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Abstract. The exposition is an invitation for the reader to explore a field where Lie al-

gebra theory and operator theory are interacting. The discussion concerns some of the main

achievements related to applications of Lie algebras to the problem of finding satisfactory

non-commutative versions of the several variable spectral theory constructed by J. L. Taylor

in the seventies. Virtually everybody could understand what is going on, in view of the illustrat-

ing examples developed in a self-contained manner.

Introduction. If T is a linear operator on a complex finite-dimensional vector space

X , then any triangularization of T provides a ready computation of its spectrum:

if T =




λ̃1(T ) *

. . .

0 λ̃N (T )



 , then σ(T ) = {λ̃i(T ) | i = 1, . . . , N}. (0.1)

According to the classical Lie’s theorem, a simultaneous triangularization (or, equiva-

lently, a nest of invariant subspaces X0  X1  · · ·  XN ) is available for all operators in

a solvable Lie subalgebra G of End(X ). In particular, the operator T may be thought of

in (0.1) as running through the solvable Lie algebra G. Then λ̃i(·) are linear functionals

on G vanishing on commutators, i.e., they are characters of G. According to (0.1), the set

Σ(G) := {λ̃i(·) | i = 1, . . . , N} (0.2)

can be thought of as a spectrum of the solvable Lie algebra G ⊆ End(X ) and we have

σ(T ) = {λ̃(T ) | λ̃ ∈ Σ(G)} for T ∈ G. (0.3)

Let us note also that the nilpotent operators in G constitute an ideal of G.

Now, it is natural to ask the following question.
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Question. To what extent do such structures occur on infinite-dimensional spaces X ?

As we shall see below, the corresponding extent is remarkably large. The structures

we are going to discuss are the following: nests of invariant subspaces and their relation

to spectral theory (Section 1), joint spectra (Section 2), ideals of “special” operators and

spectra for locally solvable Lie algebras of operators (Section 3).

Acknowledgments. It is a pleasure to thank the organizers of this stimulating work-

shop for their hospitality and support. I also thank Bebe Prunaru for drawing my atten-

tion to the paper [Re97].

1. Invariant subspaces and spectra. The aim of this section is to discuss simul-

taneous triangularization for operators belonging to a Lie subalgebra G of B(X ). (From

now on we denote by X an arbitrary complex Banach space and by B(X ) the set of all

bounded linear operators on X .) Simultaneous triangularizability of G means existence

of a maximal nest N of closed subspaces of X that are invariant to all operators in G.

The maximality property can be expressed by the following two conditions:

1. {0},X ∈ N ,

2. if Y ∈ N then dim(Y/Y−) ≤ 1, where Y− denotes the closed subspace spanned by

the union of all Z ∈ N with Z  Y.

As the situation dimX <∞ shows, when considering simultaneous triangularizability

for Lie algebras of operators, we have to content ourselves with Lie algebras satisfying

solvability type conditions. Another difficulty, that is however hidden on finite-dimen-

sional spaces, is that not any bounded linear operator on a Banach space X has invariant

subspaces different from {0} and X . (By invariant subspace we always mean closed invari-

ant subspace.) Let us state one of the last results obtained in this connection (see [Re97]).

1.1. Theorem. If X equals the Banach space l1 of all absolutely summable sequences,

then there exists T ∈ B(X ) with the only invariant subspaces {0} and X , and moreover

with σ(T ) = {0}.

Nevertheless, positive results concerning existence of nontrivial invariant subspaces

are available for various classes of operators (see e.g. [CE]). However, recall that we are

looking for (nests of) invariant subspaces only for a specific purpose, namely for comput-

ing spectra (see (0.1)). Before stating the pertinent classical facts in this connection, let

us recall how the “diagonal entries” of an operator T ∈ B(X ) can be naturally defined

with respect to any maximal nest N of invariant subspaces for T . Namely, for Y ∈ N , set

λ̃Y(T ) = 0 if Y = Y
−; otherwise dim(Y/Y−) = 1, so the operator induced by T on Y/Y−

is the multiplication by a complex number, which we denote by λ̃Y(T ). Then we can think

of {λ̃Y(T )}Y∈N as the family of “diagonal entries” of T with respect to N . However, note

that the spectrum of T cannot always be computed by means of these “diagonal entries”:

1.2. Example. Let us consider the bounded linear operators S, V on X = L2[0, 1],

defined by

S : f(t) 7→ tf(t), V : f(t) 7→

t∫

0

f(s)ds.
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That is, S is the multiplication operator by the identical function on [0, 1], while V is the

Volterra integration operator. Furthermore, let us consider the following closed subspaces

of X :

Yt = {f ∈ L
2[0, 1] | f = 0 a.e. on [0, t]}, (0 ≤ t ≤ 1).

It is easily seen that N := {Yt | 0 ≤ t ≤ 1} is a nest of invariant subspaces for both S

and V . Moreover Y− = Y for each Y ∈ N , so N is maximal and

λ̃Y(S) = λ̃Y(V ) = 0 whenever Y ∈ N .

On the other hand, it is well-known that

σ(S) = [0, 1] and σ(V ) = {0}

(see e.g. [Ha82]). Consequently,

σ(S) 6= {λ̃Y(S) | Y ∈ N} while σ(V ) = {λ̃Y(V ) | Y ∈ N}.

In the above example, what is the property of V that is not met by S? It is going on

compactness: V is compact, while S is not. More precisely, the following classical result

due to J. Ringrose holds (see [Ri71] and also [Dw78]), thus extending (0.1) to general

compact operators:

1.3. Theorem. If T ∈ B(X ) is a compact operator and N is a maximal nest of

invariant subspaces for T , then

σ(T ) = {λ̃Y(T ) | Y ∈ N}.

(For the sake of completeness, let us recall that for every compact operator there

exists a maximal nest of invariant subspaces, cf. [AS54]. See also [Lo73].)

So far for a single compact operator. What about invariant subspaces for Lie algebras

of compact operators? Fortunately, several successful researches were carried out in this

direction, see e.g. [Wo77], [Sa83], [ST99]. It is known for example that in some cases even

the presence of a nonzero compact operator in a Lie algebra produces invariant subspaces

for the whole algebra (see Theorem 7′ in [Sa83]). We are going to state a fact (Theorem

1.5 below) that is fairly general for our purposes and unifies some results of [Wo77] and

[ST99]. First recall the following definition (see e.g. [St75] or [BS01]):

1.4. Definition. The Lie algebra G is locally solvable (respectively locally finite)

if it possesses a family {Gi}i∈I consisting of solvable (respectively finite-dimensional)

subalgebras such that

(i) for every i1, i2 ∈ I there exists i3 ∈ I such that Gi1 ∪ Gi2 ⊆ Gi3 ,

(ii) G =
⋃
i∈I Gi.

1.5. Theorem. Every locally solvable Lie subalgebra G of B(X ) consisting of compact

operators is simultaneously triangularizable.

Proof. Let A be the norm closure of the associative subalgebra of B(X ) generated by

G. According to [Mu82], it suffices to prove that the Banach algebra A is commutative

modulo its Jacobson radical. To this end, let A,B,C ∈ A arbitrary. We have to prove that

[A,B]C is a quasinilpotent operator. (Since C is arbitrary and A is a Banach algebra,

this implies that each commutator [A,B] belongs to the Jacobson radical of A.)
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By the definition of A, there exist sequences {kn}n≥1, {ln}n≥1, {mn}n≥1 of positive

integers and sequences {pn}n≥1, {qn}n≥1, {rn}n≥1 such that

(a) for each n ≥ 1, pn, qn and rn are complex coefficients polynomials in kn, ln, mn
non-commuting variables, respectively,

(b) for every n ≥ 1, there exist A
(n)
1 , . . . , A

(n)
kn
, B
(n)
1 , . . . , B

(n)
ln
, C
(n)
1 , . . . , C

(n)
mn ∈ G such

that, if An := pn(A
(n)
1 , . . . , A

(n)
kn
), Bn := qn(B

(n)
1 , . . . , B

(n)
ln
), Cn := rn(C

(n)
1 , . . . , C

(n)
mn),

then

A = lim
n→∞
An, B = lim

n→∞
Bn, C = lim

n→∞
Cn

with respect to the norm operator topology on B(X ).

Now, since G is locally solvable, for each n ≥ 1 there exists a solvable subalgebra Gn
of G such that A

(n)
1 , . . . , A

(n)
kn
, B
(n)
1 , . . . , B

(n)
ln
, C
(n)
1 , . . . , C

(n)
mn ∈ Gn. Since Gn is a solvable

Lie algebra of compact operators, it is simultaneously triangularizable by [ST99]. Then

the closed associative subalgebra generated by Gn is commutative modulo its Jacobson

radical (see [Mu82]); in particular, [An, Bn]Cn is a compact quasinilpotent operator. By

the continuity of the spectrum on compact operators (see [Ne51]), it then follows that

the operator

[A,B]C (= lim
n→∞
[An, Bn]Cn)

is quasinilpotent.

The above theorem allows us to use the same maximal nest of invariant subspaces

to define “diagonal entries” for all operators in a locally solvable Lie algebra of compact

operators. That is, a set of characters as in (0.2) can be constructed for every Lie algebra

of this type:

1.6.Corollary. If G is a locally solvable Lie subalgebra of B(X ) consisting of compact

operators, then it possesses maximal nests of invariant subspaces. If N is such a nest,

then

ΣN (G) := {λ̃Y(·) | Y ∈ N}

is a set of characters of G such that

σ(T ) = {λ̃(T ) | λ̃ ∈ ΣN (G)} for T ∈ G. (1.1)

Moreover, if L is a subalgebra of G, then it is locally solvable and

ΣN (L) = {λ̃|L | λ̃ ∈ ΣN (G)}. (1.2)

Proof. That each λ̃Y(·) is linear and vanishes on commutators is an easy consequence

of the definition of the “diagonal entries”, just as in the finite-dimensional case. The

equality in (1.1) follows by Theorem 1.3, while (1.2) is obvious.

Now, the set of characters ΣN (G) in Corollary 1.6 could be thought of as a spectrum

of G only if it does not depend upon the choice of N . How can the dependence upon

the nest of invariant subspaces be avoided? What about Lie algebras of more general

operators, where invariant subspaces do not exist at all (cf. Theorem 1.1)?

Actually, these questions are answered only for the locally solvable Lie algebras that

are moreover locally finite (see Theorem 3.7 and Remarks 3.8 and 3.9 below). The way to
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get to the answer is the following: First treat the case of nilpotent finite-dimensional Lie

algebras. (We shall do this in Section 2.) Then consider Cartan subalgebras of solvable

finite-dimensional Lie algebras, for reducing the problem from the solvable case to the

nilpotent one; finally, pass to direct limits for reaching the locally solvable, locally finite

case (see Section 3).

2. Joint spectra and nilpotent Lie algebras. The aim of this section is to out-

line some basic facts related to the notion of joint spectrum within the framework of

finite-dimensional nilpotent Lie algebras.

The first satisfactory notion of joint spectrum for commuting tuples of bounded linear

operators was introduced by J. L. Taylor in [Ta70]; the advantage of this spectrum is that

it reflects the action of operators on the corresponding Banach space, and not only the fact

that they belong to a certain Banach algebra (see also Theorem 2.4 below). The notion

introduced by J. L. Taylor involves homological algebra constructions going back to the

work of J. L. Koszul [Ko50] (see Definition 2.1 below). In the case of a single operator

T ∈ B(X ), these constructions lead to the usual spectrum σ(T ), namely λ ∈ σ(T ) if and

only if the sequence

0← X
λ idX −T←− X ← 0

is not exact, where idX denotes the identical operator on X .

Let us remark that there is a natural one-to-one correspondence between commuting

n-tuples T = (T1, . . . , Tn) ∈ B(X )n and representations ρ : E → B(X ) of an Abelian

n-dimensional Lie algebra E , namely by

Ti = ρ(ei), i = 1, . . . , n,

where {e1, . . . , en} is a fixed basis of E . In particular, Taylor spectral theory can be

thought of as a spectral theory for Banach space representations of Abelian finite-dimen-

sional Lie algebras. From this point of view, the construction of a spectral theory for

representations of more general (non-Abelian) Lie algebras arises as a natural problem.

Although it had been already suggested by J. L. Taylor himself (see e.g. [Ta73]), the first

significant step towards solving it could be done much later, namely by A. S. Fainshtein

in [Fa93] in the case of finite-dimensional nilpotent Lie algebras.1) To describe the corre-

sponding results, we need the following definitions.

2.1. Definition (cf. [Ko50]). Let E be a Lie algebra and ρ : E → B(X ) be a repre-

sentation. The Koszul complex of ρ is

Kos(ρ) : 0← X
α1←−X ⊗ E

α2←−· · ·
αk←−X ⊗ ∧kE

αk+1
←− · · · ,

where for n ≥ 1 the operator αk is defined by

αk(x⊗ e) =
k∑

i=1

(−1)i−1ρ(ei)x⊗
i

ê+
∑

1≤i<j≤k

(−1)i+j−1x⊗ [ei, ej ] ∧
i,j

ê

1) See [BS01] for other references and historical comments.



18 D. BELTIŢĂ

for x ∈ X , e = e1 ∧ · · · ∧ ek ∈ ∧kE , where
i

ê means the omission of the factor ei (and

similarly for
i,j

ê ).

2.2. Definition (cf. [Ot97], [BS01]). Let E be a Lie algebra and

Ê = {λ̃ : E → C linear | λ̃|[E,E] = 0}

the set of characters of E . Then the spectrum of a representation ρ : E → B(X ) is defined

by

σ(ρ) := {λ̃ ∈ Ê | Kos(ρ− λ̃) is not exact},

where ρ− λ̃ : E → B(X ) is the representation defined by e 7→ ρ(e)− λ̃(e) idX .

2.3.Definition (cf. [Fa93]). Let T = (T1, . . . , Tn) ∈ B(X )
n. For every λ= (λ1, . . . , λn)

∈ Cn, let idE(T−λ) : E(T − λ) → B(X ) denote the identical representation of the Lie

subalgebra E(T − λ) generated by the operators T1 − λ1 idX , . . . , Tn − λn idX ∈ B(X ).

Then the (Taylor type) joint spectrum of T is defined by

σ(T ) := {λ ∈ Cn | Kos(idE(T−λ)) is not exact}.

The connection between Definitions 2.2 and 2.3 is provided by the following result

due to A.S. Fainshtein (see Theorem 2.3 in [Fa93]; cf. also Theorem 1 in §26 of [BS01]).

2.4. Theorem. Let T = (T1, . . . , Tn) ∈ B(X )n be such that the Lie subalgebra of B(X )

generated by T1, . . . , Tn is nilpotent. Then for every representation ρ : E → B(X ) of a

finite-dimensional nilpotent Lie algebra E such that T1, . . . , Tn ∈ ρ(E) we have

σ(T ) = {(λ̃(e1), . . . , λ̃(en)) | λ̃ ∈ σ(ρ)},

where e1, . . . , en ∈ E are arbitrary elements such that ρ(ei) = Ti for i = 1, . . . , n.

A basic property of the Taylor spectrum for commuting tuples is the spectral mapping

property with respect to the analytic functional calculus (see e.g. [Ta72] and [Va82]). It

is a remarkable fact that, within the framework of nilpotent Lie algebras, the Taylor type

spectrum introduced in Definition 2.3 also has a spectral mapping property with respect

to the enveloping algebras, thought of as algebras of polynomials in non-commuting vari-

ables (see [Fa93] and also [BS01]).1) A consequence of this polynomial spectral mapping

theorem is the following projection property (cf. Consequence 5.5 in [Fa93]).

2.5. Theorem. If T = (T1, . . . , Tn) ∈ B(X )n generates a nilpotent Lie subalgebra of

B(X ), then for every 1 ≤ i1 < · · · < ik ≤ n we have

σ(Ti1 , . . . , Tik) = πi1···ik(σ(T1, . . . , Tn)), (1.1)

where πi1···ik : C
n → Ck is the projection defined by (z1, . . . , zn) 7→ (zi1 , . . . , zik).

The above projection property also has a version in terms of spectra of representations

(see Definition 2.2 above). It was first obtained by E. Boasso and A. Larotonda in [BL93],

and then completed by C. Ott in [Ot96] (see also Notes in Chapter IV of [BS01]). The

corresponding results can be summarized as follows:

1) Some completions of enveloping algebras were considered by A. Dosyiev in [Ds00a] in order
to obtain “analytic functions of several non-commuting variables”.
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2.6. Theorem. Let E be a finite-dimensional solvable Lie algebra and ρ : E → B(X )

be a representation. Then for every ideal F of E we have

σ(ρ|F ) = {λ̃|F | λ̃ ∈ σ(ρ)}. (1.2)

If the Lie algebra E is even nilpotent, then (1.2) holds for every subalgebra F of E.

According to Theorem 1.3 in [Be00a], the second assertion in the above theorem is

specific to the nilpotent Lie algebras. On the other hand, if we want to use Theorem 2.4

in order to deduce the projection property (1.1) from (1.2), then we need the validity

of (1.2) for every subalgebra F , not only for ideals (see Corollary 2 and the proof of

Corollary 1 in §26 of [BS01]). Consequently, the natural projection property holds only

within the framework of nilpotent Lie algebras. Let us see also a concrete example in this

connection (for other examples, see [BL93], [Ot96] and [BS01]).

2.7. Example. Let X = C2 (with an arbitrary norm) and T1, T2 ∈ B(X ) given by

T1 =

(
a 0
0 b

)
, T2 =

(
0 1
0 0

)
, (a, b ∈ C, a 6= b).

For λ = (λ1, 0) ∈ C2, we have

[T1 − λ1 idX , T2] = [T1, T2] = (b − a)T2,

so E(T − λ) (see Definition 2.3 above) is a solvable Lie algebra that is non-nilpotent. It

is easy to see that the complex Kos(idE(T−λ)) is isomorphic to

0← X
α1←−X ⊕X

α2←−X ← 0,

where the arrows α1 and α2 are defined by

α1(x1, x2) = T2x1 + (T1 − λ1 idX )x2, α2(x) = (−(T1 + (−λ1 + a− b) idX )x, T2x)

(see Example 3 in §10 of [BS01]). Then for −λ1 + a− b = −a (that is, λ1 = 2a− b), it is

easy to compute that

Kerα1 ! Ranα2,

so the complex Kos(idE(T−λ)) is not exact. Thus λ = (2a − b, 0) ∈ σ(T1, T2). However,

2a− b 6∈ {a, b}, so 2a− b 6∈ σ(T1). This implies that

π(σ(T1, T2)) 6= σ(T1),

where π : C2 → C is the projection (z1, z2) 7→ z1.

3. From the finite-dimensional nilpotent Lie algebras to the solvable ones

and beyond. In order to reduce the problem from solvable to nilpotent Lie algebras,

we need to investigate the structure of the sets of nilpotent and quasinilpotent operators

in a finite-dimensional solvable Lie subalgebra of B(X ). In a certain sense, the difference

between the solvable situation and the nilpotent one turns out to consist in (a vector

space containing only) nilpotent operators (cf. Corollary 3.3 and Theorem 3.4 below).

Throughout this section, it is worth to have in mind the following “small concrete

special case that contains within itself all the concepts, all the difficulties, and all the

steps needed to understand and to overcome them” (as P. R. Halmos said at p. 24 in

[Ha85] in connection with something else).
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3.1. Example. Let G be a two-dimensional solvable non-Abelian Lie subalgebra of

B(X ). Then there exist T,N in G such that

[T,N ] = N.

(For a concrete situation, take b = a+ 1, T = T1 and N = T2 in Example 2.7.) Then

[T,Nk] = kNk, k ≥ 1,

by induction. Then k‖N‖k ≤ 2‖T ‖ · ‖Nk‖ for every k, yielding Nk = 0 for k > 2‖T ‖.

Consequently G decomposes as

G = CT ⊕ CN,

where CT is a nilpotent (in fact Abelian) Lie subalgebra of G, while the ideal CN consists

only of nilpotent operators.

In this example, the nilpotency of N is implied by the fact that N is an eigenvector

of the bounded operator adT : B(X )→ B(X ) defined as usual by

(adT )S = [T, S] whenever S ∈ B(X ).

More generally, the following nilpotency criterion holds (cf. Theorem 4 in §17 of [BS01]):

3.2. Theorem. If T,N ∈ B(X ) and there exists a complex nonzero scalar λ such that

lim
n→∞

‖(adT − λ idB(X ))
nN‖1/n = 0,

then N is a nilpotent operator.

This theorem can be applied to the root spaces of a finite-dimensional Lie algebra of

operators:

3.3. Corollary. Let G be a finite-dimensional Lie subalgebra of B(X ), H a Cartan

subalgebra of G, and α a nonzero root of G with respect to H. Then the corresponding

root space Gα consists only of nilpotent operators.

Proof. Let T ∈ H be a regular element. Then λ := α(T ) 6= 0 and

Gα ⊆
∞⋃

n=1

Ker((adT − λ idG)
n),

so Theorem 3.2 can be applied to each N ∈ Gα.

In particular, in the setting of Corollary 3.3, if G contains no nilpotent operators, then

it cannot have nonzero roots, so G = H and G has to be a nilpotent Lie algebra.

Theorem 3.2 is one of the main ingredients in proving the following fact (that should

be compared with the remark made just after relation (0.3)).

3.4. Theorem (cf. Theorems 1 and 2 in §28 of [BS01]). Let G be a finite-dimensional

solvable Lie subalgebra of B(X ), and NG (respectively QG) be the set of nilpotent (respec-

tively quasinilpotent) operators in G. Then

NG ⊆ QG

are two ideals of G.
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3.5. Remark. In the setting of Theorem 3.4, [G,G] consists only of quasinilpotent

operators, i.e., [G,G] ⊆ QG (cf. [Tu87], [BL93], [Ott96], [BS01]).

Let us look at Example 3.1 from the point of view of Theorem 3.4:

3.6. Example. In the framework of Example 3.1, the fact that NG and QG are ideals

of G follows from

[G,G] = CN = NG = QG .

To prove these equalities, note that we know that [G,G] = CN ⊆ NG ⊆ QG . Assume that

there exists A ∈ QG \ CN . Since A 6∈ CN , there exist α, β ∈ C such that α 6= 0 and

A = αT + βN , so

(adA)N = [A,N ] = αN. (3.1)

On the other hand, the fact that A is quasinilpotent implies that the left multiplication

LA and the right multiplication RA are both quasinilpotent operators on B(X ), so the

difference LA − RA = adA of these commuting operators is quasinilpotent as well, thus

contradicting (3.1).

Now we can state the main result extending (0.2) and (0.3) to operators on infinite-

dimensional spaces.

3.7. Theorem. There exists a unique map Σ(·) that associates to every locally finite,

locally solvable Lie subalgebra G of B(X ) a compact nonempty subset Σ(G) of characters

of G such that

(a) if L is a Lie subalgebra of G, then Σ(L) = {λ̃|L | λ̃ ∈ Σ(G)},

(b) if H is a finite-dimensional nilpotent subalgebra of B(X ), then Σ(H) = σ(idH).

3.8.Remark. If T ∈ B(X ) andH := CT , then it is easily seen that the Koszul complex

(see Definition 2.1 above) of the identical representation idH : H → B(X ) reduces to

Kos(idH) : 0← X
T
←−X ← 0. (3.2)

On the other hand, we have a natural identification of the space of characters Ĥ with C

by λ̃↔ λ̃(T ). In view of (3.2), this implies at once that

σ(T ) = {λ̃(T ) | λ̃ ∈ σ(idH)}.

Now, if G is a locally finite, locally solvable Lie subalgebra of B(X ) and T ∈ G, then

Theorem 3.7 implies

σ(T ) = {λ̃(T ) | λ̃ ∈ Σ(G)},

thus extending (0.3).

3.9.Remark. If G is a locally finite, locally solvable Lie subalgebra of B(X ) consisting

only of compact operators, then for every maximal nest N of invariant subspaces of G

(recall Theorem 1.5) we have

Σ(G) = ΣN (G) (3.3)

(recall also Corollary 1.6). For a proof of (3.3), see Theorem 4 in §27 of [BS01], where the

corresponding assertion was proved for quasisolvable Lie algebras (but the proof works

in the general case).
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Theorem 3.7 above is proved in [Be99]; see also Theorem 2 in §27 of [BS01].1) With

the spectrum Σ(·) at hand for finite-dimensional solvable Lie algebras, one has just to

consider direct limits to reach the general case. As for the construction of Σ(G) when

G is a finite-dimensional solvable Lie subalgebra of B(X ), one has to consider Cartan

subalgebras of G in order to reduce the problem to nilpotent Lie algebras, where the

corresponding spectrum is defined so as to satisfy (b) in Theorem 3.7. An important

role in the proof is played by the conjugation theorem for Cartan subalgebras (see e.g.

Chapter 12 in [SL55]). To see what is going on, let us look at Example 3.1 once again.

3.10. Example. In the situation in Example 3.1, we have G = CT ⊕ CN . Let

Σ(G) := {λ̃ : G → C linear | λ̃(T ) ∈ σ(T ), λ̃(N) = 0}. (3.3)

We are going to prove the assertions (a) and (b) of Theorem 3.7 for the spectrum Σ(G)

introduced in this way. Note that each proper subalgebra of G is one-dimensional. Then,

in view of Remark 3.8, what we have to prove is that

σ(B) = {λ̃(B) | λ̃ ∈ Σ(G)} for B ∈ G. (3.4)

If B ∈ CN , then B is nilpotent in view of Example 3.6, so σ(B) = {0}, while λ̃|CN ≡ 0

for λ̃ ∈ Σ(G) by the very definition (3.3). Now let B ∈ G \CN . Then there exist β, γ ∈ C

such that β 6= 0 and

B = βT + γN.

Since [T,N ] = N , we have (ad(−(γ/β)N))(βT ) = γN and (ad(−(γ/β)N))k(βT ) = 0

whenever k ≥ 2. Consequently

(exp(ad(−(γ/β)N)))(βT ) = βT + γN.

For every U ∈ B(X ) we have exp(adU) = exp(LU − RU ) = exp(LU ) exp(−RU ) =

LexpURexp(−U) (see the left and right multiplication operators used in Example 3.6), so

for C := exp(−(γ/β)N) we get

C(βT )C−1 = βT + γN. (3.5)

(This corresponds to the very moment when the conjugation theorem for Cartan subalge-

bras comes on the stage in the general proof of Theorem 3.7; formula (3.5) actually shows

that the Cartan subalgebras CT and C(βT + γN) are conjugate.) Now (3.5) implies that

σ(βT ) = σ(βT + γN).

Then

σ(βT + γN) = {βz | z ∈ σ(T )}
(3.3)
= {βλ̃(T ) | λ̃ ∈ Σ(G)} = {λ̃(βT + γN) | λ̃ ∈ Σ(G)},

where the last equality follows by the fact that λ̃ is linear and λ̃(N) = 0 whenever

λ̃ ∈ Σ(G) (see (3.3)). Thus (3.4) is completely proved.

To conclude, let us look at some special situations where a spectrum Σ(·) can be

constructed for Lie algebras that do not fall under the hypotheses of Theorem 3.7, in the

sense that they are not locally finite.

1) It is worth to note that a version of Theorem 3.7, holding for spectra of representations of
finite-dimensional solvable Lie algebras, was recently obtained by A. Dosyiev in [Ds00b].



SPECTRAL THEORY 23

3.11. Example. If G is a locally solvable Lie algebra of compact operators, let N be a

maximal nest of invariant subspaces of G (see Theorem 1.5). Then for every subalgebra L

of G we can define ΣN (L) as in Corollary 1.6 and both assertions (a) and (b) of Theorem

3.7 hold for the subalgebras of G.

3.12. Example. Let X = L2[0, 1] and G be the Lie subalgebra of B(X ) generated

by the operators S and V from Example 1.2, satisfying the easily verified commutation

relation [S, V ] = V 2. Then G is spanned as a vector space by the set

{S, V, V 2, . . . , V n, . . .},

while [G,G] is spanned by

{V 2, V 3, . . . , V n, . . .}.

In particular, [[G,G], [G,G]] = {0}, so G is a solvable Lie algebra. On the other hand, let

Σ(G) := {λ̃ : G → C linear | λ̃(S) ∈ σ(S) and λ̃(V n) = 0 whenever n ≥ 1}

and

Σ(L) := {λ̃|L | λ̃ ∈ Σ(G)} for each subalgebra L of G.

Then both assertions (a) and (b) of Theorem 3.7 hold for the subalgebras of G ([Be00b]).

3.13. Example. Let m ≥ 1, endow Cm with the usual scalar product and consider

the Hilbert space X of (equivalence classes of) Cm-valued functions that are almost

everywhere defined on [0, 1] and square-integrable with respect to the Lebesgue measure.

For every f ∈ X , if f1, . . . , fm ∈ L2[0, 1] are the components of f , that is

f(t) =




f1(t)
...
fm(t)



 ∈ Cm for almost every t ∈ [0, 1],

then ‖f‖X =
( m∑
i=1

1∫

0

|fi(t)|2dt
)1/2
. Now let T be a (solvable) Lie algebra of m×m upper

triangular complex matrices. Then

G := {a : [0, 1]→ T | a is continuous}

has a natural structure of (infinite-dimensional solvable) Lie algebra, with bracket, addi-

tion and scalar multiplication defined pointwise. Furthermore, each a = (ajk(·))1≤j,k≤m ∈

G can be considered as a bounded linear operator acting on X by



f1(·)
...
fm(·)



 7→




a11(·) . . . a1m(·)

. . .
...

0 amm(·)








f1(·)
...
fm(·)



 .

Consequently, G is an infinite-dimensional solvable Lie subalgebra of B(X ). For i =

1, . . . ,m and t ∈ [0, 1], let

λ̃i,t : G → C, λ̃i,t(a) := aii(t).

Then each λ̃i,t is a linear functional on G and it easily follows that it vanishes on [G,G],

so that λ̃i,t is a character of G. Let

Σ(G) := {λ̃i,t | i = 1, . . . ,m; t ∈ [0, 1]}
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and

Σ(L) := {λ̃|L | λ̃ ∈ Σ(G)} for each subalgebra L of G.

Then both assertions (a) and (b) of Theorem 3.7 hold for the subalgebras of G ([Be00c]).

For example,

σ(a) = {aii(t) | i = 1, . . . ,m; t ∈ [0, 1]} = {λ̃i,t(a) | i = 1, . . . ,m; t ∈ [0, 1]}

for every a ∈ G.

Now, the preceding Examples 3.11–3.13 together with the result of Şt. Frunză from

[Fr82] concerning the existence of weights for arbitrary solvable Lie algebras of operators

(see also Corollary 2 in §27 of [BS01]) suggest the following question.

3.14. Question. Does Theorem 3.7 hold for arbitrary locally solvable Lie algebras of

bounded linear operators on a complex Banach space?
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[Be00b] D. Beltiţă, Lie type theorems for Volterra systems of operators (in preparation).
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