

βω
β

)
∧ ωα −

1

2

∂L

∂yα
Lα
βγω

β ∧ ωγ =

∂2L

∂yβ∂yα
dRθy

β ∧ ωα +

(
∂2L

∂yγ∂xi
Di

β −
∂2L

∂yβ∂xi
Di

γ −
1

2

∂L

∂yα
Lα
βγ

)
ωβ ∧ ωγ .

Since {dRθy
α ∧ dRθy

β, dRθy
α ∧ωβ , ωα ∧ωβ} is a local base in A2(Rθ), it follows that

ΩL is non-degenerate.

In the particular case θ = τM , we have ωL = ∂L
∂yi dx

i, thus

ΩL = dωL =

(
∂2L

∂yj∂yi
dyj +

∂2L

∂xj∂yi
dxj

)
∧ dxi

is the well-known symplectic form on TM , defined by the regular lagrangian L. Notice

that the vertical subbundle V τM →֒ τTM is a lagrangian subbundle related to the

symplectic form ΩL.

Using Lemma 2.1 we can state:

Proposition 2.4. Let (θ,D, [·, ·]θ) be an ALS, L be a regular lagrangian and C be an

R-connection on θ. There is an R-connection C′ on θ which is lagrangian with respect to

ΩL and depends on C and L.

It is well-known that a lagrangian on a manifold gives rise to a canonical connection

called the Cartan-Kern connection (see for example [16, 17]). It also known that the

horizontal bundle of this connection is also a lagrangian subbundle, thus the Cartan-Kern

connection is a lagrangian connection. In the next section we extend these classical results

on vector bundles endowed with arbitrary ALS’s. It is interesting to remark that the

formalism concerning the holonomic mechanics (such as symplectic forms, (semi)sprays,

non-linear connections etc.), can be extended in the non-holonomic case of almost Lie

structures, too.

3. Canonical R-connections defined by lagrangians and hamiltonians. The

aim of this section is to show that a Cartan-Kern R-connection can be associated with
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a lagrangian on an ALS. This connection is a symplectic one and it corresponds to itself

when Proposition 2.4 is applied. We define also the Legendre transformation and we show

that its R-differential is a symplectic morphism, which sends the Kern-Cartan connection

to a symplectic R-connection on the dual.

An R-semispray on the AVB (θ,D) is a section S : R̃ = R\{0} → RR in the both

vector bundles of the double vector bundle (RR,R,R), as in diagram (2) for R = E;

it follows that t(S) = s(S). Using adapted local coordinates, the local form of an R-

semispray S is (xi, yα) → (xi, yα, yα, Sβ(xi, yα)). An R-spray is an R-semispray which is

2-homogeneous on the fibres of R̃. An R-(semi)spray is defined by a vector field S̄ ∈ X (R̃),

S̄ : R̃ → T R̃ such that q∗ ◦ S̄ = D̃, where D̃ is the restriction to R̃ of the anchor D and

q : R → M is the canonical projection of θ. According to [35], the vector field S̄ is called

an admissible vector field on R. Certainly, S and S̄ are related by S̄ = ∆ ◦ S, where

∆ : Rθ → τR is the canonical anchor on Rθ. Using S̄, an R-spray is defined in [29], where

it is called a spray-like.

There is well-known (see [6]) that a semi-spray on a vector bundle defines in a canonical

way a non-linear connection on the given vector bundle. Using local coordinates, a more

simplified description of this theory is given in [16, 17]. In an analogous way, in order

to avoid a more complicate exposition, we use adapted local coordinates. Despite of this

fact, the definitions of the considered objects are free of coordinates.

In the case of an ALS, the classical theory has a natural extension. Thus, an R-

semispray S on an ALS defines canonically an R-connection on θ. More exactly, using

local coordinates, if {Sα(xi, yβ)} are the local components of S, then it can be proved,

by a straightforward computation, that the local functions
{
1
2

(
− ∂Sα

∂yβ +Lα
βγy

γ
)}

are the

local components of an R-connection on θ.

Proposition 3.1. If (θ,D, [·, ·]θ) is an ALS and L : R → IR is a non-degenerate

lagrangian on R, then there is an R-connection canonically associated with L and called

the Cartan-Kern R-connection.

Proof. Let us denote by gαβ = ∂2L
∂yαyβ the local components of the metric tensor on

the R-vertical bundle of θ. Notice that these components have a tensorial meaning, since

the local sections
{

∂
∂yα

}
change according to the formula ∂

∂yα = gα
′

α (xi) ∂

∂yα′ .

By a straightforward computation, one proves that

Sα = gαβ
(
−

∂2L

∂yβ∂xi
Di

γy
γ +

∂L

∂xi
Di

β −
∂L

∂yµ
L
µ
βγy

γ

)
(6)

are the components of an R-semispray S on θ. Thus

Nα
β =

1

2

(
−
∂Sα

∂yβ
+ Lα

βγy
γ

)
(7)

are the components of an R-connection on θ, canonically associated with L.

In the particular case of a lagrangian on M , when Di
k = δik and Li

jk = 0, then the

R-connection defined above becomes the well-known Cartan-Kern non-linear connection.

Notice also that in the case of a 2-homogeneous lagrangian (i.e. L is a Finsler metric)

the R-semispray is 2-homogeneous, thus it becomes an R-spray.
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Proposition 3.2. The Cartan-Kern R-connection, defined by a non-degenerate la-

grangian L on R, is a symplectic R-connection according to the symplectic structure

defined on Rθ by L.

Proof. We use adapted local coordinates and we consider a new local base of Γ(Rθ∗)

(which is adapted to the Cartan-Kern R-connection): {ω̄α, δRθy
β = dRθy

β+Nβ
γ ω

γ}. This

local base of Γ(R∗θ) is the dual base of the adapted local base {s̄α = sα −Nβ
α

∂
∂yβ ,

∂
∂yα }

of Γ(Rθ), where {Nβ
α} are the local components of the R-connection C. The almost

symplectic form ΩL, is given by:

ΩL = dRθωL = dRθ

(
∂L

∂yα

)
∧ ω̄α +

∂L

∂yα
dRθω̄

α

=

(
∂2L

∂yβ∂yα
δRθy

β + Lβαω̄
β

)
∧ ω̄α −

1

2

∂L

∂yα
Lα
βγω̄

β ∧ ω̄γ

=
∂2L

∂yβ∂yα
δRθy

β ∧ ω̄α +
1

2

(
Lβγ −

∂L

∂yα
Lα
βγ

)
ω̄β ∧ ω̄γ ,

where

Lγα = ∆(s̄γ)

(
∂L

∂yα

)
= Di

γ

∂

∂xi

(
∂L

∂yα

)
−Nβ

γ

∂

∂yβ

(
∂L

∂yα

)
= Di

γ

∂2L

∂xi∂yα
−Nβ

γ

∂2L

∂yβ∂yα
.

Thus

ΩL = dRθωL =
∂2L

∂yβ∂yα
δRθy

β ∧ ω̄α +
1

2
Tβγω̄

β ∧ ω̄γ ,

where Tβγ = Di
β

∂2L
∂xi∂yγ −Nν

β
∂2L

∂yν∂yγ + 1
2

∂L
∂yν L

ν
βγ .

Using (6) and (7) (which give the components of the Cartan-Kern R-connection), by

a straightforward computation one proves that Tβα = Tαβ. Therefore, in the local base

{δRθy
α ∧ δRθy

β , δRθy
α ∧ ω̄β, ω̄α ∧ ω̄β} of A2(Rθ) we have:

ΩL = dRθωL =
∂2L

∂yα∂yβ
δRθy

α ∧ ω̄β .

Thus the conclusion follows.

The Legendre transformation associated with L is the function L : R̃ → R̃∗ defined

by

L (Xαsα) = Xα ∂L

∂yα
.

Then L can be regarded as well as defined on each fibre of R̃ by L = ∂L
∂yαω

α, where the

local base {ωα} of Γ(θ∗) is the dual base of the local base {sα} of Γ(θ). It is easy to see

that the local form of the Legendre transformation L is

(xi, yα) →

(
xi,

∂L

∂yα

)
. (8)

Notice that L is a fibered manifold morphism which is globally defined, but, generally it

fails to comes from a vector bundle morphism.

Taking into account the local form of the Legendre transformation, it follows that the

lagrangian L is regular iff its Legendre transformation L is a local diffeomorphism, when

L induces local diffeomorphisms on each fiber.
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The lagrangian L is L-regular if its Legendre transformation L is a global diffeomor-

phism of R̃ on R̃∗.

Consider now a hamiltonian H. The Legendre∗ transformation associated with H is

the function H : R̃∗ → R̃ defined by

H (uαω
α) = uα

∂H

∂pα
.

It can be regarded as well as defined on each fibre of R̃∗ by H = ∂H
∂pα

sα. The local form

of the Legendre∗ transformation H is

(xi, pα) →

(
xi,

∂H

∂pα

)
. (9)

Notice also that H is a fibered manifold morphism, but generally it fails to come from a

vector bundle morphism.

Taking into account the local form of the Legendre∗ transformation, it follows that

the hamiltonian H is regular iff its Legendre∗ transformation H is a local diffeomorphism,

when H induces local diffeomorphisms on each fibers.

The hamiltonian H is H-regular if its Legendre∗ transformation H is a global diffeo-

morphism of R̃∗ on R̃.

As in the classical case, the link between the Lagrange and Hamilton geometry is

given by the following result.

Proposition 3.3. a) If L : R → IR is an L-regular lagrangian, then H = (Z(L) −

L) ◦L−1 is an H-regular hamiltonian on θ∗, where Z ∈ X (R) is the Liouville vector field

and L : R → R∗ is the Legendre transformation.

b) If H : R∗ → IR is an H-regular hamiltonian, then L = (Ξ(H) − H) ◦ H−1 is an

L-regular lagrangian on θ, where Ξ ∈ X (R∗) is the Liouville vector field and H : R∗ → R

is the Legendre∗ transformation.

Proof. We prove only b), since the proof of a) can be performed in an analogous way.

The proof uses classic arguments.

We denote by K = H−1. In adapted local coordinates the local form of K is (xi, yα) →

(xi,Kβ(x
i, yα)). The condition K ◦ H = id

R̃∗
has the local form:

Kβ(x
i, Hµ(xk, pγ)) = pβ, (10)

where Hµ(xk, pγ) =
∂H
∂pµ

(xk, pγ). Differentiating with respect to pα the relation (10), it

follows that
∂Kβ

∂yδ (x
i, Hµ(xk, pγ)) ·

∂Hδ

∂pα
(xk, pγ) = δαβ , or

∂Kβ

∂yδ (x
i, Hµ(xk, pγ)) · h

αδ = δαβ ,

where hαδ = ∂2H
∂pα∂pδ

. Denote (hαβ) = (hαβ)−1; then

∂Kβ

∂yα
(xi, Hj(xk, pγ)) = hαβ(x

k, pγ) . (11)

The Liouville field has the local form Ξ = pβ
∂

∂pβ
. Using the definition of L it follows:

L(xi, yγ) = Kβ(x
i, yγ)

∂H

∂pβ
(xi,Kδ(x

i, yγ))−H(xi,Kδ(x
i, yγ)).
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We have

∂L

∂yα
=

∂Kβ

∂yα
∂H

∂pβ
+Kβ

∂Kγ

∂yα
∂2H

∂pγ∂pβ
−

∂Kβ

∂yα
∂H

∂pβ
= Kβ

∂Kγ

∂yα
∂2H

∂pγ∂pβ
= Kβhαγh

γβ = Kα,

thus using (11) we have ∂2L
∂yα∂yβ =

∂Kβ

∂yα = hαβ. It follows that

∂2L

∂yα∂yβ
(xi, yγ) = hαβ(x

i,Kδ(x
i, yγ)).

In the particular case of a Finsler metric on θ (i.e. the lagrangian L is 2-homogeneous),

we have Z(L) = 2 · L, thus H = L ◦ L−1. For a 2-homogeneous hamiltonian H on θ∗ we

obtain a similar result: Ξ(H) = 2 · H, thus L = H ◦ H−1.

Consider now the Legendre transformation L : θ → θ∗ (associated with a lagrangian

L), viewed as a fibered manifold morphism. Following [25], we can consider the R-

differential of L, denoted by LT : Rθ → Rθ∗ and given in local coordinates by:

L
T (xi, yα, Xβ, Y γ) =

(
xi,

∂L

∂yα
, Xβ,

∂2L

∂xj∂yγ
Dj

µX
µ +

∂2L

∂yµ∂yγ
Y µ

)
.

A symplectic morphism of two symplectic vector bundles ξ′ = (E′, π′,M ′) and ξ =

(E, π,M) is a vector bundle morphism (f0, f), where f0 : M ′ → M and f : E′ → E, which

is compatible with the presymplectic forms ω′ and ω respectively, i.e. ω′
f0(x′)(fx′(X ′),

fx′(Y ′)) = ω′
x′(X ′, Y ′), (∀)x′ ∈ M ′ and X ′, Y ′ ∈ E′

x′ . It is easy to check the following

result.

Proposition 3.4. Let (θ,D, [·, ·]θ) be an ALS on θ. Consider the canonical symplectic

structure on Rθ∗ and the symplectic structure on Rθ, defined by a regular lagrangian L

on θ. Then the R-differential LT : Rθ → Rθ∗ of the Legendre transformation of L is a

symplectic morphism.

Now we can prove the following result:

Proposition 3.5. If H is a regular hamiltonian on θ∗, then it defines canonically a

lagrangian R-connection on θ∗.

Proof. According to Proposition 3.3, there is a regular lagrangian L on θ, canonically

associated with H. Let Hθ ⊂ Rθ be the horizontal subbundle of the Cartan-Kern con-

nection defined by L. Then Hθ∗ = (LT )−1(Hθ) ⊂ Rθ∗ is a horizontal subbundle of an

R-connection on θ∗. Since Hθ ⊂ Rθ is a lagrangian subbundle and (LT )−1 is a symplectic

morphism it follows that Hθ∗ ⊂ Rθ∗ is a lagrangian subbundle.

4. Lagrange’s equations for almost Lie structures. In this section, a physical

interpretation concerning the constructions performed in the previous sections is given.

Using the formalism presented in this paper, we prove that the Lagrange equations for a

Lie algebroid, given in [35], keep the same form in the general case of an ALS. In order

to emphasize the link between the two approaches, two different proofs of the Lagrange

equations are given: the first is a direct one, using the previous constructions, and the

second one follows the Weinstein’s ideas, using an almost Lagrange Poisson bracket (see

[35]). Thus, our construction is a natural extension of the classical case and of the Lie

algebroids case, too.



228 M. POPESCU AND P. POPESCU

Let us consider an AVB (θ,D), where θ = (R, q,M). According to [35], a tangent

vector Xy ∈ TyR, y ∈ R, is admissible if q∗,y(X) = D(y). A vector field X ∈ X (R) is

admissible if it is admissible in every point of R. In adapted local coordinates, a vector

field X is admissible iff it has the local form (xi, yα) → (xi, yα, Dj
αy

α, F β(xi, yα)). It

is easy to see that X defines on θ an R-semispray by (xi, yα) → (xi, yα, yα, F β(xi, yα)).

Conversely, an R-semispray S : R → RR on θ defines an admissible vector fieldX = ∆◦S,

where ∆ : Rθ → τR is the canonical anchor considered before. Thus, an admissible vector

field is an equivalent way to define an R-semispray on an ALS.

Let S : R → RR be an R-semispray and γ be a integral curve of the correspond-

ing admissible vector field X = ∆ ◦ S. If S and γ have the local forms (xi, yα) →

(xi, yα, yα, Sβ(xi, yα)) and t → (γi(t), uα(t)) respectively, then the local form of the sec-

ond order differential equation defined by the semispray S is given by:

dγi

dt
= Di

α(γ
j)uα,

duα

dt
= Sα(γj , uβ). (12)

Theorem 4.1. Let us consider an ALS (θ,D, [·, ·]θ), a regular lagrangian L : R → IR

which define the semispray S and an integral curve γ of the admissible vector field X =

∆ ◦ S. If γ has the parametrization t → (γi(t), uα(t)), then the Lagrange equation hold:

d

dt

(
∂L

∂yα
(γi, uβ)

)
=

∂L

∂xi
Di

γ −
∂L

∂yµ
Lµ
ανu

ν . (13)

Proof. We have:

d

dt

(
∂L

∂yα
(γi, uβ)

)
=

∂2L

∂xi∂yα
dγi

dt
+

∂2L

∂yβ∂yα
duβ

dt
.

Using the local form (6) of the semispray defined by L and the equations (12), we obtain:

d
dt

(
∂L
∂yα (γ

i, uβ)
)
=

∂2L
∂xi∂yαD

i
βu

β + gαβg
βγ

(
− ∂2L

∂yγ∂xiD
i
µu

µ + ∂L
∂xiD

i
γ − ∂L

∂yµL
µ
βνu

ν
)
.

Thus the Lagrange equation (13) holds.

In the particular case of a Lie algebroid, the Lagrange equation (13) becomes the

Lagrange equation (2) from [35]. Notice that the Lagrange equation (13) is meaningful

even the lagrangian is not regular.

The Weinstein proof of Lagrange equation uses the Poisson bracket on the dual of

the Lie algebroid. It is interesting that this method can be used in order to prove the

Lagrange equation on an ALS, without major modifications, using instead an almost

Poisson bracket.

Let us call an almost Poisson bracket on a manifold M a skew-symmetric and bilinear

IR-map {·, ·} : F(M)×F(M) → F(M), which satisfies the Leibniz rule:

{f, f ′ · f ′′} = {f, f ′} · f ′′ + f ′ · {f, f ′′}, (∀)f, f ′, f ′′ ∈ F(M).

The Leibniz rule associates with every function f ∈ F(M) a vector field Xf ∈ X (M),

called the almost hamiltonian vector field of f . If the bracket satisfy the Jacobi condition,

then it is the well-known Poisson bracket.
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If (θ,D, [·, ·]θ) is a Lie algebroid, then a Poisson bracket can be defined on the dual

R∗. Every f ∈ F(M) and s ∈ Γ(θ) lift to f̃ , s̃ ∈ F(R∗), where f̃ = q∗f and s̃(ω) = ω(s),

(∀)ω ∈ R∗. According to [1], the Poisson bracket is defined by:

{f̃ , f̃ ′} = 0, {s̃, f̃} = ˜D(s)(f), {s̃, s̃′} = − ˜[s, s′]θ, (∀)f, f ′ ∈ F(M), s, s′ ∈ Γ(θ) (14)

(see also [4, 5, 35]). The local form of the bracket is given by:

{xi, xj} = 0, {xi, pα} = Di
α, {pα, pβ} = −L

γ
αβpγ , (15)

where (Di
α) and (Lγ

αβ) are the local components of the anchor D and of the bracket [·, ·]θ
respectively.

Let (θ,D, [·, ·]θ) be an ALS. Using the Leibniz rule, the formulas (14) extend to a map

{·, ·} : F(R∗)×F(R∗) → F(R∗), which is an almost Poisson bracket on R∗. Notice that

this almost Poisson bracket is a Poisson bracket on R∗ iff (θ,D, [·, ·]θ) is a Lie algebroid.

Using the presymplectic form Ω, given by formula (5), the bracket given by (14) can

be defined also as follows. Since the form Ω is non-degenerate on the fibers of Rθ∗, its

inverse on each fiber defines an isomorphism of the vector bundles Rθ∗ and (Rθ∗)
∗
= Rθ,

denoted as #Ω. If h
′, h′′ ∈ F(R∗), then

{h′, h′′} = Ω(#Ω(dRθ∗h′),#Ω(dRθ∗h′′)). (16)

Consider a regular lagrangian L : R → IR. An almost Lagrange Poisson structure on

R, which pulls back the almost Poisson structure on R∗ to an almost Poisson structure

on R, can be defined. This can be done using the bracket relations:

{xi, xj} = 0,

{
xi,

∂L

∂yα

}
= Di

α,

{
∂L

∂yα
,
∂L

∂yβ

}
= −L

γ
αβ

∂L

∂yγ

which use the Legendre transformation and the Leibniz rule.

The action A is the real function on R, defined by A(y) =< L(y), y >, where L is

the Legendre transformation. The energy E is E = A− L. In adapted local coordinates,

A = yi ∂L
∂yi and E = yi ∂L

∂yi − L. The almost lagrangian vector field associated with the

regular lagrangian L is the almost hamiltonian lagrangian of the energy E. The almost

lagrangian vector field XE has the local form
{
xi, E

}
∂

∂xi +{yα, E} ∂
∂yα . If γ is an integral

curve of this vector field, which has the local form t → (γi(t), uα(t)), then the following

equations follow: {
dγi

dt
=

{
xi, E

}
,

duα

dt
= {yα, E} .

(17)

Let us prove that the almost lagrangian vector field is admissible. Indeed, using the

first equation (17) and the bracket formula
{
xi,L

}
=

{
xi, yα

}
∂L
∂yα , we have:

dγi

dt
=

{
xi, E

}
=

{
xi, uα ∂L

∂yα
− L

}

=
{
xi, yα

} ∂L

∂yα
+

{
xi,

∂L

∂yα

}
uα −

{
xi,L

}
=

=

{
xi,

∂L

∂yα

}
uα = Di

αu
α,

thus the vector field is admissible.
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Let us prove the Lagrange equation (13) using the almost Lagrange Poisson bracket.

We have along γ :

d

dt

(
dL

dyα

)
=

{
dL

dyα
, E

}
=

{
dL

dyα
, yβ

∂L

∂yβ
− L

}

=

{
dL

dyα
, yβ

}
∂L

∂yβ
+ uβ

{
dL

dyα
,
∂L

∂yβ

}
−

{
dL

dyα
,L

}

=

{
dL

dyα
, yβ

}
∂L

∂yβ
− uβL

µ
αβ

dL

dyµ

−

{
dL

dyα
, xi

}
dL

dxi
−

{
dL

dyα
, yβ

}
dL

dyβ

= Di
α

dL

dxi
− uβL

µ
αβ

dL

dyµ
.

5. Homogeneous connections and R-sprays. A result from [29], which, in turn,

generalizes a theorem of Ambrose-Palais-Singer, is extended in this section. It refers to

the possibility to define an R-spray using a suitable homogeneous non-linear connection,

in the case when the anchor is injective on fibres. In [29] the R-spray S is differentiable

on the entire R, while in our paper S is differentiable on R̃ = R\{0}.

Let (θ,D) be a given AVB. In the sequel we denote by θ̃ = (R̃, q̃,M) the fibered

manifold obtained in an obvious way from R̃.

A connection on θ is a left splitting C : τR̃ → V θ̃ of the inclusion ı̃ : V θ̃ → τR̃; it is

homogeneous if it is compatible with the homothety on the fibers of R̃. For example the

R-spray can be defined by a Finsler metric L : R → IR, which is continuous on R and it

is smooth on R̃.

If C and C′ are two homogeneous connections, then there is a vector bundle map

m : q̃∗τM → V θ̃, which is 1-homogeneous on the fibers of R̃ (we say that m is a

homogeneous vector bundle morphism), such that C′−C = m◦ Π̃, where Π̃ : τR̃ → q̃∗τM

is the canonical projection. Conversely, if m : q̃∗τM → V θ̃ is a homogeneous vector

bundle morphism and C : τR̃ → V θ̃ is a homogeneous connection, then C′ = C +m ◦ Π̃

is also a homogeneous connection.

If C is a homogeneous connection and S : R̃ → RR̃ is an R-spray then β = C ◦∆◦S :

R̃ → V R̃ is 2-homogeneous on the fibers of R̃ (i.e. C ◦ ∆ ◦ S(λX) = λ2C ◦ ∆ ◦ S(X),

(∀)λ > 0, X ∈ Γ(θ)). If β = 0, then, according to [29], we say that the R-spray S is

geodesic related to the homogeneous connection C. Notice that for every homogeneous

connection C on θ there is a geodesic R-spray related to C. If the anchor D is injective

on fibres, then a similar relation between the integral curves of the regular distribution

defined by the image of D and the geodesics of the geodesic R-spray S, as performed in

[29], can be done. (See also [30] for a similar situation.) We do not use any curve here,

but we made this observation in order to motivate the name geodesic given to S.

A 2-homogeneous map β : R̃ → V R̃ defines a homogeneous vector bundle morphism

β̃ : V R̃ → V R̃ (i.e. it is homogeneous on the fibres of R̃), according to the formulas

(xi, ya, Y b) → (xi, ya, 1
2

∂2βb

∂yc∂yd y
cY d), where (xi, ya) → (xi, ya, βa(xi, ya)) is the local
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form of β; the 2-homogeneity of β implies that the local functions
{

∂2βb

∂yc∂yd (x
i, ya)

}
are

the local components of a bilinear map V R̃⊗ V R̃ → V R̃. We have that β̃ is related to β

by β = β̃(Z), where Z is the Liouville vector field.

Notice that a linear connection on θ defines and it is defined by a associated homo-

geneous connection C : τR → V θ.

The following result generalizes a Theorem of Ambrose-Palais-Singer.

Theorem 5.1 [29]. Assume that the anchor map is injective on fibers. Then for every

R-spray S : R → RR there exists a linear connection on θ such that S is the geodesic

R-spray related to the associated homogeneous connection.

In fact, taking into account the restrictive conditions of this theorem, the R-spray

S defines and it is defined by a linear R-connection on θ. The above Theorem can be

improved as follows.

Theorem 5.2. Assume that the anchor map is injective on fibers. Then for every

R-spray S : R̃ → RR̃ there exists a homogeneous connection C on θ, such that S is the

geodesic R-spray related to C.

Proof. Since the anchor D : θ → τM is injective on fibers, there is a left splitting

F : τM → θ, i.e. F ◦D = idR, where θ = (R, q,M). Thus q∗F : q∗τM → q∗θ ∼= V θ is

a left splitting of D∗ : V θ → q∗τM . Consider now an arbitrary homogeneous connection

C′ : τR̃ → V θ̃ (for example C′ can be defined by a linear connection on θ). Thus,

according to some observations made in the beginning of this section, β = C′ ◦∆ ◦ S is

2-homogeneous on the fibers of R̃ and it defines a homogeneous vector bundle morphism

β̃ : V R̃ → V R̃ such that β = β̃(Z), where Z is the Liouville vector field. Then C =

C′ − β̃ ◦ (q∗F ) ◦ Π̃ defines a homogeneous connection on θ, where Π̃ : τR̃ → q̃∗τM is the

canonical projection. Since (q∗F ) ◦ Π̃ ◦∆ ◦ S = (q∗F ) ◦ q∗D ◦ Z = Z and β̃(Z) = β, it

follows that C ◦∆ ◦ S = C′ ◦∆ ◦ S − β̃ ◦ (q∗F ) ◦ Π̃ ◦∆ ◦ S = C′ ◦∆ ◦ S − β = 0, thus S

is a geodesic R-spray related to C.
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