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Abstract. Several anomalous facts about ∗-exponential functions of quadratic forms are
discussed.

1. Introduction. It is widely accepted that the most fundamental notion in mathe-

matics which deals with continuum is the calculus, where the calculus means the ordinary

undergraduate calculus.

Let u be the multiplication operator x· by the coordinate function x on R acting

on the space of all C-valued C∞ functions on R, and let v be the operator ih̄∂x. The

operators u and v generate an algebra Wh̄ over C, called the Weyl algebra.

The Weyl algebra is an associative algebra generated by u, v with the fundamental

relation [u, v] = −ih̄.
Note that we can change generators. For every A ∈ SL(2,C), let

[

u′

v′

]

= A

[

u

v

]

, A ∈ SL(2,C).(1)

Then it is obvious that [u′, v′] = −h̄i, and hence u′, v′ may also be viewed as generators.

u, v, or u′, v′ will be called a canonical conjugate pair.

In this note, we point out several anomalous features of topological completions of

the Weyl algebra under several topologies. For instance, u has both a right inverse and a

left inverse, and uv has two different inverses.

The calculations for these facts are not so simple and not straightforward. The detailed

systematic calculation will be published elsewhere.
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2. Completion of free tensor algebras. The most universal associative algebra is

the free tensor algebra. Taking the completion of the free tensor algebra under a suitable

topology, and making the quotient by the closure of the relation ideal, we can obtain

a complete topological associative algebra. This looks like the most universal way of

obtaining complete topological algebras. However, this is not correct, as we show in this

section.

Let T be the free tensor algebra generated by X1, X2. We introduce a topology into

T so that T becomes a topological algebra.

An element of T is written in the form

T =
∑

cαXα (finite sum), Xα = Xα1
⊗Xα2

⊗ · · ·⊗XαN where αi ∈ {1, 2},
α = (α1, α2, · · · , αN ). Xα is a word, and let |α| be the length N of the word Xα.

Define a system of semi-norms ‖ ‖τ,s (τ, s > 0) by

‖T ‖τ,s =
∑

|cα||α|τ |α|s|α|.
For a fixed τ , let Tτ be the completion of T with respect to the topology induced by the

system of semi-norms {‖ · ‖τ,s}s>0. Then one easily sees that

Tτ =
{

T =
∑

|α|≥0

cαXα (formal); ‖T ‖τ,s <∞ for any s > 0
}

.

Lemma 1. For any τ ≥ 0, Tτ becomes a Fréchet algebra satisfying

‖T1⊗T2‖τ,s ≤ ‖T1‖τ,es‖T2‖τ,es.
To consider the topological completion of the Weyl algebra Wh̄, we consider the two-

sided ideal Ih̄ generated by X1⊗X2 −X2⊗X1 + h̄i, where h̄ is a positive parameter. Let

Ih̄,τ be the closure of Ih̄ in Tτ .
Theorem 1. If τ ≥ 1

2 , then the quotient algebra Tτ/Ih̄,τ is a complete associative

algebra containing the Weyl algebra Wh̄ as a dense subalgebra.

However, if τ < 1
2 , then the quotient algebra collapses to the trivial one, i.e. 1 ∈ Ih̄,τ ,

hence Tτ/Ih̄,τ = {0}.
The proof of the first half is rather straightforward, but that of the second half is

not. The proof deeply depends on some facts observed in the next section. Since quotient

algebras are, by definition, associative, these cannot exhibit the anomalous phenomena

mentioned in the introduction.

3. Extension of the product formula. There is another way of taking the topo-

logical completion of the Weyl algebra Wh̄.

In general, there are so called ordering problems in the way of treating noncommutative

algebras such as the Weyl algebra. The ordering problem may be viewed as the problem of

expression of elements in a unique way. In the Weyl algebra, three kind of orderings: the

normal ordering, the anti-normal ordering, and the Weyl ordering are mainly used. In the

normal ordering we write elements in the form
∑

am,nu
m∗vn by arranging u to the left

hand side in each term. The anti-normal ordering is
∑

am,nv
m∗un. The Weyl ordering is

when we write
∑

am,nu
m

◦vn using the symmetric product ◦ defined by u◦v = 1
2 (u∗v+v∗u)
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etc. (See [OMY] for the details of symmetric product, but the reader need not care about

the precise definition. This can be easily recovered from the inverse product formula given

below.)

Through such an ordering, one can linearly identify the algebra with the space of all

polynomials. In other words, through such an ordering, one can view the Weyl algebra

as a non-commutative associative product structure defined on the space C[u, v] of all

polynomials. The product formulas are given respectively as follows:

• In the normal ordering, the product ∗ of the Weyl algebra is given by the ΨDO-

product formula as follows:

f(u, v) ∗ g(u, v) = f exp{h̄i(←−∂v◦
−→
∂u)}g =

∑

n

(ih̄)n

n!
∂n
v f ◦∂n

ug.

• In the anti-normal ordering, the product ∗ of the Weyl algebra is given by the

Ψ̄DO-product formula as follows:

f(u, v) ∗ g(u, v) = f exp{−h̄i(←−∂u•
−→
∂v)}g =

∑

n

(−ih̄)n
n!

∂n
uf •∂n

v g.

• In the Weyl ordering, the product ∗ of the Weyl algebra is given by the Moyal

product formula as follows:

f(u, v) ∗ g(u, v) = f exp
h̄i

2
{←−∂v∧̇−→∂u}g,

where
←−
∂v∧̇−→∂u =

←−
∂v · −→∂u − ←−∂u · −→∂v. Every product formula yields u ∗ v − v ∗ u = −h̄i,

and hence defines the Weyl algebra. Here, the commutative products ◦, •, · play only a

supplementary role to express elements in a unique way. We distinguish these to indicate

which ordering is used.

To justify these, we remark the following: Define derivations on the Weyl algebra by

∂u = 1
h̄iad(v), ∂v = − 1

h̄iad(u). Then the inverse product formulas

f(u, v)◦g(u, v) = f exp{−h̄i(←−∂v ∗ −→∂u)}g, f(u, v)•g(u, v) = f exp{h̄i(←−∂u ∗ −→∂v)}g,

f(u, v) · g(u, v) = f exp
h̄i

2
{←−∂u ∗ −→∂v −←−∂v ∗ −→∂u}g,

called the inverse ΨDO-, inverse Ψ̄DO-, and inverse Moyal product formula respectively,

give associative commutative algebras, isomorphic to the ordinary polynomial algebra.

Hence, these commutative products are defined by using the ∗-product only.
The replacement (pull-back) A∗ of u, v by u′, v′ gives an algebra isomorphism of Wh̄.

Thus, we may consider the ordering problem by using u′, v′ instead of u, v.

The following is the most useful property of the Moyal product formula:

Proposition 2. For every A ∈ SL(2,C), let Φ∗ be the replacement (pull-back) of u, v

into u′, v′ by the combination of the linear transformation with matrix A and a parallel

displacement:
[

u′

v′

]

= A

[

u

v

]

+

[

α

β

]

, A ∈ SL(2,C), (α, β) ∈ C2.

Then, Φ∗ is an isomorphism for both ∗- and ·-products.
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Note that other expressions do not have this property. It is easily seen that if ab 6= 0,

then

(au+ bv)m∗ = (au + bv)m· , but (au+ bv)m∗ 6= (au+ bv)m◦ .

In spite of this, we have the following formula for the normal ordering:

f(u) ∗ g(u, v) = f(u)◦g(u, v), f(u, v) ∗ g(v) = f(u, v)◦g(v).(2)

Remark 1. Several careful computations are required to fix the intertwiners between

different orderings, or between normal orderings using different canonical conjugate pairs.

Precise formulas will be given in another paper.

Since all product formulas are given by concrete forms, these extend to the following:

Let Hol(C2) be the space of all entire functions on C2 with the compact open topology.

• f ∗ g is defined if one of f, g is a polynomial.

• For every polynomial p = p(u, v), the left (resp. right) multiplication p∗ (resp. ∗p)
is a continuous linear mapping of Hol(C2) into itself with respect to the compact

open topology.

• By the polynomial approximation theorem, the associativity f ∗(g∗h) = (f ∗g)∗h
holds if two of f, g, h are polynomials.

We call such a system a twosided (C[u, v]; ∗)-module.

Remark 2. If one computes everything as formal power series of h̄, then the product

f ∗ g is well defined and gives an associative algebra. Hence, if f ∗ g is defined as a real

analytic function in h̄ ∈ [0, T ), T > 0, then the associativity holds.

Starting from a twosided (C[u, v]; ∗)-module, the ∗-product extends to a wider class

of functions. For every positive p > 0, set

Ep(C2) = {f ∈ Hol(C2); ‖f‖p,s = sup |f | e−s|ξ|p <∞, ∀s > 0}(3)

where |ξ| = (|u|2 + |v|2)1/2. The family {|| ||p,s}s>0 induces a topology on Ep(C2) and

(Ep(C2), ·) is an associative commutative Fréchet algebra, where the dot · is the ordinary
multiplication for functions in Ep(C2). Thus, · may be replaced by ◦ or • to indicate the

ordering. It is easily seen that for 0 < p < p′, we have a continuous embedding

Ep(C2) ⊂ Ep′(C2)

as a commutative Fréchet algebra (cf. [GS]), and that Ep(C2) is SL(2,C)-invariant under

the natural linear action (1).

It is obvious that every polynomial is contained in Ep(C2) and C[u, v] is dense in

Ep(C2) for any p > 0 in the Fréchet topology defined on it.

We remark that every exponential function eαu+βv
· is contained in Ep(C2) for any

p > 1, but not in E1(C2), and functions such as eau
2+bv2+2cuv

· are contained in Ep(C2)

for any p > 2, but not in E2(C2). Functions such as
∑ 1

(n!)1/p
un are contained in Eq(C2)

for any q > p, but not in Ep(C2).

Theorem 3. For 0 < p ≤ 2, Ep(C2) is closed under the product ∗, and (Ep(C2); ∗) is
isomorphic to T1/p/Ih̄,1/p.

For p > 2, we have the following by choosing p′ such that 1/p+ 1/p′ ≥ 1:
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Theorem 4. Each product formula stated above gives continuous bilinear maps

Ep(C2)× Ep′(C2)→ Ep(C2), Ep′(C2)× Ep(C2)→ Ep(C2).

4. Associativity breaks down in E2+(C2). Set E2+(C2) =
⋂

p>2 Ep(C2). Reflect-

ing the fact stated in Theorem 1, E2+(C2) is not closed under the product ∗. Moreover,

several strange phenomena occur in the twosided Ep′(C2)-module E2+(C2) for p′ < 2.

A direct calculation using the Moyal product formula shows that the coordinate func-

tion v has a right inverse v◦ = 1
v (1− e

2i
h̄ uv), and a left inverse v• = 1

v (1− e−
2i
h̄ uv) as the

complex conjugate of the right inverse given above. Here the complex conjugate means

the anti-homomorphism generated by ū = u, v̄ = v, ī = −i etc. These elements are in

E2+(C2).

If the associativity holds, then these should be the same genuine inverse. Hence we

must set
h̄
2i (v

◦ − v•) = 1
v sin

2
h̄uv = 0.

Since this is impossible, we loose also the associativity in E2+(C2).

On the other hand, we easily see by the Moyal product formula that

v ∗ e 2i
h̄ uv = 0 = e

2i
h̄ uv ∗ u, u ∗ e− 2i

h̄ uv = 0 = e−
2i
h̄ uv ∗ v.(4)

We call 2e
2i
h̄ uv a vacuum and 2e−

2i
h̄ uv a bar-vacuum and denote these by ̟00 and ¯̟ 00

respectively, but a bar-vacuum ¯̟ 00 is a vacuum with respect to the canonical conjugate

pair (−v, u).
Although the associativity breaks down in general, we can show that

(up ∗̟0,0 ∗ vq) ∗ (ur ∗̟0,0 ∗ vs) = δq,rq!(h̄i)
q ∗ up ∗̟0,0 ∗ vs.

Hence Ep,q = 1√
(h̄i)p+qp!q!

up ∗̟0,0 ∗ vq, p, q ∈ N, form matrix elements. Hence

{Ep,q; p, q ∈ N}
spans an associative algebra contained in (E2+(C2); ∗), and this is isomorphic to the

matrix algebra M(∞) = injlimM(k).

Note the following:

Proposition 5. By Zorn’s lemma, we can consider a maximal associative algebra in

the space (E2+(C2); ∗).
The space (E2+(C2); ∗) contains many maximal associative algebra with respect to

the ∗-product, but there is no standard manner to choose such an associative algebra. The

above observation shows that a half-inverse cannot exist in a non-commutative associative

algebra with an involutive anti-automorphism such as complex conjugation.

5. Star-exponential functions of quadratic forms. These strange phenomena

relate to ∗-exponential functions of quadratic forms. Note that the exponential function

e
t(au2+bv2+2cuv)
∗ is defined by the following evolution equation: Set e

t(au2+bv2+2cuv)
∗ =

F (t, u, v),

∂

∂t
F (t, u, v) = (au2+bv2+2cuv) ∗ F (t, u, v), F (0, u, v) = 1.(5)
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The right hand side is computed by the Moyal product formula as follows:

(au2+bv2+2cuv) ∗F (t, u, v) = (au2+bv2+2cuv)F

+h̄i{(bv+cu)∂uF − (au+cv)∂vF} − h̄2

4 {b∂2
uF−2c∂v∂uF+a∂2

vF}
This is a partial differential equation. If ab − c2 > 0, then this is the heat equation

and the existence of solutions is not ensured in general. This implies that the mapping

f(u, v) → e
t
h̄ (au2+bv2+2cuv)
∗ ∗ f(u, v) is not always defined. However, we see that a real

analytic solution in t is unique, if it exists.

Hence we assume that e
t(au2+bv2+2cuv)
∗ is a function of au2 + bv2 + 2cuv; that is,

e
t(au2+bv2+2cuv)
∗ = ft(au

2+bv2+2cuv).

Then, setting x = au2+bv2+2cuv, we have

d

dt
ft(x) = xft(x) − h̄2(ab−c2)

(

f ′
t(x) + xf ′′

t (x)
)

.(6)

The right hand side is the Bessel operator.

However, there is another method to treat this differential equation, called the method

of Lie groups. We assume that

e
t(au2+bv2+2cuv)
∗ = s(t)ea(t)u

2+b(t)v2+2c(t)uv),

then we only have to solve a system of ordinary differential equations.

Lemma 2. The solution of (6) with the initial function 1 is given by

1

cosh(h̄
√
ab−c2t)

exp

{

x

h̄
√
ab−c2

tanh(h̄
√

ab−c2 t)

}

.

If ab−c2 = 0, then we set

1

h̄
√
ab−c2

tanh(h̄
√

ab−c2 t) = t.

Note that if c2− ab = 1, then e
t(au2+bv2+2cuv)
∗ is singular at t = ± π

2h̄ . This expression

appears also in [MS] in a different context. The uniqueness of the real analytic solution

gives the exponential law if both sides are defined. In particular,

e
s
2h̄uv ∗ e t

2h̄uv =
1

1− st
e

s+t
1−stuv.

The formula of e
t(au2+bv2+2cu◦v)
∗ under the normal ordering with respect to the canon-

ical conjugate pair u, v is a little complicated to write down. We give here some of them:

e
t
h̄ (au2+2cu◦v)
∗ = e

a
4cih̄ (e4cit−1)u2+ 1

2ih̄ (e2cit−1)2u◦v
◦ .(7)

In particular, we see that e
π
h̄ (au2+u◦v)
∗ does not depend on a:

e
π
2h̄ (au2+2u◦v)
∗ = e

− 1
h̄i2u◦v

◦ = e
π
h̄ u∗v
∗ .

By the exponential law, we have in particular the following product formula:

e
1
h̄i su◦v
◦ ∗ e

1
h̄i tu◦v
◦ = e

1
h̄i (s+t+st)u◦v
◦ .
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Similarly, we have

e
t
h̄ (bv2+2cu◦v)
∗ = e

b
4cih̄ (e4cit−1)v2+ 1

2h̄i (e
2cit−1)2u◦v

◦ .(8)

In particular, e
π
h̄ (bv2+2u◦v)
∗ does not depend on b.

Note that if c2 − ab = 1, then

au2 + bv2 + 2cuv = (αu+ βv)(γu + δv), αδ−βγ = 2.

Note also that [αu+βv, γu+δv] = −2h̄i. Hence, et(au
2+bv2+2cuv)

∗ is treated in the normal

ordering with respect to the canonical conjugate pair

u′ =
1√
2
(αu+ βv), v′ =

1√
2
(γu+ δv).

By (7), (8) we see the following:

Theorem 6. Although e
t(au2+bv2+2cuv)
∗ is singular at t = ± π

2h̄ in the Weyl ordering,

for every a, b, c such that c2 − ab = 1, it is not singular in a suitably chosen normal

ordering.

Consider the set

ε00 = {e
π
2h̄ (au2+bv2+2cuv)
∗ ; c2 − ab = 1}.

Though the set ε00 looks like forming a 2-dimensional subset, the particular cases of (7)

and (8) show that it is in fact a degenerate set having the following properties:

Theorem 7. ε00 is formed by a single point with the following property: ε00∗ε00 = −1,
u ∗ ε00 + ε00 ∗ u = 0, v ∗ ε00 + ε00 ∗ v = 0.

The normal ordering expression of ε00 with respect to a canonical conjugate pair

(u′, v′) = (αu + βv, γu + δv) is ε00 = ie
2i
h̄ u′

◦v′

◦ where ◦ is the ordinary commutative

product identified with the normal ordering with respect to (u′, v′).

ε00 will be called the polar element. The proof of this fact is given by computing ε00
in normal orderings with respect to various canonical conjugate pairs.

Quadratic forms {au2 + bv2 + 2cuv} are closed under the commutator bracket, and

form a Lie algebra sl(2;C).

Theorem 8. e
t(au2+bv2+2cuv)
∗ is contained in E2+(C2)∪ε00∗E2+(C2) for every a, b, c ∈

C. If one identifies the ±1 multiplication factors, then e
t(au2+bv2+2cuv)
∗ generates a Lie

group which is isomorphic to SL(2;C).

6. ∗-delta functions, ∗-Heaviside functions. Recall that e
t
h̄u·v
∗ is defined by the

equation
d

dt
ft(u, v) =

1

h̄
(u · v) ∗ ft(u, v), f0(u, v) = 1.

The solution is given by 1
cosh t

2

e
i
h̄ (tanh t

2
)2u·v in the Weyl ordering. Hence,

∫ ∞

0

1

cosh t
2

e
i
h̄ (tanh t

2
)2u·vdt,

∫ 0

−∞

1

cosh t
2

e
i
h̄ (tanh t

2
)2u·vdt(9)
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exist in the space E2+(C2). It follows that u · v has two different inverses as follows:

(u·v)−1
+i0 = −i

∫ ∞

0

e
it
h̄ u·v
∗ dt, (u·v)−1

−i0 = i

∫ 0

−∞

e
it
h̄ u·v
∗ dt.(10)

The difference is given by using the Bessel function J0:

(u·v)−1
+i0 − (u·v)−1

−i0 = −i
∫ ∞

−∞

e
it
h̄ u·v
∗ dt =

π

2i
J0(

2

π
u · v)(11)

which may be viewed as the ∗-delta function −iδ∗(u ·v). Hence the associativity must

break down, and

(u·v) ∗ δ∗(u·v) = δ∗(u·v) ∗ (u·v) = 0.(12)

Thus, it is impossible to treat (u ·v)−1
+i0 and (u ·v)−1

−i0 in the same associative algebra.

Indeed, we see that (u·v)−1
+i0 ∗ (u·v)−1

−i0 diverges.

Note that if z is the complex coordinate function on C, then

(u·v − z)−1
+i0 = −i

∫ ∞

0

e
it
h̄ (u·v−z)
∗ dt, (u·v − z)−1

−i0 = i

∫ 0

−∞

e
it
h̄ (u·v−z)
∗ dt

are holomorphic on the domain {z; Imz > −h̄/2}, {z; Imz < h̄/2} respectively. Thus,

the ∗-delta function δ∗(u · v) is expressed as the difference of the boundary values of two

holomorphic functions (cf. [M]).

Since u ∗ v = u · v − h̄i
2 and eitu∗v∗ = eitu·v∗ e

h̄t
2 is proved by the uniqueness of a real

analytic solution, we see that

̟00 = lim
t→∞

eitu∗v∗ .

Hence this element is explained as an equilibrium state in [BL].

By (4), we see

(uv − h̄i
2 ) ∗ e

2i
h̄ uv = u ∗ v ∗ e 2i

h̄ uv = 0.

However, uv− h̄i
2 has an inverse contained in E2+(C2). Thus, the associativity fails again

in E2+(C2):
(

(uv− h̄i
2 )

−1 ∗ (uv− h̄i
2 )

)

∗ e 2i
h̄ uv 6= (uv− h̄i

2 )
−1 ∗

(

(uv− h̄i
2 ) ∗ e

2i
h̄ uv

)

.

Thus, uv− h̄i
2 and ̟00 cannot be elements of an associative algebra at the same time.

But, this is the same as to say that ̟00 and ¯̟ 00 cannot be elements of an associative

algebra at the same time.

Define the ∗-Heaviside function by

H∗(uv) =
1

2π

∫ ∞

−∞

1

c+ it
eituv∗ dt, c > 0.(13)

Note that H∗(uv) ∈ E2+(C2) and H∗±(uv − z) = 1
2π

∫∞

0
1

c±ite
it(uv−z)
∗ dt are holomor-

phic functions respectively on the upper half-plane H+ and the lower half-plane H−, and

H∗ is viewed as the difference of boundary values, H∗+ −H∗−.

By using the exponential law, it is not hard to see that

H∗(uv) ∗H∗(uv) = H∗(uv), H∗(uv) ∗H∗(−uv) = 0,

H∗(uv) +H∗(−uv) = 1, H ′
∗(uv) = δ∗(uv).
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On the other hand, computing the adjoint action

e
t(u2−v2)
∗ ∗ f(uv) ∗ e−t(u2−v2)

∗ = exp{t ad(u2 − v2)}f(uv)

we obtain the exchange rule

e
π
4
(u2−v2)

∗ ∗ f(uv) = f(−uv) ∗ e
π
4
(u2−v2)

∗ .(14)

Set

ξ = e
π
4
(u2−v2)

∗ ∗H∗(uv), η = H∗(uv) ∗ e−
π
4
(u2−v2)

∗ .

After checking the associativity via Remark 2, we have the formulas

ξ2 = η2 = 0, ξ ∗ η + η ∗ ξ = 1.

This gives that the 2 × 2-matrix algebra M(2;C), and hence SL(2;C) is contained in

E2+(C2). However, this is not the same group given in Theorem8.

7. Vacuum representations. In this section, we give the most popular way to

choose an associative algebra contained in E2+(C2).

We set ̟00 = 2e
2i
h̄ uv, and ¯̟ 00 = 2e−

2i
h̄ uv. By the Moyal product formula, we see

easily that

v ∗̟00 = 0 = ̟00 ∗ u, u ∗ ¯̟ 00 = 0 = ¯̟ 00 ∗ v.

Thus, ̟00 plays the same role as the vacuum |0〉 such that v|0〉 = 0.

By a direct calculation using the Moyal product formula, we have for every entire

function f(u) of one variable that

f(u) ∗̟00 = f(2u) ∗̟00, ̟00 ∗ f(u) = f(0).

Let E2+(Cu) be the subspace consisting of all f(u) ∈ E2+(C2). Hence, we have

Proposition 9. E2+(Cu) ∗̟00 ⊂ E2+(C2).

The point is the following fact, proved by polynomial approximation:

Proposition 10. For any entire function h(u) ∈ Hol(C) and any polynomial p(u, v),

the associativity

p(u, v) ∗ (h(u) ∗̟00) = (p(u, v) ∗ h(u)) ∗̟00

holds.

For any polynomial p◦(u, v) in the normal ordering, the linear operator L(p◦) defined

by

h(u) ∗̟00 7→ p◦(u, v) ∗ h(u) ∗̟00 = p◦(u, h̄i∂u) ∗ h(u) ∗̟00

is a continuous linear operator of Hol(C) ∗ ̟00 into itself with respect to the compact

open topology.

Proposition 11. If L(p◦n) converges weakly to a continuous linear operator L on

Hol(C) ∗ ̟00, then there is f◦ ∈ Hol(C) such that lim p◦n = f◦ in the compact open

topology.
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We define L(f◦(u, v)) = limL(p◦n(u, v)). This is justified by the fact that the ∗-
product f◦ ∗ (h(u) ∗̟0,0) is defined by

f◦(u, v) ∗ (h(u) ∗̟00) = lim p◦n(u, v) ∗ h(u) ∗̟00.

Let A(̟00) be the totality of f◦ ∈ Hol(C2) such that there is a polynomial approximation

p◦n of f such that L(p◦n) weakly converges to a continuous linear operator L from

Hol(C) ∗̟00 into itself.

The following is one of the most popular ways to choose an associative algebra:

Theorem 12. Extending the product ∗ by
L(f◦)L(g◦) = L(f◦ ∗ g◦),

A(̟00) (⊂ Hol(C2)) forms an associative algebra whose product is an extension of the ∗
product defined on the space of polynomials.

For every compactly supported smooth function f̂(t) on R, the Fourier transform

f∗(u) =
1√
2π

∫

R

f̂(t)eitu∗ dt

gives an entire function. We have

̟00 ∗ f∗(u) ∗̟00 =

∫

R

f̂(t)dt.

Hence, the notion of trace is naturally involved in our system. If

ḡ∗(u) =
1√
2π

∫

R

¯̂g(t)eitu∗ dt

then we define the inner product by

〈f∗, g∗〉 = ̟00 ∗ f∗(u) ∗ ḡ∗(u) ∗̟00.

Here is the list of vacuum representation of several elements:

u = x·, v = ih̄∂x, v◦ =
1

ih̄

∫ x

0

dx,

u
•
(f)(x) =

1

x
(f(x) − f(0)), ̟00(f)(x) = f(0),

and

ε00(f)(x) = if(−x).
However, ¯̟ 00, u

◦, v•, δ∗, H∗ etc. are not expressed in the vacuum representation.
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in: Conférence Moshé Flato 1999, Quantizations, Deformations, and Symmetries, Vol.

II, Kluwer, 2000, 211–214.



BREAK SYMMETRY 163

[Om] H. Omori, Infinite Dimensional Lie Groups, AMS, 1997.

[OMY] H. Omori, Y. Maeda and A. Yoshioka, Weyl manifolds and deformation quantization,

Adv. Math. 85 (1991), 224–255.

[O,el] H. Omori, Y. Maeda, N. Miyazaki and A. Yoshioka, Deformation quantization of
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