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Abstract. In this note we describe universal central extensions of certain topological current

algebras, which in our context are algebras of type A ⊗ g, where g is a finite dimensional

semisimple real Lie algebra and A a certain commutative associative topological algebra.

Introduction. Although in the algebraic setting the problem to determine all central

extensions of a given current algebra, i.e., a Lie algebra of type A⊗F g, where F is any

field and A is some commutative associative unital F -algebra, is satisfactorily solved for

char(F ) 6= 2 (see [6] for the case char(F ) = 0 and [18] for the general case) not much is

known if one deals with central extensions of topological Lie algebras. A topological result

is contained in [3] but only for Lie algebras of type C∞(M, g) ∼= C∞(M) ⊗ g, where M

is a compact smooth manifold. In this note we construct universal central extensions for

Lie algebras of type g⊗A, where g is a finite dimensional semisimple real Lie algebra and

A a commutative associative algebra in a suitable locally convex category. If A equals

the algebra C∞(M) of smooth functions on a smooth finite dimensional manifold M

(without any compactness assumptions), we are able to give an explicite description of

these universal extensions by using the A-module Ω1(M) of smooth 1-forms onM , thereby

proving that this is the universal differential module for A in the category of Fréchet

A-modules. As a consequence of our results, we obtain a generalisation of a theorem

due to Pressley and Segal. Furthermore, we obtain analogous results on universal central

extensions of complete locally convex Lie algebras of type C∞
c (M, g) ∼= C∞

c (M)⊗g, where

the subscript c stands for compact support.

As an application we note that Theorem 16 and its corollaries form a good base in

order to construct (universal) central extensions for current Lie groups or for certain

topological current groups obtained from classical Lie groups by extending the ground
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field R or C to A. In [13] is shown that for a Lie group H modeled on a sequentially

complete locally convex (s.c.l.c.) space each 2-cocycle ω of the Lie algebra h with values

in some s.c.l.c. space z can be integrated to a smooth local z-valued cocycle f for H .

In general one cannot expect these local cocycle f to be smoothly extendable to the

entire group H . Nevertheless, it makes sense to ask whether there exists a smooth global

cocycle f̃ forH which is a push-forward of f with values in some quotient z/Γ, Γ a discrete

subgroup of z. The answer to this question depends on the behavior of the so-called period

map which can be defined as follows: Let Ω be the left invariant 2-form on H with Ω1 = ω.

Then the period map is defined by

perω : π2(H) → z : [γ] 7→

∫

γ

Ω.

In [13] it is shown that the existence of f̃ is equivalent to the discreteness of im(perω)

in z. At least for Fréchet–Lie groups of type C∞(M,G), M compact, there exist simple

criteria in order to decide when this is the case (see [10] for more details).

As a notational convention we note that in this paper omitting the range in the

notation of a function space means that the functions are considered to be real-valued.

Topological tensor, alternating, and symmetric products. Let E and F be

locally convex topological vector spaces, and let E ⊗ F denote their algebraic tensor

product (if nothing else is specified, tensor products are always taken over the reals). The

projective topology on E ⊗ F is the finest topology for which the map

(x, y) 7→ x⊗ y : E × F → E ⊗ F

is continuous. We call the so-defined topological tensor product of two locally convex

vector spaces the projective tensor product. It has the universal property stated in Theo-

rem 1 below. In the sequel we give another description for the projective topology which

shows that this topology, indeed, is a locally convex vector space topology. Moreover, the

description below yields that for two metrizable spaces E and F the projective tensor

product again is a metrizable space. Let p be a seminorm on E and let q be a seminorm

on F . We define the tensor product p⊗ q of these seminorms by

(p⊗ q)(z) := inf
{∑

p(xk)q(yk)
∣∣∣
∑

xk ⊗ yk = z
}
.

It turns out that this again is a seminorm and moreover, if (pi)i∈I and (qj)j∈J are

two families of seminorms which define the topologies on E and F , respectively, then

(pi⊗qj)(i,j)∈I×J is a family of seminorms which defines the projective topology on E⊗F

(cf. [8], 15.1).

1. Theorem. Let E, F , and G be locally convex, resp. metrizable, locally convex

spaces, and let β : E × F → G be a continuous bilinear map. Then there exists a unique

continuous linear map β : E ⊗ F → G such that β = β ◦ ⊗.

In general the projective tensor product of complete spaces E and F fails to be com-

plete. We write E ⊗̂F for its completion. Because of the universal property of the com-

pletion of a (metrizable) locally convex vector space we immediately obtain the following

consequence of Theorem 1.
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2. Corollary. Let E, F , and G be complete, resp. completely metrizable, locally

convex spaces, and let β : E × F → G be a continuous bilinear map. Then there exists a

unique continuous linear map β : E ⊗̂F → G such that β = β ◦ ⊗.

In the sequel the letter K stands for the category of locally convex vector spaces

with continuous linear maps as morphisms or for one of its full subcategories consisting

of all complete, resp., metrizable, resp., completely metrizable (= Fréchet), spaces. Fur-

thermore, given two spaces E,F ∈ K we write E ⊗K F for tensor product having the

universal property described in Theorem 1, resp., Corollary 2. Note that uniqueness of

the map β arising in Theorem 1 and Corollary 2 implies that the algebraic tensor product

E ⊗ F always is dense in E ⊗K F . Now let E = F ∈ K, then the map

σ : E × E → E ⊗K E : (x, y) 7→ y ⊗ x

induces a continuous linear involution

σ : E ⊗K E → E ⊗K E

which yields a decomposition

E ⊗K E = S2
K(E)⊕ ΛK(E),

where S2
K
(E) := ker(1− σ) and ΛK(E) := ker(1 + σ). Putting

f ∨ g :=
1

2
(f ⊗ g + g ⊗ f) and f ∧ g :=

1

2
(f ⊗ g − g ⊗ f)

we obtain as a consequence of Theorem 1 and Corollary 2 the following result:

3. Theorem. Let E,F ∈ K. Then for any continuous symmetric, resp., skew-sym-

metric bilinear map β : E ×E → F there exists a uniquely determined continuous linear

map

β : S2
K(E) → F, resp., β : Λ2

K(E) → F

such that β = β ◦ ∨, resp., β = β ◦ ∧.

Now, we consider a special situation which will be of interest for us later on. Let M

be a finite dimensional smooth manifold and E a Fréchet space. We topologize the space

C∞(M,E) in the following way: For any two topological spaces X and Y we denote by

C(X,Y )c the space C(X,Y ) endowed with the topology of compact convergence. We

identify the tangent bundle TE of E with E×E, so that for any smooth map f :M → E

we obtain a smooth map df : TM → E by letting df(v) := pr2(Tf(v)). Inductively, this

yields maps dnf : TnM → E for any n ∈ N0 by putting d0f := f (T 0M := M) and

dnf := d(dn−1f) for n > 0. Using these maps, we get an injection

C∞(M,E) →
∏

n∈N0

C(TnM,E)c : f 7→ (dnf)n∈N0
.

We endow C∞(M,E) with the topology induced by the product topology via this em-

bedding. Since for each of the spaces TnM , n ∈ N0, the respective topology has a count-

able basis consisting of relatively compact neighborhoods, the topology of each space

C(TnM,E)c can be defined by a countable separating family of seminorms and there-

fore is locally convex and metrizable. As a subspace of a countable product of locally

convex metrizable spaces the space C∞(M,E) is locally convex and metrizable as well.
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In fact, it turns out that its topology even is complete (cf. the proof of Proposition

III.1 in [14]) whence C∞(M,E) is a Fréchet space. Now we restrict our attention to

the special case where E = R and write C∞(M) for C∞(M,R). While the isomorphism

C∞(M) ⊗̂C∞(N) ∼= C∞(M ×N) is well-known ifM and N are open subsets of some Rn

a proof for the general case in which M and N are smooth finite dimensional manifolds

is not easy to find in the literature.

4. Theorem. Let M and N be smooth finite dimensional manifolds. Then the map

C∞(M) ⊗̂C∞(N) → C∞(M ×N) : f ⊗ g 7→
(
(p, q) 7→ f(p)g(q)

)

is an isomorphism of Fréchet spaces.

Proof. We first recall some facts. Let X , Y , and Z be Hausdorff topological spaces.

For f ∈ C(X × Y, Z) and x ∈ X we put fx :=
(
y 7→ f(x, y)

)
∈ C(Y, Z). It is well-known

that the map

α : C(X × Y, Z)c → C(X,C(Y, Z)c)c : f 7→ (x 7→ fx)

is a homeomorphism if Y is locally compact, and since α, obviously, is natural in X and

Z, we obtain that C(Y, ·)c is a right adjoint self functor of the category of Hausdorff topo-

logical spaces and thus preserves limits. For the remaining proof we note that, according

to [14], Theorem III.4, the image of the map α|C∞(M×N) is contained in C∞(M,C∞(N)),

and that for any Fréchet space E the map

C∞(M) ⊗̂E → C∞(M,E) : f ⊗ x 7→ fx

is an isomorphism of Fréchet spaces (cf. [5], Chapter II, p. 81). Hence we are done, if we

can show that the map

β : C∞(M ×N) → C∞(M,C∞(N)) : f 7→ α(f)

is an isomorphism of Fréchet spaces. Thanks to the Open Mapping Theorem for Fréchet

spaces it suffices to show that β is a continuous linear bijection. Clearly, β is injective.

For the prove of its surjectivity we have to show that for g ∈ C∞(M,C∞(N)) we have

α−1(g) ∈ C∞(M ×N), i.e., that α−1(g) is smooth at any point. Since the latter is a local

property we can assume M and N to be open subsets of some Rn; but in this case the

assertion is already proved, see [17], Theorem 40.1. It remains to show continuity of β.

By definition of the topology of C∞(M,C∞(N)) the map β is continuous exactly if for

any m ∈ N0 the map

βm : C∞(M ×N) → C(TmM,C∞(N))c : f 7→ dmβ(f)

is continuous. Since C∞(N) is embedded into the product
∏

n∈N0
C(TnN)c, and since

C(TmM, ·) preserves limits, the map βm is continuous exactly if for any n ∈ N0 the map

βmn : C∞(M ×N) → C(TmM,C(TnN)c)c : f 7→ dn ◦ βm(f)

is continuous. In view of the isomorphism C(TmM,C(TnN)c)c ∼= C(TmM × TnN)c
continuity of βmn is equivalent to continuity of the map

C∞(M ×N) → C(TmM × TnN)c : f 7→ dm1 d
n
2f

where d1 and d2 denote the respective “partial derivatives”. But the latter is clearly

fulfilled, since f is smooth.
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Universal differential modules. In this section we point out that the concept of a

universal differential module for a commutative associative algebra, which is well-known

in the algebraic setting, not only makes sense, but even is a very useful tool, in a categorial

framework. By an algebra object in the category K, or simply a K-algebra, we mean an

object A ∈ K together with a morphism

µ : A⊗K A→ A

called multiplication. Suppose for the rest of this note that A is a unital K-algebra with

commutative and associative multiplication. An A-module in the category K is an object

M together with a morphism

ν : A⊗K M →M

that satisfies ν ◦(idA⊗ν) = ν ◦(µ⊗ idM ) and ν(1⊗m) = m for each m ∈M . A derivation

from such an algebra A into an A-module M is defined to be a linear map D : A → M

satisfying

D(ab) = aDb+ bDa

for all a, b ∈ A. The embedding

a 7→ a⊗ 1 : A→ A⊗K A

turns the K-algebra A⊗KA into an A-module with respect to the multiplication map on

A⊗KA, and in view of this module structure the map µ also is a morphism of A-modules.

Consequently, its kernel I is an A-submodule of A⊗K A.

5. Lemma. Let J := I ∩ (A⊗A). Then we have J = spanA{1⊗ b− b⊗ 1 | b ∈ A} and

I = J .

Proof. Obviously, we have J ′ := spanA{1 ⊗ b − b ⊗ 1 | b ∈ A} ⊆ J . In order to show

the reverse inclusion consider c =
∑
ak ⊗ bk ∈ J , that is,

∑
akbk = 0. Then we have

c =
∑

ak ⊗ bk −
(∑

akbk

)
⊗ 1 =

∑
ak(1⊗ bk − bk ⊗ 1) ∈ J ′,

and the first claim follows. To prove the second claim we note that the map

c 7→
(
c− µ(c)⊗ 1, µ(c)

)
: A⊗K A→ I ⊕A

is an isomorphism of K-A-modules whose inverse is given by

(b, a) 7→ b+ a⊗ 1 : I ⊕A→ A⊗K A.

As a consequence of this, the map

λ : A⊗K A→ I : c 7→ c− µ(c)⊗ 1

is a surjective morphism of K-A-modules satisfying λ(A⊗A) = J , by what we have just

shown. As A⊗A is dense in A⊗K A, this implies the second claim.

While quotients of Fréchet spaces again are Fréchet spaces, quotients of arbitrary

complete locally convex spaces need not be complete (cf. [9], §31.6). So it may happen

that for a complete locally convex algebra A the space I/I2 is not complete. For that

reason we define Ω1
K
(A) to be the space I/I2 except K is the category of complete locally
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convex spaces where we define Ω1
K
(A) to be the completion of the space I/I2. Moreover,

we define a continuous linear map dA : A→ Ω1
K
(A) by the prescription

dA(a) := [1⊗ a− a⊗ 1],

where [c] denotes the class of an element c ∈ I in Ω1
K
(A). Since we have

dA(ab)− adA(b)− bdA(a) = [1⊗ ab− ab⊗ 1]− [a⊗ b− ab⊗ 1]− [b⊗ a− ba⊗ 1]

= [1⊗ ab− a⊗ b− b⊗ a+ ab⊗ 1]

= [(1⊗ a− a⊗ 1)(1⊗ b− b⊗ 1)]

= 0

for all a, b ∈ A, we see that dA in fact is a derivation. We call the pair (Ω1
K
(A), dA) the

K-universal differential module of the algebra A. It has the following universal property:

6. Theorem. Let E be a K-A-module and let D : A→ E be a continuous derivation.

Then there exists a unique continuous A-linear map D : Ω1
K
(A) → E such that D =

D ◦ dA.

Proof. In order to prove the existence of the map D, we consider the continuous

bilinear map

∆ : A×A→ F : (a, b) 7→ aDb

which induces a continuous linear map ∆ : A⊗K A→ E satisfying

∆(a⊗ b) = aDb

for all a, b ∈ A. As is easy to verify, this map fulfils the identity

∆(cc′) = µ(c)∆(c′) + µ(c′)∆(c)(1)

for all c, c′ ∈ A⊗A, and hence for all c, c′ ∈ A⊗K A, because of the density of A⊗A in

A⊗KA. Equation (1) shows that ∆ vanishes on I2 and thus on I2. Hence, the restriction

∆|I factors to a map

D : Ω1
K
(A) → E

for which we have

(D ◦ dA)(a) = D([1⊗ a− a⊗ 1]) = 1Da− aD1 = Da,

as desired.

Uniqueness of the map D follows from the fact that, according to Lemma 5, the image

of dA generates a dense A-submodule of Ω1
K
(A).

Now we consider a special situation. Let M be a finite dimensional smooth manifold

(which we always assume to be paracompact), A := C∞(M), resp., B := C∞(M ×M)

the algebra of smooth functions on M , resp., M ×M , and let Ac and Bc the respective

subalgebras consisting of compactly supported functions. Then A and B are Fréchet alge-

bras whereas Ac and Bc, viewed as subspaces, in general are just locally convex algebras.

Denoting the category of Fréchet spaces by F, we seek for a convenient description of

the universal module Ω1
F
(A). In the sequel we view the Fréchet algebra B as a Fréchet

A-module with respect to the embedding

A→ B : f 7→
(
(p, q) 7→ f(p)

)
.
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Further, we consider the following morphisms of Fréchet A-modules:

δ∗ : B → A : F 7→ F ◦ δ,

where δ is the diagonal map p 7→ (p, p) :M →M ×M , and

θ : A⊗F A→ B

which is induced by the continuous bilinear map

θ : A×A→ B : (f, g) 7→
(
(p, q) 7→ f(p)g(q)

)
.

Both maps δ∗ and θ are also morphisms of the underlying Fréchet algebras and moreover,

θ is a homeomorphism according to Theorem 4. Denoting by µ : A ⊗F A → A the

multiplication map on A, we have

µ = δ∗ ◦ θ.

From this relation we immediately infer K := ker(δ∗) = θ(I) and therefore obtain the

following isomorphism of Fréchet A-modules:

Ω1
F(A)

∼= K/K2.

In the sequel we think of Ω1
F
(A) as K/K2 with respect to this isomorphism. Likewise, we

identify A⊗F A with B via θ. Now let TM be the tangent bundle of M . Then the space

C∞(TM) is a Fréchet A-module in which the space

Ω1(M) := {α ∈ C∞(TM) | (∀p ∈M)α|TpM is linear}

of smooth 1-forms on M is a closed A-submodule and therefore is a Fréchet A-module as

well. We denote the space of compactly supported 1-forms on M by Ω1
c(M). This space

is a locally convex Ac-module as well as a locally convex A-module, and it is dense in

Ω1(M) since the identity element in A is a limit of elements in Ac. We want to show that

Ω1(M) and Ω1
F
(A) are isomorphic Fréchet A-modules, and in order to do this, we first

collect some information on Ω1
c(M).

We put Jc := ker(δ∗|Ac⊗Ac
) = K∩(Ac⊗Ac), Kc := ker(δ∗|Bc

) = K∩Bc and consider

the continuous linear map τ : B → Ω1(M) defined by

τ(F )(x,X) := dF (x, x)(0, X).

As one easily checks, the map τ even is A-linear. In the subsequent proposition all closures

are taken with respect to the topology induced by that of B.

7. Proposition. The kernel of τ |Jc
equals J2

c ∩Jc, the kernel of τ |Kc
equals K2

c , and

the kernel of τ |K equals K2.

Proof. We have

τ(FG) = δ∗(F )τ(G) + δ∗(G)τ(F )(2)

for all F,G ∈ B (which is easily verified for F,G ∈ A ⊗ A and then follows by density).

Hence, we have J2
c ⊆ ker(τ |Jc

), K2
c ⊆ ker(τ |Kc

) and K2 ⊆ ker(τ |K). It remains to show

the reverse inclusions. Equation (2) also shows that ker(τ |Jc
) is an ideal in Ac ⊗Ac and

likewise that ker(τ |Kc
) and ker(τ |K) are ideals in B. For the rest of this proof let (Uk)k∈N

be a locally finite open covering of M consisting of relatively compact neighborhoods

which are diffeomorphic to open convex 0-neighborhoods in Rn and let (ϕk)k∈N be a
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partition of unity subordinate to this covering. Using this partition of unity on M we

obtain a partition of unity on M ×M consisting of functions in Ac ⊗ Ac by choosing a

bijection ι : N → N2 and putting ψk := ϕι1(k)⊗ϕι2(k) . We first show that ker(τ |Kc
) ⊆ K2

c

and ker(τ |Jc
) ⊆ J2

c . For that purpose we pick F ∈ Bc. Putting Fk := ψkF we have

F =
∑

k

Fk.

Since supp(F ) is compact only finitely many of the supports of the functions ψk intersect

supp(F ) so that we have F = F1 + . . .+ Fm for some m ∈ N. Since ker(τ |Kc
) is an ideal

in Bc it follows that

F ∈ ker(τ |Kc
) ⇐⇒ (∀k ≤ m)Fk ∈ ker(τ |Kc

),

and the fact ker(τ |Jc
) is an ideal in Ac ⊗Ac implies

F ∈ ker(τ |Jc
) ⇐⇒ (∀k ≤ m)Fk ∈ ker(τ |Jc

).

So it suffices to consider the case M = Rn.

In order to prove the desired inclusion for this case, we define for each pair (x, y) ∈

Rn × Rn functions g(x,y), h(x,y) : R → Rn × Rn by

g(x,y)(t) :=
(
tx+ (1− t)y, y

)
and h(x,y)(t) :=

(
x, tx + (1− t)y

)
.

Now let F ∈ Kc. Then we have

2F (x, y) = F (x, y)− F (y, y) + F (x, y)− F (x, x)

=

∫ 1

0

(F ◦ g(x,y))
′(t)dt−

∫ 1

0

(F ◦ h(x,y))
′(t)dt

and thus

F (x, y) =

n∑

k=1

(xk − yk)Fk(x, y),(3)

where

Fk(x, y) :=
1

2

∫ 1

0

(
∂F

∂xk
(g(x,y)(t))−

∂F

∂yk
(h(x,y)(t))

)
dt

and x1, . . . , xn, y1, . . . , yn denote the coordinate functions on M × M . Applying τ to

equation (3) leads to the 1-form

τ(F ) =
(
x 7→ −

n∑

k=1

Fk(x, x)dxk

)

on R
n and we see that vanishing of τ on F implies that any Fk vanishes on the diagonal

and so F ∈ K. We claim that each Fk has compact support, but this easily follows from

the definition, since supp(F ) ⊆ [−a, a]2n for a ∈ R implies

∂F

∂xk
◦ g(x,y) =

∂F

∂yk
◦ h(x,y) = 0

for (x, y) ∈ R2n \ [−a, a]2n. Replacing the coordinate functions by functions x1, . . . , yn on

R
n which coincide with the coordinate functions on [−a, a]2n and vanish outside some

compact neighborhood of [−a, a]2n shows that F ∈ K2
c . For F ∈ ker(τ |Jc

) one cannot

expect the functions Fk to be in Jc. In this case we proceed as follows: We consider the
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Fréchet subpaces Aa := {g ∈ A | supp(g) ⊆ [−a, a]n} and Ba := {G ∈ B | supp(G) ⊆

[−a, a]2n} of A, resp., B. For these spaces the restriction of the map θ : A⊗F A→ B to

the subspace Aa ⊗F Aa is an isomorphism onto the space Ba which allows us to identify

both spaces. Lemma 5 now implies that each function Fk is a limit of functions in Jc
with support in [−a, a]2n, so that we obtain

F ∈ Jc · Jc ⊆ J2
c .

Now let F ∈ B. We put

Fl := (ψ1 + . . .+ ψl)F

and obtain a sequence (Fl)l∈N in Bc which converges to F in B (because of the local

finiteness of the covering (Uk)k∈N). Now we have

F ∈ ker(τ |K) ⇐⇒ (∀l ∈ N)Fl ∈ ker(τ |Kc
),

since ker(τ |K) is an ideal in B andBcK ⊆ Kc. But since we already know that ker(τ |Kc
) =

K2
c this implies ker(τ |K) ⊆ K2

c ⊆ K2, as desired.

8. Proposition. We have τ(Bc) = τ(Ac ⊗Ac) = Ω1
c(M) and τ(B) = Ω1(M).

Proof. Clearly, we have τ(Ac ⊗ Ac) ⊆ τ(Bc) and so it suffices to show τ(Ac ⊗ Ac) =

Ω1
c(M). So let α ∈ Ω1

c(M). First we consider the case thatM is diffeomorphic to an open

convex subset U of Rn, where n := dimM . Then we have in local coordinates

α(p) =

n∑

k=1

fk(p)dxk.

Choosing functions x1, . . . , xn ∈ C∞(Rn) with compact support in U which coincide with

the coordinate functions on supp′(α), we obtain

α(p) =

n∑

k=1

fk(p)dxk = τ
( n∑

k=1

fk(p)⊗ xk

)

and see that Ω1
c(M) = τ(Ac ⊗ Ac) in this case. Now let M be any finite dimensional

manifold. By choosing a suitable partition of unity we get a decomposition α = α1 +

. . .+αn where each of the sets supp′(αk) is contained in some neighborhood Uk which is

diffeomorphic to an open convex neighborhood in Rn. Now τ(Ac ⊗Ac) = Ω1
c(M) follows

by what we have just proved.

In order to prove τ(B) = Ω1(M) we choose a locally finite open covering (Uk)k∈N ofM

consisting of relatively compact neighborhoods which are diffeomorphic to open convex

neighborhoods in Rn. Furthermore, we choose a partition of unity (ϕk)k∈N subordinate to

this covering. Now let α ∈ Ω1(M) and put αk := ϕkα ∈ Ω1
c(M) for each k. Then we have

α =
∑

k∈N αk in Ω1(M). At the beginning of the proof we have seen that for any of these

1-forms αk we find a function Fk ∈ Ω1
c(M) with τ(Fk) = αk and supp(Fk) ⊆ Uk × Uk.

We put Gk := F1 + . . . + Fk for k ∈ N and note that the sequence (Gk)k∈N converges

to some G in B because of the local finiteness of (Uk)k∈N. Continuity of τ now yields

τ(G) = α, and we are done.

9. Theorem. The map d : Ω1
F
(A) → Ω1(M) induced by the differential d : A →

Ω1(M) is an isomorphism of Fréchet A-modules.



70 P. MAIER

Proof. Thanks to the Open Mapping Theorem for Fréchet spaces it suffices to show

bijectivity of the map d. With respect to the identification Ω1
F
(A) = K/K2 the injectivity

of τ is equivalent to the equality ker(τ |K) = K2 and thus is an immediate consequence of

Proposition 7. In order to show surjectivity, we have to show that τ(K) = Ω1(M). From

Proposition 8 we know that τ(B) = Ω1(M). But this implies τ(K) = Ω1(M) since we

have τ(F − δ∗(F )⊗ 1) = τ(F ) and F − δ∗(F )⊗ 1 ∈ K for any F ∈ B.

10. Remark. In fact, Theorem 9 seems to be well-known (although unproved in full

strength, as far as the author knows) if M is compact (cf. [2]).

Now let C be the category of complete locally convex spaces. As a strictly inductive

limit of a cofinal sequence of Fréchet algebras of type C∞
X (M) := {f ∈ C∞(M) | supp(f)

⊆ X}, X ⊆ M compact, which are considered as subspaces of C∞(M), the algebra

Ac = C∞
c (M) is an LF algebra and hence, is complete (cf. [17]). Likewise, the Ac-module

Ω1
c(M) is a strictly inductive limit of spaces Ω1

X(M) := {α ∈ Ω1(M) | supp′(α) ⊆ X},

X ⊆M compact. In fact, the space Ω1
c(M) even is a topological Ac-module with respect

to this structure (cf. [4]). Since, in general, the algebra Ac has no identity element, we

write A1 := R1 + Ac. Now the question arises if the module Ω1
c(M) is the universal

differential module for the algebra A1 in the category C.

11. Theorem. The map d : Ω1
C
(A1) → Ω1

c(M) induced by the differential d : A1 →

Ω1
c(M) is an isomorphism of topological A1-modules.

Proof. The assertion follows if we can show that the pair (Ω1
c(M), d) has the property

of a universal differential module for A1 in the categoryC. In order to obtain this, we first

establish an algebraic description of Ω1
c(M). For that purpose let f, g ∈ Ac and let ε ∈ Ac

be a function that vanishes on a compact neighbourhood of supp(f) ∪ supp(g) and that

equals 1 on supp(f)∪ supp(g). Then we have f ⊗ g− fg⊗ ε ∈ Jc and τ(f ⊗ g− fg⊗ ε) =

τ(f ⊗g). Both relations together with Proposition 8 imply τ(Jc) = τ(Ac⊗Ac) = Ω1
c(M).

Together with Proposition 7 this yields the following (algebraic) isomorphism of A1-

modules:
Jc

Jc ∩ J2
c

∼= Ω1
c(M).

Now let E be any complete locally convex topological A1-module and let D : A1 → E

be a continuous derivation. Using the facts we have just proved, we see as in the proof of

Theorem 6 that the map

∆ : A1 ⊗A1 → E : f ⊗ g → fDg

induces an A1-linear map

D :
Jc

Jc ∩ J2
c

∼= Ω1
c(M) → E, D(fdg) = D(τ(f ⊗ g)) = fDg.

Obviously, we have D = D◦d, and uniqueness of D follows from the fact that dA1 = dAc

generates Ω1
c(M) as an A1-module. It remains to show continuity of D.

As the topology on Ω1
c(M) is the direct limit topology with respect to the subspaces

Ω1
X(M), X ⊆ M compact, it suffices to verify that the restrictions D|Ω1

X
(M) are con-

tinuous. For that purpose we choose on M a partition of unity (ϕk)k∈N as in the proof
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of Proposition 8. The set NX := {k ∈ N | supp(ϕj) ∩ X 6= ∅} is finite, and for each

α ∈ Ω1
X(M) we have

α =
∑

k∈NX

ϕkα =
∑

k∈NX

∑

l

αk
l dx

k
l ,

where the functions xkl are suitably chosen as in the proof of Proposition 7. Since the

sum is finite, we obtain

D(α) =
∑

k∈NX

D(ϕkα) =
∑

k∈NX

∑

l

αk
l D(xkl ).

Independence of the functions xkl of α and the fact that multiplication with ϕk is a

continuous endomorphism of Ω1
c(M) implies that the maps

Ω1
c(M) → A : α 7→ αk

l

are continuous. Continuity of the module structure on E now yields continuity of D.

The continuous case. An opposite to the smooth situation we are concerned with

in the preceding discussion is the continuous case. Given a compact topological space X ,

one may ask for a universal differential module for the Banach algebra A := C(X) in the

category of Banach A-modules. Indeed, such an object exists, and can be obtained by

our general construction described in the previous section. Surprisingly, this construction

always leads to the trivial module, as we shall see in the sequel. In order to show this,

we introduce the notion of an amenable Banach algebra. Let A be a Banach algebra. For

any Banach A-bimodule M the dual Banach space M ′ also carries the structure of an

A-bimodule via

(af)(x) := f(xa) and (fa)(x) := f(ax)

for a ∈ A, x ∈ M , and f ∈ M ′. We call A amenable if for any A-bimodule M and any

continuous derivation δ : A→M ′ there exists f ∈M ′ such that

δ(a) = af − fa

for all a ∈ A. Such derivations of A are called inner M ′-derivations. In [1] the following

is shown:

12. Theorem. If X is a compact topological space, then C(X) is an amenable Banach

algebra and furthermore, for any C(X)-bimodule M each M -derivation of C(X) is inner.

Proof. See [1], Theorem VI.12, and Proposition VI.14.

As an immediate consequence of Theorem 12 we now obtain the following result:

13. Corollary. If X is a compact topological space, then the universal differential

module for the Banach algebra C(X) in the category of all Banach spaces is trivial.

Proof. Let A := C(X) and let Ω1
B
(A) denote the universal differential module for A in

category of Banach spaces. We define on Ω1
B
(A) an A-bimodule structure by ωa := aω.

Theorem 12 now implies that each Ω1
B
(A)-derivation is inner, but with respect to the

above defined bimodule structure on Ω1
B
(A), any such inner derivation obviously is trivial,

which implies that Ω1
B
(A) itself is trivial, because it is generated by the range of a

derivation.
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Finally we note that the situation even changes if we consider a compact C1-manifold

M , since in this case the differential d :M → Ω1
0(M) (where Ω1

0(M) denotes the Banach

space of continuous 1-forms on M) is a non-trivial derivation, and thus the respective

universal differential module has to be non-trivial.

Central extensions of topological current algebras. Throughout this section

the letter A denotes a commutative associative unital K-algebra. We mainly investigate

central extensions of K-current algebras, which are Lie algebras of type A ⊗ g, where

g is some finite dimensional semisimple Lie algebra. Nevertheless, we start a bit more

general. We are only interested in extensions that are described by continuous Lie algebra

cocycles. Given a K-Lie algebra g, an abelian K-Lie algebra z, and a continuous 2-cocycle

ω : g× g → z, we write g⊕ω z for the Lie algebra g× z with the bracket

[(x, a), (y, b)] :=
(
[x, y], ω(x, y)

)
.

These extensions are exactly those which are given by an exact sequence

0 −→ z
ι

−→ h
π

−→ g −→ 0

of K-Lie algebras in which the map π admits a continuous linear section. Such an ex-

tension is called weakly universal if for any other central extension g⊕η y there exists a

morphism of K-Lie algebras ϕ : z → y such that η = ϕ ◦ ω, it is called universal if the

morphism ϕ is unique. In any of these cases ω is called a universal cocycle. We note that

a weakly universal extension g⊕ω z is universal if g is perfect (cf. [11], 1.9, Proposition 1).

We start by stating a general result on perfect Fréchet–Lie algebras. So let g be a

perfect Fréchet–Lie algebra. The Lie bracket induces a continuous linear map

β : Λ2
F(g) → g

which, because of the Jacobian identity, factors to a map

β : Λ2
F(g)/B

F

2 (g) → g,

where BF
2 (g) denotes the closure of the span of all elements of the form

x ∧ [y, z] + y ∧ [z, x] + z ∧ [x, y]

in Λ2
F
(g). Writing g̃ := Λ2

F
(g)/BF

2 (g) and [x] := x+BF
2 (g) for x ∈ Λ2

F
(g) the prescription

[
[x], [y]

]
:= [x] ∧ [y]

defines a continuous Lie bracket on the space g̃. Denoting the kernel of the map β by

ZF
2 (g) and writing HF

2 (g) := ZF
2 (g)/B

F
2 (g), we have the following result which is a special

case of [15], Corollary II.12, resp., Theorem III.8:

14. Theorem. The perfect Fréchet–Lie algebra g possesses a weakly universal central

extension if there exists a continuous projection p : g̃ → HF
2 (g). In this case a weakly

universal extension is given by the Fréchet–Lie algebra g̃ with universal cocycle

ω : g× g → HF

2 (g) : (x, y) 7→ p([x ∧ y]).

If, moreover, g is a perfect Banach-Lie algebra, then the existence of a weakly universal

central extension is equivalent to the existence of a continuous projection p : g̃ → HF
2 (g).
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From now on let g be finite dimensional and semisimple. We put gA := A ⊗ g and

define a Lie bracket on gA by

[a⊗ x, b⊗ y] := ab⊗ [x, y]

With respect to this bracket gA becomes a perfectK-Lie algebra. If A is a Fréchet algebra,

then Theorem 14 yields both a criterion for the existence of a weakly universal central

extension of gA as well as a construction method for it. In the sequel we will see that such

an extension not even always exists but also can be described in a more explicit way.

We consider the action of g on S2(g) given by

x(y ∨ z) := [x, y] ∨ z + y ∨ [x, z],

put V (g) := S2(g)/gS2(g), and define a symmetric bilinear map κ : g× g → V (g) by

κ(x, y) := [x ∨ y],

where [z] denotes the class of an element z ∈ S2(g) in V (g). Since we have

κ([x, y], z) + κ(y, [x, z]) =
[
[x, y] ∨ z + y ∨ [x, z]

]
= [x(y ∨ z)] = 0.

for all x, y, z ∈ g, this map is invariant. Furthermore, it has the following universal

property:

15. Lemma. Let E be a Fréchet space and β : g × g → E a continuous invariant

symmetric bilinear map. Then there exists a unique (continuous) linear map β : V (g) → E

such that β = β ◦ κ.

Proof. Uniqueness of β is clear. For the proof of the existence we note that, because

of the symmetry of β, the universal property of S2(g) yields a linear map β̃ : S2(g) → E

with β̃(x ∨ y) = β(x, y). The invariance of β then implies that gS2(g) is contained in the

kernel of β̃, whence β̃ factors to the desired map β : V (g) → E.

Now we put zA := V (g)⊗ (Ω1
K
(A)/dAA) and define a map ωA : gA × gA → zA by

ωA(f ⊗ x, g ⊗ y) := κ(x, y)⊗ [fdA(g)],

where [α] denotes the class of α ∈ Ω1
K
(A) in Ω1

K
(A)/dAA. Taking the invariance of κ into

account, this map is easily verified to be a continuous 2-cocycle on gA and hence defines

a central extension of gA. For this central extension we have the following result:

16. Theorem. If the Lie algebra g is semisimple, then the Lie algebra g̃A := gA⊕ωA
zA

is a universal central extension of gA in the category of K-Lie algebras.

Proof. We note that the central extension g̃A is automatically universal if it is weakly

universal, since gA is perfect. So it remains to show that ωA is a universal cocycle. Before

doing this we fix some notation. For real vector spaces E and F and k ∈ N we denote by

Link(E,F ) the space of k-linear F -valued mappings on E and by Altk(E,F ) its subspace

of alternating mappings. If, moreover, E is a g-module we write

Efix := {v ∈ E | gv = {0}} and Eeff := span{xv |x ∈ g, v ∈ E}.

Identifying g with 1⊗ g ⊆ gA, an action of gA on Lin2(gA, z) is given by

(xβ)(y, z) = −β([x, y], z)− β(y, [x, z])
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for β ∈ Lin2(gA, z), x ∈ g, and y, z ∈ gA. Making use of the natural isomorphisms

Lin2(gA, z) ∼= Lin(gA ⊗K gA, z) ∼= Lin
(
(g⊗ g)⊗ (A⊗K A), z

)
∼= (g⊗ g)∗ ⊗ Lin(A⊗K A, z)

this action transforms to an action of g on the space (g ⊗ g)∗ ⊗ Lin(A ⊗K A, z) which

is trivial on the second factor and thus semisimple. Hence, Lin2(gA, z) and each of its

submodules is a semisimple g-module. Consequently, for the submodule Z2
K
(gA, z) of

continuous z-valued 2-cocycles we have

Z2
K
(gA, z) = Z2

K
(gA, z)fix ⊕ Z2

K
(gA, z)eff .(4)

Furthermore, we have for any x ∈ gA and any k ∈ N the insertion map

i(x) : Altk(gA, z) → Altk−1(gA, z) : α 7→ α(x, ·).

Taking ω ∈ Z2
K
(gA, z) the Cartan formula yields

xω = d(i(x)ω) + i(x)(dω) = d(i(x)ω) ∈ B2
K
(gA, z),

and this relation together with equation (4) implies

Z2
K
(gA, z) = Z2

K
(gA, z)fix +B2

K
(gA, z).

Therefore any central extension of gA by some z ∈ K can be described by a g-invariant

cocycle. So let ω ∈ Z2
K
(gA, z)fix. Its invariance implies

ω(1⊗ x, ab ⊗ [y, z]) = −ω(a⊗ y, b⊗ [z, x])− ω(b ⊗ z, a⊗ [x, y])

= −ω(a⊗ [x, y], b⊗ z)− ω(b ⊗ z, a⊗ [x, y])

= 0,

and thus

ω(1⊗ g, gA) = 0,(5)

since gA is perfect. Fixing a, b ∈ A, the map

ω(a,b) : g× g → z : (x, y) 7→ ω(a⊗ x, b ⊗ y)

is a continuous g-invariant bilinear map and therefore has to be symmetric, since g does

not possess any non-zero skew-symmetric g-invariant bilinear form (cf. [12]). In view of

Lemma 15, there exists a unique continuous linear map ω(a,b) : V (g) → z satisfying

ω(a,b) = ω(a,b) ◦ κ. From the uniqueness of the maps ω(a,b), (a, b) ∈ A × A, and the

continuity of ω, we deduce the existence of a continuous linear map

η : A⊗F A→ Lin(V (g), z)

satisfying

η(a⊗ b)
(
κ(x, y)

)
= ω(a⊗ x, b ⊗ y).

Now the skew-symmetry of ω together with the symmetry of κ and the fact that im(κ)

generates V (g) as a vector space imply that η is skew-symmetric. Using the invariance of

κ, the fact that ω is a 2-cocycle yields

η(ab⊗ c+ bc⊗ a+ ca⊗ b)
(
κ([x, y], z)

)
= 0
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for all a, b, c ∈ A and all x, y, z ∈ g. Since g is perfect and im(κ) is generating, we conclude

from the latter equation that η vanishes on all expressions of the form

ab⊗ c+ bc⊗ a+ ca⊗ b ∈ A⊗F A.

From (5) it follows that η vanishes on 1⊗A and since, in view of Lemma 5, the elements

of the form

a(1⊗ b− b⊗ 1)(1⊗ c− c⊗ 1) = a⊗ bc− ab⊗ c− ac⊗ b+ abc⊗ 1 ∈ A⊗F A

generate a dense subset of I2 (recall that I was defined to be the kernel of the multiplica-

tion map µ : A⊗F A→ A), we see that η vanishes on I2 and hence induces a continuous

linear map

η : Ω1
K(A) → Lin(V (g), z).

For this map we have

η(dA(a)) = η(1 ⊗ a− a⊗ 1) = 2η(1⊗ a) = 0,

whence it factors to a continuous linear map

ξ : Ω1
K(A)/dA(A) → Lin(V (g), z).

In view of the canonical isomorphism

Linc
(
Ω1

K
(A)/dAA,Lin(V (g), z)

)
∼= Linc

(
(Ω1

K
(A)/dAA)⊗ V (g), z

)
,

where Linc means continuous linear maps, we can consider ξ as a continuous linear map

zA → z, and with this identification the above calculations yield ω = −ξ ◦ ωA.

Having Theorem 9 in mind, we consider the special case A := C∞(M). We put

gM := C∞(M, g) ∼= gA and in order to obtain a convenient description of the universal

central extension of gM we set zM := Ω1(M)/dA, and define a continuous 2-cocycle ωM

on gM by

ωM (f ⊗ x, g ⊗ y) := κg(x, y)[fdg] ∈ zM ,

where κg denotes the Killing form of g. As dA is the annihilator of all continuous linear

functionals
∫
α
: Ω1(M) → R, α ∈ C∞(S1,M), it is closed in Ω1(M) and we have zM ∼= zA.

Since, furthermore, in case g is simple all invariant symmetric bilinear forms on g are

multiples of the Killing form, we get the following consequence of Theorem 16 which

generalizes Proposition 4.2.8 in [16]:

17. Corollary. If the Lie algebra g is simple, then the Lie algebra g̃M := gM⊕ωM
zM

is a universal central extension of gM .

Analogous to Corollary 17 we obtain another interesting consequence of Theorem 16

by taking Theorem 11 into account. We put Ac := C∞
c (M), gM,c := C∞

c (M, g) ∼= gA,

zM,c := Ω1
c(M)/dAc and define a continuous 2-cocycle ωM,c on gM,c by

ωM,c(f ⊗ x, g ⊗ y) := κg(x, y)[fdg] ∈ zM,c.

For the associated central extension of gM,c we then have the following result:

18. Corollary. If the Lie algebra g is simple, then the Lie algebra g̃M,c :=gM,c⊕ωM,c

zM,c is a universal central extension of gM,c.
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[4] H. Glöckner, Spaces of sections as topological modules, manuscript, Göttingen, 2001.

[5] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math.
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Algebra 20 (1992), 1145–1166.

[7] K. H. Hofmann and S. A. Morris, The Structure of Compact Groups, de Gruyter, Berlin,

1998.

[8] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.
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