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Abstract. The group of lagrangian bisections of a symplectic groupoid extends the concept

of the symplectomorphism group. The flux homomorphism is a basic invariant of this group. It is

shown that this group is a regular Lie group. The group of exact (hamiltonian) bisections is also

studied. The existence of the flux homomorphism enables a characterization of exact isotopies.

1. Introduction. The aim of this note is to prove that bisection groups related to a

symplectic groupoid admit a structure of regular Lie group. In view of this fact we show

the existence of the flux homomorphism and some further consequences, e.g. concerning

exact bisection isotopies, quite similar to properties of the symplectomorphism group. We

indicate also the integrability of some Lie algebras associated with the Poisson structure

on the space of units of a symplectic groupoid.

Observe that the flux homomorphism for symplectic groupoids and some properties of

the group of lagrangian bisections have been studied independently by P. Dazord [5] and

P. Xu [22] without considering a Lie group structure on this group but rather exploiting

some “weak” Lie theories (see below). However, by means of a chart at e we are able to

obtain also the local form of the flux, which is essential for a characterization of exact

isotopies.

We will use the definition of a Lie group from the convenient setting of the infinite

dimensional Lie theory [8] due to A. Kriegl and P. Michor. The convenient setting is

based on Boman’s theorem which states that a mapping f : Rn → R is smooth whenever

f ◦ c is smooth for any smooth curve c : R → R
n. Consequently, a mapping between

two possibly infinite dimensional manifolds is smooth if, by definition, it sends smooth
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curves to smooth curves. Furthermore, for modelling manifolds a special type of LCTVS

is in use, namely so-called convenient vector spaces which fulfil some weak completeness

condition.

Recall that a convenient Lie group is called regular if for g = TeG there exists a

smooth bijective evolution map

evolrG : C∞(R, g) → C∞((R, 0), (G, e)).

The right logarithmic derivative δrG is then the inverse of evolrG. Frequently one encounters

the situation that there is a closed subgroup H ⊂ G and a Lie algebra h such that smooth

curves with values in h are sent bijectively by evolrG to isotopies with values in H . However

we would like to emphasize that such a bijection does not yield a Lie group structure onH .

It is a characteristic feature of the convenient setting that Diff(M) for M open is

still a regular Lie group, but its identity component consists only of compactly supported

diffeomorphisms. So in our results the assumption on the compactness of the space of

units (cf. [22]) is superfluous.

We would like also to indicate that there are some ”weak” settings of the infinite

dimensional Lie theory and that they usually do not correspond strictly to each other.

One example is the notion of diffeological groups due to J. M. Souriau [20]. A smooth

structure is there defined by establishing sets of local smooth mappings from R
n to G,

n = 1, 2, . . . , and by imposing some conditions on them. As another example of a ”weak”

setting can serve the concept of generalized Lie groups of H. Omori [11]. The definition

is based on a continuous mapping exp : G → g between a topological group G and a

topological Lie algebra g with some conditions which mimics essential properties of the

exponential map. A common feature of such theories is that any closed subgroup of a

Lie group is a Lie subgroup (which in a sense measures a lack of subtlety of them).

Consequently, analogues of the presented results in those settings are rather trivial.

2. Preliminaries. We adopt the notation for groupoids from [3] rather than from [9].

Definition. A groupoid structure on a set Γ is given by two surjections (the source

and target) α, β : Γ → M ⊂ Γ, by a multiplication m : Γ2 → Γ, where Γ2 = {(x, y) ∈

Γ × Γ : α(x) = β(y)}, and by an inversion i : Γ → Γ such that the following axioms are

fulfilled:

(Ass) If one of the products m(x,m(y, z)) and m(m(x, y), z) is defined then so is the

other and they are equal.

(Id) The products m(β(x), x), m(x, α(x)) are defined and equal to each other.

(Inv) m(x, i(x)) is defined and equal to β(x), and m(i(x), x) is defined and equal to

α(x).

The elements of M are called unities. For simplicity we write x.y for m(x, y) and x−1

for i(x). We wil use the symbol Γ ⇒M for the groupoid (Γ,M, α, β,m, i).

Next, a groupoid Γ is said to be a Lie groupoid if Γ is a smooth (C∞) manifold

(not necessarily separated), M is a separated paracompact submanifold, α and β are

submersions,m is a smooth mapping, and i is a diffeomorphism. Notice that Γ is separated

iff M is closed in Γ.
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For u ∈ M the set α(β−1(u)) = β(α−1(u)) is an orbit. The family of orbits forms a

generalized foliation FΓ of M (cf.[3]). Γ is called transitive if it has only one orbit M .

Examples. 1. Lie groups coincide with Lie groupoids with a unique unity.

2. Another extreme example are manifolds: Γ =M .

3. If α = β then for all u ∈ M the fiber α−1(u) carries a Lie group structure. Any

vector bundle is a Lie groupoid of this type.

4. For any setM put Γ =M×M , α((x, y)) = y, β((x, y)) = x,m((z, y), (y, x)) = (z, x)

and i((x, y)) = (y, x). We get the coarse groupoid with the space of units M ≃ ∆M .

5. Given a principal fiber bundle P (M,π,G) one defines the equivalence relation ∼

on P × P by (p1, p2) ∼ (q1, q2) iff ∃a ∈ Gpia = qi. Letting denote Γ = P × P/ ∼,

α([(p1, p2)]) = π(p2), β([(p1, p2)]) = π(p1), we get the gauge groupoid (with obvious m

and i). Γ is identified with the set of equivariant bundle morphisms over idM .

6. Assume that a Lie group G acts on a manifold M . Then we set: Γ = G × M ,

α((g, x)) = g.x, β((g, x)) = x, (g′, x′).(g, x) = (g′g, x), and (g, x)−1 = (g−1, g.x). We say

that Γ is a transformation groupoid.

7. For any Lie groupoid Γ the tangent space TΓ = (TΓ ⇒ TM, Tα, Tβ,⊕, I) possesses

a structure of Lie groupoid. Here the multiplication ⊕ is given by

X ⊕ Y =

(
d

dt
(x(t).y(t))

) ∣∣∣∣
t=0

,

where X = dx
dt |t=0, Y = dy

dt |t=0, α(x(t)) = β(y(t)), and the inversion IX = dx
dt x(t)

−1|t=0

if X = dx
dt |t=0.

A bisection of a Lie groupoid Γ is a submanifold B of Γ such that α|B and β|B are

diffeomorphisms onto M . Let Bis(Γ) be the set of all bisections. It is a group endowed

with the product law

B1.B2 = {x1.x2|α(x1) = β(x2)}.

Notice that bisections of the coarse groupoid Γ = M ×M (Ex. 4) coincide with diffeo-

morphisms on M , i.e. groups of bisections constitute a generalization of diffeomorphism

groups. Bis(Γ) has natural left and right representations in Γ given by

ψl : Bis(Γ) ∋ B 7→ ψl(B) := {x 7→ B.x} ∈ Diff(Γ),

ψr : Bis(Γ) ∋ B 7→ ψr(B) := {x 7→ x.B} ∈ Diff(Γ).

Next there are the left and right representations in the unit space (M,FΓ)

φl : Bis(Γ) ∋ B 7→ φl(B) := β ◦ ψl(B)|M ∈ Diff(M,FΓ),

φr : Bis(Γ) ∋ B 7→ φr(B) := α ◦ ψr(B)|M ∈ Diff(M,FΓ),

where Diff(M,FΓ) is the group of leaf preserving diffeomorphisms. Bis(Γ)c will stand

for the subgroup of all compactly controlled elements, that is, all B such that φl(B),

or equivalently φr(B), has compact support. In general, compactly controlled bisections

need not have compact support, e.g. in Example 3.

It is well known (J. Pradines [14], [15]) that to any Lie groupoid Γ ⇒M is assigned the

associated algebroid A(Γ), namely A(Γ) = (kerTβ, [[, ]], Tα), where [[, ]] is a Lie algebra



238 T. RYBICKI

bracket on Sect(kerTβ) introduced by means of left invariant vector fields and of the

identification TΓ|M/TM ≃ kerTβ.

Theorem 2.1. The groups Bis(Γ) and Bis(Γ)c are regular Lie groups with the same

Lie algebra Sectc(kerTβ).

The proof follows that for diffeomorphisms in [8], and makes use of the Tubular

Neighborhood Theorem and the identification TΓ|M/TM ≃ kerTβ. The topology of

Bis(Γ) is the identification topology by charts of a Lie group structure of Bis(Γ). In

particular, all bisections in the identity component are compactly controlled.

To show the regularity of Bis(Γ) for any u ∈M and B ∈ Bis(Γ) we denote by Bβ(u)

the unique point in B such that β(Bβ(u)) = u. Now given a smooth isotopy Bt in Bis(Γ)

(which is a concept without problem) with B0 = M there is a unique time-dependent

family of vector fields X̂t along B
β
t corresponding to Bt, i.e. for all u ∈M

(2.1) X̂t(B
β
t (u)) =

d

ds
Bβs (u)|s=t.

By definition, X̂t are tangent to the fibers of β.

Let u ∈ M and B ∈ Bis(Γ). We have a diffeomorphism σBu : β−1(u) → β−1(u) given

by

σBu (x) = x.Bβ(α(x)).

Then clearly σBu (u) = Bβ(u). By gluing-up the tangent mappings TσBu of diffeomorphisms

σBu we get the canonical identification

(2.2) σB : kerTβ ≃ TΓ|M/TM ≃ TΓ|B/TB.

We have also the canonical identification TBβ : TM ≃ TB. By combining it with (2.2)

we get

(2.3) σ̃B : TΓ|M ≃ TΓ|B,

for any B ∈ Bis(Γ). Now by using the identifications (2.2) for any smooth bisection

isotopy Bt with B0 =M we get a unique smooth curve Xt in Sectc(kerTβ) such that

(2.4) σBtXt = X̂t.

Then evolrBis(Γ)(Xt) = Bt, and δ
r
Bis(Γ)(Bt) = Xt. Clearly X̂t = Xt = X̃t on M .

3. Symplectic groupoids and algebroids

Definition. A Lie groupoid Γ equipped with a symplectic form ω is called symplectic

if the graph of multiplication graph(m) is a lagrangian submanifold of (−Γ)×Γ×Γ. Here

−Γ means the symplectic manifold (Γ,−ω).

Let us recall that a Poisson structure on M can be introduced by a bivector Λ such

that [Λ,Λ] = 0, where [., .] is the Schouten-Nijenhuis bracket (cf. [19]). Then the rank of

Λx may vary but it is even everywhere. We have the ’musical’ bundle homomorphism Λ♯

associated with Λ by

Λ♯ : T ∗M → TM, β(Λ♯α) = Λ(α, β).
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In case Λ is nondegenerate (i.e. rank(Λ) = dim(M)), we get a symplectic structure ω, and

Λ♯ is an isomorphism, denoted by ω♯. The distribution Λ♯(T ∗
xM), x ∈ M , integrates to

a generalized foliation such that Λ restricted to any leaf induces a symplectic structure.

This foliation is called symplectic and denoted by FΛ. If the dimension of its leaves is

constant, the Poisson structure Λ is called regular.

Proposition 3.1 [3]. If (Γ, ω) is a symplectic groupoid then:

(i) the inversion i is an antisymplectomorphism (i.e. i∗ω = −ω), and M is a la-

grangian submanifold;

(ii) the foliations by fibers of α and β are ω-orthogonal;

(iii) the space of units M admits a Poisson structure Λ such that its symplectic foli-

ation FΛ coincides with FΓ.

(iv) α (resp. β) is a Poisson morphism (resp. anti-morphism).

Such a groupoid will be usually denoted by (Γ, ω) ⇒ (M,Λ).

Observe that the set of all lagrangian bisections Bis(Γ, ω) is a sugroup of Bis(Γ). This

group has natural left and right representations in (Γ, ω):

ψl : Bis(Γ, ω) ∋ C 7→ ψl(C) = {x 7→ C.x} ∈ Symp(Γ, ω),

ψr : Bis(Γ, ω) ∋ C 7→ ψr(C) = {x 7→ x.C} ∈ Symp(Γ, ω).

Now the corresponding representations φl and φr take their values in Diff(M,Λ), the

automorphism group of (M,Λ).

Examples. 8. The coarse groupoid Γ = X×X with (−ω)⊕ω is a symplectic groupoid.

Then Bis(Γ, ω) = Symp(X).

9. IfM is a manifold then T ∗M , where m is the addition in fibers and πM = α = β, is

a Lie groupoid (Ex. 3). T ∗M endowed with the canonical symplectic form ωM = −dλM
is also a symplectic groupoid. In fact, the graph of m

graph(m) = {(x3, x2, x1) : x1 + x2 − x3 = 0}.

This is the image of N∆M , the normal bundle of the diagonal ∆M ⊂M3 in (T ∗M)3, into

(T ∗M)3 by the mapping (x3, x2, x1) 7→ (−x3, x2, x1). Notice that N∆M is lagrangian in

(T ∗M)3, and the mapping is symplectic. So T ∗M is indeed a symplectic groupoid.

10. Let Γ ⇒ M be a Lie groupoid. Then the cotangent space T ∗Γ equipped with

ωΓ = −dλΓ carries a structure of symplectic groupoid with N ∗M , the conormal bundle

of M in Γ, being the space of units. Here the multiplication, denoted ⊕ as in Ex. 7, is

determined by the equality

< ξ ⊕ η,X ⊕ Y >=< ξ,X > + < η, Y >, for X,Y ∈ TΓ, ξ, η ∈ T ∗Γ,

where <,> is the canonical pairing. Furthermore, the canonical projection p : T ∗Γ → Γ

is an epimorphism of groupoids.

11. If G is a Lie group, T ∗G admits two symplectic groupoid structures. The first one

is given as above, and the second is the structure of transformation groupoid (Ex. 6),

where G acts on g∗ by the coadjoint action. As these structures obey a compatibility

condition, T ∗G carries a structure of double groupoid, cf. [3].

Let us recall the following concept:
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Definition. A Lie algebroid (T ∗M, {, }, ρ) overM is called symplectic if the following

conditions are fulfilled:

(i) the (2,0)-tensor Λ given by Λ(α, β) = β(ρ(α)), ∀α, β ∈ Ω1
c(M), is skew-symmetric;

(ii) the space of all closed forms is a Lie subalgebra of (Sect(T ∗M), {, }).

Clearly there is a one-to-one correspondence between symplectic algebroids over M

and Poisson structures on M . Here ρ = Λ♯ and

{α, β} = ıΛ♯(α)dβ − ıΛ♯(β)dα+ dΛ(α, β).

Proposition 3.2. If (Γ, ω) ⇒ (M,Λ) is a symplectic groupoid then its associated

algebroid A(Γ) is identified with (T ∗M, {, },Λ♯), the symplectic algebroid of (M,Λ). In

particular, T ∗M ≃ TΓ|M/TM ≃ kerTβ.

It is remarkable that any Poisson manifold can be represented as the space of units

of a local symplectic groupoid, and that Proposition 3.2 still holds for local symplectic

groupoids. Consequently, there is a bijection between symplectic algebroids and local

symplectic groupoids [4], a local non-linear version of the third Lie theorem.

4. Bis(Γ, ω) as a Lie group. The construction of a chart for Bis(Γ, ω) at e = M

starts by an observation that there are no topological restrictions in a small neighborhood

of M in Γ.

Lemma 4.1 [3]. Let N be a not necessarily separated manifold, and let M ⊂ N be a

separated paracompact manifold such that a submersion p : N →M exists. Then there is

a neighborhood U of M in N which is separated and with p-connected fibers.

By a local addition we mean a diffeomorphism µ : T ∗M ⊃ U → V ⊂ Γ such that

µ(0u) = u, ∀u ∈M . In our case the existence of a local addition is ensured by the identi-

fication TΓ|M/TM ≃ T ∗M , and by the exponential mapping coming from a Riemannian

metric.

Lemma 4.2. LetM ⊂ N be a closed submanifold, and let ω0, ω1 be symplectic forms on

N which are equal along M . Then there is a diffeomorphism φ : U → V , where U, V are

open neighborhoods of M in N such that φ∗ω1 = ω0, φ|M = idM and φ∗|TN |M = idTN |M .

The proof uses Moser’s argument and the relative Poincaré lemma. For details, see

[8, 43.11].

Any θ ∈ Ω1(M) can be regarded as a section θ : M → T ∗M , and T ∗M is endowed with

ωM = −dλM , where λM is the canonical 1-form on T ∗M . The following is well-known.

Proposition 4.3. Under the above identification, θ∗λM = θ. Moreover, θ(M) is

lagrangian in T ∗M iff dθ = 0.

For the regularity of Bis(Γ, ω) the following is needed.

Lemma 4.4 [8, 38.7]. Let H be a topological Lie subgroup of a regular Lie group G.

If there are an open neighborhood U ⊂ G of e and a smooth mapping p : U → E, where

E is a convenient vector space, such that p−1(0) = U ∩H and p is constant on left cosets

Hg ∩ U , then H is regular.
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Theorem 4.5. Given a symplectic groupoid (Γ, ω) ⇒ (M,Λ), the group Bis(Γ, ω) is a

closed subgroup of Bis(Γ) and a regular Lie group. Its Lie algebra coincides with ZΩ1
c(M),

the subalgebra of closed 1-forms on M .

Proof. (See also [8], 43.12.) We fix a local addition µ : T ∗M ⊃ U0 → V0 ⊂ Γ.

We have two symplectic structures on U0, namely the canonical one ω0 = ωM |U , where

ωM = −dλM , and ω1 = µ∗ω. Each of them has the vanishing pullback on the zero section

0T∗M . In view of Lemma 4.2 we have to show that, by shrinking U0 and V0 and modifying

the ωi, we may get ω0|0T∗M
= ω1|0T∗M

.

To this end we observe that there is a vector bundle isomorphism ψ0 : T (T ∗M)|0T∗M

→ T (T ∗M)|0T∗M
over id0T∗M

such that ψ0 = idT (0T∗M ) and ψ0 sends ω0 to ω1 on

each fiber. Due to the partition of unity it suffices to construct ψ0 locally, and this is

accomplished by considering lagrangian subbundles Li complementary to T (0T∗M ) with

respect to ωi. When having ψ0 we define a diffeomorphism ψ : U1 → U2, where U1, U2 are

open neighborhoods of 0T∗M in T ∗M , such that Tψ|0T∗M
= ψ0. This is done by using a

tubular neighborhood of 0T∗M .

Now, in view of 4.2, we get a diffeomorphism φ of an open neighborhood of 0T∗M

in T ∗M onto another such a neighborhood which satisfies φ∗ω1 = ω0, φ|M = idM and

φ∗|T (T∗M)|0T∗M
= idT (T∗M)|0T∗M

. We set

ρ := µ ◦ φ : T ∗M ⊃ U → V ⊂ Γ.

Let U be a neighborhood of e = M in Bis(Γ) consisting of all submanifolds B ⊂ Γ

such that Bβ : M → Γ is compactly supported, Bβ(M) ⊂ V , and so small that µ−1(B)

is still the image of a β-section. We define a chart at e =M as follows

Φ : Bis(Γ) ⊃ U → V ⊂ Ω1
c(M)

(4.1) Φ(B) := ρ−1 ◦Bβ ◦ (π ◦ ρ−1 ◦Bβ)−1.

Due to Proposition 4.3 B ∈ U ∩Bis(Γ, ω) if and only if dΦ(B) = 0. Therefore (U ,Φ) is a

submanifold chart at e =M for Bis(Γ, ω) modelled on the subspace ZΩ1
c(M) of all closed

forms on M with compact support.

Next for arbitrary C ∈ Bis(Γ, ω) we get a submanifold chart at C as follows: UC :=

{B : B.C−1 ∈ U} and ΦC(B) := Φ(B.C−1). Thus Bis(Γ, ω) is a closed submanifold of

Bis(Γ) and a Lie group.

Let Ct be a smooth isotopy in Bis(Γ, ω) and Xt ∈ Sectc(kerTβ) be defined by (3.4).

By definition there is a time-dependent 1-form θt on M such that

(4.2) ı(Xt)ω|TΓ|M = θt.

Now if we set

ct := ψr(Ct) and X̃t := δrSymp(Γ,ω)(ct),

the smooth curve of vector fields X̃t on Γ satisfies (cf. (3.3) and (3.4)) σ̃CtXt = X̃t.

Clearly, X̃t are tangent to the β-fibers, and ct are β-fibers preserving. Also, ct|M = Cβt , ∀t.

We get the equality

(4.3) ı(X̃t)ω = β∗θt

on the whole Γ. Consequently, θt is closed, as β
∗θt is closed.
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Therefore, for any Bt ∈ C∞((R, 0), (Bis(Γ), e)) and Xt = evolrBis(Γ,ω)(Bt) we get by

the regularity of Symp(Γ, ω), and by Prop. 3.2, the equivalence

Bt ∈ C∞((R, 0), (Bis(Γ, ω), e)) ⇔ θt = ω♯Xt ∈ C∞(R, ZΩ1
c(M)),

which ensures that the Lie algebra of Bis(Γ, ω) is ZΩ1
c(M), that is, that the restriction

of evolrBis(Γ) to ZΩ
1
c(M) identifies with evolrBis(Γ,ω).

Finally, let us consider p : Bis(Γ) → Ω2(Γ) given by p(B) = ψr(B)∗ω − ω. It follows

from Lemma 4.4 that Bis(Γ, ω) is regular.

Since the neighborhood Φ(U) above can be chosen convex we can state the following

Corollary 4.6. The group Bis(Γ) is locally contractible and, consequently, locally

arcwise connected.

Remark. Plausibly the monomorphisms ψl and ψr enable to introduce a Lie group

structure on Bis(Γ, ω) in another way, namely as a Lie subgroup of Symp(Γ, ω). This

would make easier all reasonings concerning the flux and lagrangian bisection isotopies.

However, this is impossible unless Γ is compact. The reason is that no isotopy of the form

ct = ψlt(Ct) or ct = ψrt (Ct) is contained in Symp(Γ, ω)0 (in our framework). Nonetheless,

these representations are indispensable in section 5 and 6.

5. The flux homomorphism. The concept of the flux homomorphism was intro-

duced by E. Calabi [2]. It is a basic invariant not only of the symplectomorphism groups,

but also of some other transformation groups, cf. [17], [18]. The flux is still meaningful for

the group of Lagrangian bisections (cf. [5], [22]). In light of Theorem 4.5 one can obtain

the flux also in its local form which is necessary for a characterization of exact isotopies.

Let us fix the notation. For any locally arcwise connected topological group G its

universal cover group G̃ is the set of all pairs (g, {gt}), where {gt} is the homotopy

rel. endpoints class of the path gt in G such that g0 = e and g1 = g, endowed with the

pointwise multiplication. By G0 we denote the component of e in G. Clearly G̃0/π1(G0) =

G0, where π1 is the first homotopy group.

The multiplication in G̃ can be also thought of as the juxtaposition of representants.

The latter means that {gt}.{ft} = {gt ∗ ft} where

gt ∗ ft =

{
f2t, for 0 ≤ t ≤ 1

2

g2t−1 ◦ f1, for 1
2 ≤ t ≤ 1.

These multiplications are the same on the homotopy level.

Given a symplectic groupoid (Γ, ω) ⇒ (M,Λ), by using (4.2) and (4.3) we have the

mapping

C∞(R,Bis(Γ, ω)) ∋ Ct 7→ θt ∈ C∞(R, ZΩ1
c(M))

which induces the flux homomorphism.

Theorem 5.1. The mapping S̃Γ : ˜Bis(Γ, ω)0 → H1
c (M) defined by

S̃Γ({Ct}) =

[∫ 1

0

θtdt

]
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is a well-defined continuous epimorphism (with the abelian structure on H1(M)), called

the flux homomorphism for the symplectic groupoid Γ. If Γ, in addition, is compact then

the relation between S̃Γ and S̃, the flux for the symplectomorphism group Symp(Γ, ω),

can be visualized in the following commutative diagram

˜Bis(Γ, ω)0
ψr

//

S̃Γ

��

˜Symp(Γ, ω)0

S̃

��

H1
c (M)

β∗

// H1
c (Γ)

The proof is similar to that for symplectomorphisms. We emphasize the existence of

S̃Γ for an arbitrary symplectic groupoid (not necessarily with M compact as in [22]).

However, the diagram makes sense for Γ compact only, since otherwise no ct = ψr(Ct)

lies in Symp(Γ, ω)0.

Examples. 1. If Γ = M ×M is the coarse groupoid then S̃Γ is the usual flux for

Symp(M,ω).

2. If Γ = T ∗M then Bis(Γ) identifies with the space of all closed 1-forms, and S̃Γ

assigns to 1-form its cohomology class.

In analogy with the symplectic case (cf. [2,10]) Theorem 4.5 enables us to define the

local flux homomorphism.

Corollary 5.2. If ω is exact, i.e. ω = −dλ, then S̃Γ({Ct}) = [λ|TM−(Cβ1 )
∗λ] = [(λ−

c∗1λ)|TM ], where ct = ψr(Ct). In particular, the group of periods ΞΓ := S̃Γ(π1(Bis(Γ, ω)0))

is zero.

Proof. Let Xt = evolrBis(Γ,ω)(Ct), Xt = ω♯θt, ct = ψr(Ct), and X̃t := δrSymp(Γ,ω)(ct).

By composing each side of (4.2) with β∗ we get and

β∗θt = c∗tβ
∗θt = c∗tβ

∗ıXt
ω|TΓ|M = c∗t ıX̃t

ω

= −c∗t ıX̃t
dλ = −c∗tLX̃t

λ = −
d

dt
c∗tλ.

Hence ∫ 1

0

β∗θt = λ− c∗1λ

holds on Γ. By restricting this equality to TM we get
∫ 1

0

θt = (λ− c∗1λ)|TM ,

as β∗θ|TM = θ. In view of Cβt = ct|M this yields the required equalities.

Definition. Let Φ : U → V be a chart for Bis(Γ, ω) at e = M . If Ct is a lagrangian

isotopy such that Ct ∈ U for any t then

S̃Φ
Γ ({Ct}) := −[θ1] ∈ H1

c (M),

where θt = Φ(Ct). S̃Φ
Γ is called the local flux homomorphism for Bis(Γ, ω).

Proposition 5.3. S̃Φ
Γ does not depend on the choice of Φ and extends S̃Γ.
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Proof. Let Ct be a lagrangian bisection isotopy. Then θt is a lagrangian bisection

isotopy in U ⊂ T ∗M with respect to the canonical symplectic form ωM = −dλM . Let

S̃M be the flux homomorphism for the symplectic groupoid T ∗M (Ex. 9). Then

S̃M ({θt}) = S̃M ({Φ(Ct)}) = φ∗Ct
S̃Γ({Ct}) = S̃Γ({Ct}),

where φCt
= πM ◦ ρ ◦Cβt , by the homotopy invariance. But in view of Cor. 5.2 and Prop.

4.3 we get

S̃M ({θt}) = [λM |T (0T∗M ) − θ∗1λM ] = [0∗T∗MλM − θ∗1λM ] = −[θ1],

as required.

6. A characterization of exact isotopies. A lagrangian bisection isotopy Ct is

called exact if (Ct) = ω♯dut for some smooth curve ut in C
∞
c (M). Let Bisex(Γ, ω) be the

set of all exact lagrangian bisections. That is, by definition C ∈ Bisex(Γ, ω) iff it can be

joined with e =M by an exact lagrangian bisection isotopy.

Proposition 6.1. A lagrangian isotopy Ct is exact iff δrSymp(Γ,ω)(ct) = ω♯β∗(dut),

where ct = ψr(Ct).

Indeed, it follows from the fact that β is a Poisson anti-morphism.

Proposition 6.2. Bisex(Γ, ω) is a path-connected normal subroup of Bis(Γ, ω).

Proof. First we check that Bisex(Γ, ω)) is a group. Let Bt, Ct be exact isotopies, that

is (Bt) = ω♯(dvt), (Ct) = ω♯(dut) for some smooth families of C∞-functions ut and vt. If

ψr(Bt) = bt, and ψ
r(Ct) = ct then ψ

r(Bt.Ct) = ct ◦ bt. Is is apparent that

δrSymp(Γ,ω)(ct ◦ bt) = ω♯d(β∗ut + β∗vt ◦ c
−1
t ) = ω♯d.(β∗ut + β∗vt).

The second equality holds by β ◦ ct = β. In view of Prop. 6.1 Bt.Ct is still exact. To get

that C−1
t is exact we use the equality

δrSymp(Γ,ω)(c
−1
t ) = ω♯d(−ut ◦ ct) = ω♯d(−ut).

It follows that Bisex(Γ, ω) is a group. Finally, Bisex(Γ, ω) is normal since

δrSymp(Γ,ω)(b
−1 ◦ ct ◦ b) = ω♯d(ut ◦ b).

Now by repeating an argument for the symplectomorphism group (cf. [10]) it is possi-

ble to relate lagrangian bisection isotopies and S̃Γ. Consequently, under some assumption

it is introduced a regular Lie group structure on Bisex(Γ, ω) (Theorem 6.8).

Proposition 6.3. Ct is an exact isotopy iff S̃Γ({Cτ}0≤τ≤t) = 0, ∀t.

Proof. (⇒) It follows by the definition of S̃Γ. (⇐) Notice that Ct is exact for t small

due to the local definition of S̃Γ. Next we extend t by replacing successively φt by Ct.C
−1
t0

with t− t0 small enough.

Proposition 6.4. If C ∈ Bis(Γ, ω)0 then C is an exact bisection if and only if there

is a lagrangian bisection isotopy Ct with C0 = M and C1 = C such that S̃Γ({Ct}) = 0.

Furthermore, if S̃Γ({Bt}) = 0, Bt ∈ Bis(Γ, ω), then Bt is homotopic with fixed endpoints

to an exact isotopy.
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Proof. If C is exact then there is an exact isotopy Ct joining C withM . Then ı(Xt)ω =

dvt for vt ∈ C∞
c (M), where Xt = δrBis(Γ,ω)(Ct). Hence S̃Γ({Ct}) = 0 as [dvt] = 0.

In order to show the converse let Ct = evolrBis(Γ,ω)(Xt) be such that S̃Γ({Ct}) = 0,

that is
∫ 1

0
ι(Xt)ωdt = dv, v ∈ C∞

c (M). Here v can be chosen compactly supported as all

suppXt are in a fixed compact subset. Let Cvt be the isotopy of Xv = ω♯dv. It suffices to

consider (Cv1 )
−1.C instead of C. Thus, reparametrizing if necessary, we may assume that∫ 1

0
Xtdt = 0 as ı(

∫ 1

0
Xtdt)ω = 0.

Next we set Yt = −
∫ t
0
Xτdτ . Then if s 7→ Bst be the isotopy of Yt we get for Ĉt = B1

t .Ct

that C1 = Ĉ1 and S̃Γ({Ĉτ}0≤τ≤t) = 0 for any t. In fact,

S̃Γ({B
1
τ}0≤τ≤t) = S̃Γ({B

s
t }0≤s≤1) = [ı(Yt)ω]

in view of the homotopy rel. endpoints invariance. Therefore

S̃Γ({Ĉτ}0≤τ≤t) = S̃Γ({B
1
τ}0≤τ≤t) + S̃Γ({Cτ}0≤τ≤t)

= [ı(Yt)ω] +

[ ∫ t

0

ı(Xτ )ωdτ

]
= 0.

By Prop. 6.3 this proves the first assertion, and the proof of the second can be deduced

from the above argument.

Let ΞΓ = S̃Γ(π1(Bis(Γ, ω))). In the symplectic case ΞΓ is called the group of periods.

Observe that ΞΓ is countable since π1(Bis(Γ, ω)) is countable. This follows from the fact

that Bis(Γ, ω) has the homotopy type of a countable simplicial complex ([12]).

Notice that the form θ1 = Φ(C1), where Φ : U → V is a chart for Bis(Γ, ω) at e, need

not be exact even if Ct is an exact isotopy and C1 ∈ U . However we have the following

Proposition 6.5. C ∈ Bis(Γ, ω) ∩ U if and only if [Φ(C)] ∈ ΞΓ.

Proof. (⇒) We define the lagrangian bisection isotopy Bt by Φ(Bt) = tθ, where

θ = Φ(C) (B1 = C). But there is an exact isotopy Ct joining C = C1 with M = C0.

Then for the loop C1−t ∗ Bt, one gets [θ] = −S̃Γ({Bt}) = S̃Γ({Ct}) − S̃Γ({Bt}) =

−S̃Γ({C1−t ∗Bt}) ∈ ΞΓ.

(⇐) We use Prop. 6.4. There is a lagrangian bisection loop Ct such that S̃Γ({Ct}) =

−[Φ(C)]. Then S̃Γ({Dt}) = 0, where Dt = Bt ∗Ct and Φ(Bt) = [(1− t)Φ(C)]. Therefore

Dt is homotopic to an exact bisection isotopy joiningM with C. Thus C ∈ Bisex(Γ, ω).

Proposition 6.6. Every smooth curve Ct in Bisex(Γ, ω) is an exact bisection isotopy.

Proof. For t ≤ ǫ one has Ct ∈ U . It follows by Prop. 6.5 that [θt] ∈ ΞΓ for small t,

where θt = Φ(Ct). This means that [θt] = 0 as θ0 = 0 and ΞΓ is countable. Therefore we

have S̃Γ({Cτ}0≤τ≤t) = 0 for t ≤ ǫ. Thanks to Prop. 6.3 the Ct is an exact isotopy for

t ≤ ǫ. By taking Ct.C
−1
ǫ instead of Ct this procedure extends the argument for all t.

Since Bis(Γ, ω)0 = ˜Bis(Γ, ω)0/π1(Bis(Γ, ω)0) the flux S̃Γ induces another homomor-

phism SΓ : Bis(Γ, ω)0 → H1
c (M)/ΞΓ.

Corollary 6.7. Ker(SΓ) coincides with Bisex(Γ, ω).
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Indeed, it follows from the local form of the flux and Prop. 6.5 for any C sufficiently

near M . This can be extended to the whole Bis(Γ, ω)0 by the same argument as in

Prop. 6.4.

Now we are in a position to define a Lie group structure on Bisex(Γ, ω).

Theorem 6.8. If ΞΓ ⊂ H1
c (M) is discrete (or 0 is an isolated point in ΞΓ) then

Bisex(Γ, ω) is a regular Lie group with BΩ1
c(M), the space of exact compactly supported

1-forms on M , as its Lie algebra.

Proof. Assume the notation of the proof of Theorem 4.5, and let

Φ : Bis(Γ) ⊃ U → V ⊂ Ω1
c(M)

be a chart at e given by (4.1). If C ∈ Bisex(Γ, ω) ∩ U then θ = Φ(C) ∈ ZΩ1
c(M)

and [θ] ∈ ΞΓ (Prop. 6.5). By the assumption, taking possibly a smaller U , we have

C ∈ Bisex(Γ, ω)∩U if and only if θ = Φ(C) is exact. Proceeding as in the proof of 4.5 we

see that Bisex(Γ, ω) is a submanifold of Bis(Γ, ω), and since the composition and inversion

are smooth by restriction, it is a Lie group.

By definition of Bisex(Γ, ω) the restriction of evolrBis(Γ,ω) to Bis
ex(Γ, ω) is evolrBisex(Γ,ω).

Thus BΩ1
c(M) is identified as the Lie algebra of Bisex(Γ, ω). Finally, setting p = SΓ it

follows from Cor. 6.7 and Lemma 4.4 that Bisex(Γ, ω) is regular.

7. Final remarks. The third theorem of Lie asserts that any finite dimensional

Lie algebra is actually the Lie algebra of a Lie group. Since the paper by van Est and

Korthagen [6] it is well known that, in general, this theorem is no longer true in the infinite

dimensional case. Nevertheless, there are several generalizations of the third Lie theorem.

First of all, some basic facts can be carried over from Lie groups to Lie or symplectic

groupoids, cf. [14], [15], [4]. Next, the third Lie theorem still holds for remarkable infinite

dimensional Lie algebras, e.g. the Poisson algebra of any symplectic or locally conformal

symplectic manifold ([1], [7]).

Notice that Theorem 4.5 and 6.8 can be interpreted as follows. A Poisson manifold

(M,Λ) is called integrable if it can be realized as the space of units of a symplectic

groupoid. Given a symplectic groupoid (Γ, ω) ⇒ (M,Λ) such that ΞΓ = π1(Bis(Γ, ω)0) is

discrete, the exact sequence of Lie algebras

0 → BΩ1
c(M) → ZΩ1

c(M) → H1
c (M) → 0,

where H1
c (M) is regarded as an abelian Lie algebra, can be integrated to the exact

sequence of regular Lie groups

1 → Bisex(Γ, ω) → Bis(Γ, ω)0 → H1
c (M)/ΞΓ → 0.

In [19] it has been shown that for any (regular) foliation or any Poisson structure with

regular symplectic foliation the related Lie algebras of vector fields (tangent to the folia-

tion) can be integrated analogously as in the transitive case. Unfortunately these results

do not encompass the singular case. Let us also remark that the regular transitive case

cannot be treated in terms of groupoid bisections, i.e. the leaf preserving diffeomorphisms

cannot be expressed, in general, in terms of bisections. The reason is that in view of the

”holonomic imperative” of a groupoid over a foliated manifold ([16], [13]) to any bisection
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of such a groupoid is attached its holonomy class. Consequently, Lie groups considered in

[19] are modelled on the space of foliated 1-forms, rather than on the space of ordinary

1-forms.

References

[1] A. Banyaga and P. Donato, Some remarks on the integration of the Poisson algebra, J.

Geom. Phys. 19 (1996), 368–378.

[2] E. Calabi, On the group of automorphisms of a symplectic manifold, in: Problems in

Analysis (symposium in honour of S. Bochner), Princeton University Press, 1970, 1–26.

[3] A. Coste, P. Dazord and A. Weinstein, Groupoides symplectiques, Publ. Dpt. Math. Univ.

C. Bernard - Lyon 1 2/A (1987), 1–62.
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geometry, II, Travaux en Cours, Hermann, Paris, 1984, 73–119.

[21] I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Math. 118,
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