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Abstract. In a series of three lectures we give an introduction to symmetric spaces with a

certain additional structure: in the first lecture we present examples of interesting structures on

symmetric spaces; in particular, generalized conformal structures and the problem of determi-

ning their automorphism groups gave rise to the investigation of Jordan structures which are

the topic of the following two lectures: we introduce them via the problem of finding a twisted

complexification of a symmetric space; the main result to be proved here is that such complexi-

fications correspond bijectively to Jordan extensions of the curvature. Classification shows that,

for classical symmetric spaces, there is “generically” one and only one Jordan extension; it is an

open and deep problem to find a good conceptual explanation of this fact.

The following notes follow closely in style and contents the lectures I have given in

Będlewo during the week from September 11th to September 15th, 2000; I have tried to

keep them as elementary as possible. The material covered by the last two lectures is

taken from my paper [Be01]; a more detailed exposition of the whole theory as well as

many more references to related topics can be found in [Be00].

I thank the organizers of the “Workshop on Lie gropus and Lie algebras” held in Bę-

dlewo in September 2000, and in particular, Aleksander Strasburger, for inviting me

to give this series of lectures at this wonderful place which proved to be a perfect

meeting-ground for mathematicians from the east and from the west.

1. Introduction: “Rich symmetric spaces”. Let me first recall some basic notions

on “poor” symmetric spaces (by this I mean symmetric spaces without any additional

structure) and then give some examples of “rich” symmetric spaces (that is, symmetric

spaces having some interesting extra structure).
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1.1. Symmetric spaces. There are four definitions of a symmetric space M :

(1) The group theoretic one: M = G/H is a homogeneous space, where H is essentially

the group of fixed points of an involution σ of a Lie group G.

(2) The differential geometric one:M is a real manifold with a complete torsionfree affine

connection ∇ whose curvature is covariantly constant: ∇R = 0.

(3) The mixed one:M is a real manifold with a complete affine connection∇ such that the

geodesic symmetry σp (which is defined by σp(Expp(v)) = Expp(−v)) with respect to

any point p ∈M is an automorphism of ∇.

(4) The algebraic one (due to O. Loos [Lo69]), which reflects axiomatically the properties

of the map µ :M ×M →M given by µ(x, y) := σx(y) with σx as in (3).

In these lectures I will mainly use the group theoretic definition (1) of a symmetric space

since it is the one which is almost exclusively used in harmonic analysis. However, my

favorites are really (2) and (4) since they contain much of the geometry and lead to

good categories. Starting from (1), it is rather easy to arrive at (2)–(4) (cf. [Be99]); the

converse requires considerably more work (cf. [KoNo69] and [Lo69]). Here, I will just

briefly explain how definition (4) is related to (3): defining µ : M ×M → M as above,

one easily sees that this map has the properties

(M1) µ(x, x) = x,

(M2) µ(x, µ(x, y)) = y,

(M3) σx is an automorphism of µ, i.e. µ(x, µ(y, z)) = µ(µ(x, y), µ(x, z)),

(M4) the fixed point x of σx is isolated.

Definition 1.1 (O. Loos [Lo69]). A symmetric space is a real manifold M with a

smooth “multiplication map” µ :M ×M →M satisfying (M1)–(M4).

Theorem 1.2 (O. Loos [Lo69]). Any connected symmetric space is of the form M =

G/H as in (1) above; one can take G := G(M) to be the group generated by all σxσy with

x, y ∈M , called the transvection group.

Example 1.3. The group case: M = G is a Lie group; the symmetry w.r.t. the unit

element is the inversion: σe(x) = x
−1, and transporting this to an arbitrary point y yields

µ(y, x) = yx−1y.

Example 1.4. Let M be the space of invertible real symmetric n × n matrices with

µ(Y,X) = Y X−1Y as above. This is the sub-symmetric space of GL(n,R) fixed under

the automorphism “transposed”. It is non-connected; its connected components are of

the form Mp,q = GL(n,R)/O(p, q) where (p, q) is the signature of the matrix X .

1.2. Symmetric spaces with additional structures. Here are examples of G-invariant

(to be precise: G(M)-invariant) structures S on a symmetric spaceM = G/H—the most

classical structure is certainly the one given in the following Example (1):

(1) S is an invariant Riemannian metric; (M,S) is a Riemannian symmetric space (clas-

sical theory started by E. Cartan, see the book [He78] by S. Helgason).

(2) S is an invariant pseudo-Riemannian tensor field: (M,S) is a pseudo-Riemannian

symmetric space. The geometry is much more complicated than for (1) due to the
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lack of a de Rham decomposition (important work on such spaces has been done by

M. Berger and his school; see the article [B57]).

(3) S is an invariant symplectic structure; (M,S) is a symplectic symmetric space. Exam-

ples are the one-sheeted hyperboloid

M = SO(2, 1)/ SO(1, 1) (1.1)

or the spaces

M = GL(p+ q,R)/(GL(p,R)×GL(q,R)). (1.2)

These spaces are interesting since they may provide a good context for quantization.

(4) S is an invariant (almost) complex structure (see Chapter 2 for definition). Examples

are: the unit disc

M = D = SU(1, 1)/ SO(2), (1.3)

and more generally any Hermitian symmetric space, but also all symmetric spaces of

the form GC/HC with complex Lie groups and holomorphic involution σ.

(5) S is an invariant (almost) para-complex structure or polarization (see Section 3.2 for

definition). These spaces have locally a direct product structure (Example: the space

given by Equation (1.2) above), but of course global direct products M = M1 ×M2
also fall into this category. Spaces of the type as in (1.2) are well-known by the work

of S. Kaneyuki (see [KanKo85]).

(6) S is an invariant quaternionic structure; (M,S) is a symmetric quaternion-Kähler

manifold. The mere definition of this structure is not at all evident—see Chapter 14

in [Bes87]. Important work on such spaces is due to J. Wolf.

(7) S is an invariant causal structure; (M,S) is a causal symmetric space: roughly, S =

(Cx)x∈M is a distribution of regular cones Cx living in tangent spaces TxM ; cf. the

lectures by J. Faraut or [HO96] for the precise definition. Examples are given by the

one-sheeted hyperboloid (see Equation (1.1)) or by the group case M = U(n) (the

tangent space at the unit element is iHerm(n,C), and the latter contains the model

cone Ce of positive definite Hermitian matrices).

• We get even richer structures by looking at intersections of the preceding categories:

for instance, the intersection (7)∩(1) contains the interesting class of symmetric cones

(cf. lectures by J. Faraut and the book [FK94]) and of their compact duals such as for

instance U(n). I have the impression that these spaces essentially exhaust (7) ∩ (1).

• Similarly, (7)∩(3) contains the interesting class of Cayley-type spaces (their definition

is given in the lecture by J. Faraut; see also the book [HO96]); for instance, the

one-sheeted hyperboloid or the space

M = Sp(n,R)/GL(n,R) (1.4)

are of this kind. As above, I have the impression that, essentially, these spaces exhaust

the class (7) ∩ (3).

(8) S is a generalized conformal structure in the sense introduced by Gindikin, Goncharov,

Kaneyuki and others:

Definition 1.5 [GiKa98]. A generalized conformal structure (abbreviated GCS) on a

manifold M over F = R or C is given by conal sets Cx ⊂ TxM (this means just that Cx
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is stable under multiplication by non-zero scalars in TxM) such that all Cx are linearly

isomorphic to one fixed model set C ⊂ Fn having the following property: the group of

linear automorphisms of C,

G(C) := Aut(C) := {g ∈ GL(n,F)| g(C) = C},

has an open orbit in Fn.

A typical example of a GCS is given by the real Grassmannian

M = Grasp,p+q(R) = {E ⊂ R
p+q|E subspacewith dimE = p} (1.5)

which carries the structure of a symmetric space

M ∼= O(p+ q)/(O(p)×O(q)). (1.6)

As base point o ∈ M we fix the canonical decomposition Rp+q = Rp ⊕ Rq. Then the

tangent space ToM can be naturally identified with the space V := Mat(q, p,R) of real

q × p-matrices: to an element X ∈ V we associate its graph

ΓX = {(v,Xv)| v ∈ R
p} ∈ Grasp,p+q(R).

Then

Γ : V →M, X 7→ ΓX

is an imbedding with open dense image, and we can identify Γ(V ) with ToM . In ToM we

consider the conical set

C := Co := {X ∈Mat(q, p,R)| rank(X) < min(p, q)}

of matrices having rank less than the maximal possible rank. The set C is stable under

the action of GL(q,R)×GL(p,R) from left and right,

(GL(p,R)×GL(q,R))× V → V, ((g, h), X) 7→ gXh−1,

and the group G(C) is (up to connected components in case p = q) given by the effective

group of this action. It is clear that this group has an open orbit in Mat(q, p,R), namely

the set of all matrices having the maximal possible rank min(p, q). Therefore (Cx)x∈M
with Cg.o = Tog · Co (g ∈ O(p+ q)) defines a GCS on M .

Automorphisms. Given our structure S, an immediate question is to determine the

automorphism group of S: by assumption, S is G(M)-invariant, that is, G(M) ⊂ Aut(S).

What about the converse? Let us look again at the examples:

(1) In the Riemannian semisimple case we have equality; in the flat case G(M) is the

translation group which is smaller than Aut(S) (group of isometries of a Euclidean

vector space). However, we still have Aut(M) = Aut(S).

(3) In the symplectic case there is no hope to get equality: the group of automorphisms

of a symplectic structure is in general infinite dimensional, whereas Aut(M) always

is a finite dimensional Lie group.

(4) In the holomorphic case the situation is similar. However, in certain cases such as

bounded symmetric domains, the group Diffhol(M) of globally defined holomorphic
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diffeomorphisms may be equal to G(M). The “pseudogroup” of locally defined holo-

morphic diffeomorphisms is always “infinite dimensional” (since locally we are just

on some Cn; see [Ko72] for the formal definition of pseudogroups).

(7) No generalities are known for causal diffeomorphisms on causal symmetric spaces

(it seems that the coupling of the two structures is not “rigid” enough to permit

general statements). As above, it is important to distinguish local and global causal

diffeomorphisms. In some cases they can be entirely described, e.g. in the case M =

U(n) (n > 1): here the locally defined causal maps always extend to global ones, given

by elements of the group SU(n, n) acting via the Cayley transform on U(n). (This

has been conjectured by I. Segal [Se76] and proved by S. Kaneyuki [Kan89] using

Cartan-connections and by the author [Be96a,b] using Jordan theoretic methods.)

(8) The same remarks as in (7) apply to GCS. In the case of the real Grassmannians

one can deduce from a theorem by Chow [Ch49] (see also [D63]) that locally defined

conformal diffeomorphisms always extend globally, given by an element of PGL(p+

q,R).

What has all this to do with Jordan structures? Although I will not really be able

to explain this here, I would say that Jordan structures have an interesting interac-

tion with all structures mentioned so far; in a way, they single out the “good” and

“non-pathological” cases (where for instance the automorphism problem can be solved)

and thus provide a means to understand a bit of all this.

2. Complexifications and Hermitifications. Among all the structures mentioned

in the first lecture, I will choose the complex structures as point of departure. The problem

I am interested in can be motivated as follows by ordinary linear algebra: the Euclidean

vector space (Rn,
∑

i xiyi) admits two different kinds of complexification:

(Rn,
∑

i xiyi)
ւ ց

(Cn,
∑

i ziwi) (Cn,
∑

i ziwi)

—the first is the ordinary complexification functor ⊗RC associating to a R-bilinear form b

the C-bilinear extension bC, and the second is the “Hermitification” bC(z, w) of b; for real

analysis this is in a sense more interesting than bC. Now the question is: can something

similar be done for symmetric spaces:

M = G/H
ւ ց

MC = GC/HC Hermitification ?

I will explain that the ordinary complexification functor is indeed perfectly well-defined

for all symmetric spaces (left hand side) and that there is a good definition of a Hermi-

tification or twisted complexification, but the problem of existence and uniqueness of the

latter is far from being trivial. It was trivial in our motivating linear algebra example,

essentially because vector spaces are flat, whereas general symmetric spaces are curved

and thus there will be “curvature obstructions”. Therefore I will start by recalling the

linear algebra of the curvature of a symmetric space.
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2.1. Infinitesimal version. Assume that M = G/H is a symmetric space with involu-

tion σ : G → G and base point o = eH . As usual, one decomposes the Lie algebra g of

G into the sum g = h⊕ q of ±1-eigenspaces of the differential σ̇ : g→ g. Then [q, q] ⊂ h,

[h, q] ⊂ q, and therefore, for all X,Y, Z ∈ q,

[X,Y, Z] := −R(X,Y )Z := [[X,Y ], Z]

again belongs to q. (Evaluation of vector fields gives a bijection q→ ToM , and under this

identification R(X,Y )Z really is the curvature tensor at the base point.) The following

properties are immediately verified:

(LT1) R(X,Y ) = −R(Y,X)

(LT2) R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0

(LT3) D := R(X,Y ) is a derivation of [·, ·, ·], i.e.

D[U, V,W ] = [DU, V,W ] + [U,DV,W ] + [U, V,DW ].

Definition 2.1. A Lie triple system (LTS) is a vector space q together with a trilinear

map satisfying the properties (LT1)–(LT3).

Theorem 2.2. There is a bijection between (real finite dimensional) Lie triple systems

and (connected simply conncected) symmetric spaces with base point.

Proof. We have seen how to associate a LTS to a symmetric space. For the co-

nverse, we associate to a LTS q the Lie algebra g := q ⊕ h, where h = Der(q) is

the algebra of derivations of the LTS q with bracket defined by [(X,D), (X ′, D′)] =

(DX ′ −D′X, [D,D′] − R(X.X ′)), and then construct in the usual way a corresponding

connected simply connected symmetric space G/H . (The bijection is in fact an equiva-

lence of categories, but this is more difficult to prove—see [Lo69].)

Now, invariant objects such as tensor fields on M = G(M)/H can be reduced to

H-invariant objects on the LTS q, and if M is connected simply connected (or if we just

look at the local situation), this is equivalent to invariance under h = [q, q]. In particular,

we are interested in complex structures:

Definition 2.3. An almost complex structure on M is a tensor field (Jx)x∈M of type

(1, 1) such that J 2x = − idTxM for all x ∈M .

By the preceeding remark, an almost complex structure on M is G(M)-invariant iff

we have

R(X,Y )JZ = JR(X,Y )Z (2.1)

for all X,Y, Z ∈ q, with J = Jo. (If you are a geometer, you may read this also as a

tensor field formula.) It is known that invariant complex structures on symmetric spaces

are integrable, but this will not be used before the final Chapter 4.

2.2. Straight complexification

Proposition 2.4. Any real LTS (q, R) admits a unique extension to a C-trilinear

LTS (qC, RC) on qC = q⊗R C.

Proof. By the universal property of tensor products, ⊗RC is a functor, i.e. all identities

(such as (LT1)–(LT3)) which can be expressed by commutative diagrams remain valid
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after complexification. (If you are more used to work with Lie algebras, you may use the

corresponding fact for Lie algebras and note that the complexification gC = hC ⊕ qC of

the decomposition g = h⊕ q defines the desired LTS qC.)

On the space level, the inclusion (q, R) ⊂ (qC, RC) lifts locally to an inclusion of spaces

M = G/H →MC = GC/HC (2.2)

which we call the straight complexification of M (it is not always global, but for the

moment we are only interested in the local situation).

2.3. Twisted complexifications. I will motivate my definition of a twisted complexifi-

cation by the well-known theory of Hermitian symmetric spaces, but one may treat at

the same time also the pseudo-Hermitian case:

Definition 2.5. We say that (M, g,J ) is a pseudo-Hermitian symmetric space ifM is

a symmetric with an invariant pseudo-Riemannian tensor field g and an invariant almost

complex structure J such that, for all vector fields X,Y , we have g(JX,J Y ) = g(X,Y ),

i.e.

g(JX,Y ) = −g(X,J Y ).

Lemma 2.6. If (M, g,J ) is a pseudo-Hermitian symmetric space, then the identity

R(JX,Y ) = −R(X,J Y )

holds.

Proof. There is a very useful identity in (pseudo-) Riemannian geometry (see [Hel78]

or [Lo69]):

g(R(X,Y )U, V ) = g(R(U, V )X,Y ).

We apply it twice in the following calculation:

g(R(JX,Y )U, V ) = g(R(U, V )JX,Y ) = g(JR(U, V )X,Y )

= −g(R(U, V )X,J Y ) = −g(R(X,J Y )U, V ).

Since g is non-degenerate, we get the claim.

Definition 2.7. An invariant almost complex structure J on a symmetric space M

(resp. on a LTS (q, R)) is called twisted if it satisfies the identity

R(JX,Y ) = −R(X,JY ).

A twisted complexification (MhC,J ) of a symmetric space M is a symmetric space MhC
with invariant twisted complex structure J such that M is (locally) isomorphic to a real

form of MhC (that is, M is the space fixed under a conjugation τ : τ is an automorphism

of MphC of order 2 and is almost anti-holomorphic in the sense that τ · J = −J ).

Example 2.8. IfM = O(p+q)/(O(p)×O(q)) is the real Grassmannian, then a twisted

complexification is given by the complex Grassmannian MhC = U(p+ q)/(U(p)×U(q));

the latter is well-known to be a compact Hermitian symmetric space and thus by Lemma

2.6 is twisted complex. More examples will be given later (Chapter 3).

Now two questions arise:
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A) does M have a twisted complexification?

B) if so, how many (inequivalent ones) are there?

The answer is in general not known, however, a more careful analysis by using Jordan

theory suggests that it might be: “generically, there is one and only one!”

3. Jordan triple systems. Historically, Max Koecher was the first to realize that

there is a close connection between some Jordan algebras and some bounded symmetric

domains (see [Koe69]); later O. Loos [Lo77] (see also the book [Sa80]) put this into a

more precise form by establishing a bijection between positive Hermitian Jordan triple

systems and bounded symmetric domains. In this chapter I will extend this to much more

general bijections between certain geometric and algebraic objects.

3.1. Hermitian JTS. Assume that (M,J ) is a symmetric space with invariant twisted

almost complex structure J .

Definition 3.1. The structure tensor T of (M,J ) is the invariant (3, 1)-tensor field

defined by

T (X,Y, Z) := T (X,Y )Z := −
1

2
(R(X,Y )Z + JR(X,J Y )Z)

= −
1

2
(R(X,Y )Z − JR(X,J−1Y )Z).

The last line shows that T (X, ·, Z) is the C conjugate-linear part of the endomorphism

−R(X, ·)Z. This gives the first item of the following list of properties; the others are also

very easily verified, so I leave the proof as a useful exercise to the reader.

Proposition 3.2. The structure tensor has the following properties:

(1) T (X,JY, Z) = −J T (X,Y, Z)

(2) T (X,Y,JZ) = J T (X,Y, Z)

(3) T (X,Y, Z) = T (Z, Y,X)

(4) T (JX,Y, Z) = J T (X,Y, Z)

(5) T (X,Y, Z)− T (Y,X,Z) = −R(X,Y )Z

(6) h acts as a Lie algebra of derivations of T

(7) J is a derivation of T , i.e.

J T (X,Y, Z) = T (JX,Y, Z) + T (X,J Y, Z) + T (X,Y,JZ).

Proposition 3.3. The structure tensor satisfies the following identities:

(JT1) T (U, V,W ) = T (W,V,U)

(JT2) T (X,Y )T (U, V,W ) = T (T (X,Y )U, V,W )− T (U, T (Y,X)V,W )

+T (U, V, T (X,Y )W ).

Proof. (JT1): this is (3) above.

(JT2): If D is a derivation of T , then JD is a skew-derivation of T in the following

sense:

JD T (X,Y, Z) = J(T (DX,Y, Z) + T (X,DY,Z) + T (X,Y,DZ))

= T (JDX, Y, Z)− T (X, JDY,Z) + T (X,Y, JDZ).
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Now, R(X,Y ) is a derivation of T (since h acts by derivations of T ). Thus J R(X, JY )

is a skew-derivation; the sum of these two is −2T (X,Y ). Their difference is

R(X,Y )− JR(X, JY ) = R(X,Y ) + JR(JX, Y )

= −(R(Y,X) + JR(Y, JX)) = 2T (Y,X).

Using this, we get

T (X,Y )T (U, V,W ) = −
1

2
(R(X,Y ) · T (U, V,W ) + J R(X, JY ) · T (U, V,W ))

= −
1

2
(T
(

(R(X,Y ) + J R(X, JY ))U, V,W
)

+

T
(

U, (R(X,Y )− J R(X, JY ))V,W
)

+

T
(

U, V, (R(X,Y ) + J R(X, JY ))W
)

)

= T
(

T (X,Y )U, V,W
)

− T
(

U, T (Y,X)V,W
)

+ T
(

U, V, T (X,Y )W
)

.

This is the identity (JT2).

Definition 3.4. A Jordan triple system (abbreviated JTS) is a vector space V with

a trilinear map T : V × V × V → V satisfying the identities (JT1) and (JT2) from the

preceding proposition. A Hermitian JTS is a JTS (V, T ) with a complex structure J such

that T is J-linear in the outer varibales and J-antilinear in the middle variable.

Thus Propositions 3.3 and 3.2 say that the structure tensor defines a Hermitian JTS

on q. For the converse we need

Lemma 3.5 (Meyberg 1970). For any JTS T , the formula

R(X,Y )Z = −(T (X,Y, Z)− T (Y,X,Z))

defines a LTS R := RT on V .

Proof. (LT1) is immediate; for (LT2) use (JT1), and for (LT3) note first that (JT2)

implies that R(X,Y ) is a derivation of T ; but any derivation of T is also one of R; so

R(X,Y ) is a derivation of R.

An easy calculation shows that RT is twisted complex if T is Hermitian. Summing

up, we have proved the following result:

Theorem 3.6. There is a bijection between Hermitian JTS and twisted complex LTS

and thus also between Hermitian JTS and (connected simply connected) twisted complex

symmetric spaces with base point.

With the suitable definitions, one realizes that these bijections are in fact equivalences

of categories.

3.2. Polarized JTS. A nice feature of the theory developed so far is that everything

goes through if we work with polarizations instead of almost complex structures, i.e.

with tensor fields (Ix)x∈M satisfying I
2
x = idTxM . The analogue of Theorem 3.6 then

states that there is a bijection between polarized JTS and twisted polarized LTS and thus

between polarized JTS and symmetric spaces with invariant twisted polarizations. Almost

para-complex structures are polarizations having ±1-eigenspaces of equal dimension, and
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(twisted and straight) para-complexifications can now formally be defined in the same way

as for complexifications—I leave to the reader the task of finding the correct definitions...

That these notions correspond to non-trivial structures can be motivated by the usual

theory of Hermitian symmetric spaces: there, given a twisted complex LTS (q, R, J), one

usually complexifies once more to get (qC, RC, JC) with a new complex structure i; it

satisfies

(iJC)
2 = i2J2C = idqC

and

RC(iJCX,Y ) = iRC(JCX,Y ) = −iRC(X, JCY ) = −RC(X, iJCY );

thus iJC is an invariant twisted para-complex structure on on RC.

3.3. General Jordan triple systems

Definition 3.7. The correspondence JTS → LTS, T 7→ RT defined by Lemma 3.5

(which is functorial in an obvious sense) is called the (algebraic) Jordan-Lie functor. If a

LTS R is of the form RT for a JTS T , then T is called a Jordan extension of R.

The following result is the main theorem of this series of lectures:

Theorem 3.8. Let (q, R) be a (real finite dimensional) LTS. Then there are one-to-one

correspondences between the following objects:

(1) Jordan extensions T of the LTS (q, R),

(2) twisted complexifications (qC, RhC) of (q, R),

(3) twisted para-complexifications (qphC, RphC) of (q, R).

Proof. (2), (3) → (1): The main point is: given a twisted (para-) complexification,

the structure tensor T can be restricted to the real form q—in fact, the conjugation τ is

indeed an automorphism of T because J appears twice in the definition of T and thus

the two corresponding minus signs cancel out. Now the restriction of T to q is of course

still a JTS, and because of Proposition 3.2 (5), it is a JTS-extension of R.

(1) → (2), (3): We assume that T is a Jordan extension of R and construct a twisted

(para-) complexification in four steps:

1. First note that (T, V ) has a unique extension to a C-trilinear JTS (TC, VC) (cf.

proof of Proposition 2.4).

2. Next we need the following

Lemma 3.9. Let T be a Jordan triple product on a vector space V and α an endomor-

phism of V with the property

∀x, y, z ∈ V : T (αx, y, αz) = αT (x, αy, z). (∗)

Then the formula

T (α)(x, y, z) := T (x, αy, z)

defines a Jordan triple product T (α) on V .

Proof. (JT1): this is clear.
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(JT2): The identity (JT2) for T with v and y replaced by αv and αy, respectively,

yields

T (T (u, αv)x, αy, z)− T (x, T (αv, u)αy, z) + T (x, αy, T (u, αv)z)

= T (u, αv)T (x, αy, z).

We apply (∗) to the middle triple product in the middle term in the first line and obtain

T (T (u, αv)x, αy, z)− T (x, αT (v, αu)y, z) + T (x, αy, T (u, αv)z)

= T (u, αv)T (x, αy, z).

This is precisely the identity (JT2) for T (α).

(Comment: This lemma is very typical for Jordan theory; in fact, it allows to produce

out of one JTS a whole variety of new JTS which in general are not isomorphic; they

are called homotopic or mutations of each other. In Lie theory only the rather poor fact

survives that for any LTS R the negative −R also is a LTS, called the c-dual of R.)

3. Apply the lemma to the JTS TC with α(X) = τ(X) = X: we get that

ThC(X,Y, Z) := TC(X,Y , Z)

is a new JTS; it clearly is Hermitian (resp. polarized) and on V coincides with the old

JTS T .

4. One concludes that RThC is a twisted complex (resp. polarized) LTS having (q, R)

as (para-) real form.

It is not difficult to show that the correspondences from the theorem are in fact

functorial. Then the theorem can be restated by saying that, on the geometric level of

(connected simply connected) symmetric spaces, the algebraic Jordan-Lie functor T 7→

RT corresponds to the forgetful functor from the category of symmetric spaces with

twist (i.e. symmetric spaces with a twisted (para-) complexification) to the category of

symmetric spaces.

“Complexification diagrams”. It is time to illustrate the abstract results by examples

– this is best done by presenting the complexification diagram

ր MC ց
M → MhC → (MhC)C
ց MphC ր

of a symmetric space M with twist T ; this is the geometric version of the linear algebra

from the preceding proof:

ր (RC, TC) ց
(R, T ) → (RhC, ThC) → ((RhC)C, (ThC)C)

ց (RphC, TphC) ր

—the second column contains straight and twisted complexification and twisted para-

complexification, and the last column contains the result obtained by combining any two

different of these three operations; it is a sort of straight-twisted double complexification,

leading to a space of four times the real dimension we started with.
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Example 3.10 (Real Grassmannians). M = O(n)/(O(p) × O(q)), n = p + q (cf.

Example (8) of Chapter 1). The diagram is:

ր O(n,C)/(O(p,C)×O(q,C)) ց
O(n)/(O(p)×O(q))→ U(n)/(U(p)×U(q)) →GL(n,C)/(GL(p,C)×GL(q,C)).

ցGL(n,R)/(GL(p,R)×GL(q,R))ր

In the middle line one finds the complex Grassmannian as twisted complexification of

the real one, and in the bottom line one finds the space GL(n,R)/(GL(p,R)×GL(q,R))

which can be identified with the space of complementary subspaces of Rn of dimension

p, resp. q. The Jordan triple system belonging to this diagram is V = M(p, q;R) with

the trilinear product given by

T (X,Y, Z) = −(XY tZ + ZY tX).

Example 3.11 (General linear group). Consider the group case M = GL(n,R) =

(GL(n,R) ×GL(n,R))/diagonal. Its LTS is gl(n,R) = Mat(n, n,R) with the LTS-struc-

ture

[X,Y, Z] = [[X,Y ], Z] = XY Z − Y XZ − ZXY + ZY X.

A Jordan extension is given by

T (X,Y, Z) = XY Z + ZYX.

The corresponding complexification diagram of GL(n,R) is:

ր GL(n,C) ց
GL(n,R)→ GL(2n,R)/GL(n,C) →GL(2n,C)/(GL(n,C)×GL(n,C)).

ցGL(2n,R)/(GL(n,R)×GL(n,R))ր

In the middle line we find the space N of complex structures on R2n which is a symmetric

space isomorphic to GL(2n,R)/GL(n,C); it is a twisted complexification of M via the

imbedding

M → N, g 7→

(

0 g
−g−1 0

)

.

Similarly, the space GL(2n,R)/(GL(n,R)×GL(n,R)) of para-complex structures on R2n

is a twisted para-complexification of GL(n,R) (bottom line).

Example 3.12 (Orthogonal groups). For any non-singular matrix A ∈M(n, n,R) we

denote the orthogonal group of the form b(x, y) = xtAy by

O(A,R) = {g ∈ GL(n,R)| gtAg = A},

and similarly we define unitary groups U(A,C). The Jordan extension in the space

Asym(A,R) of A-antisymmetric matrices is given by the triple product

T (X,Y, Z) = −(XY Z + ZYX).

The corresponding complexification diagram of O(A,R) is:

ր O(A,C) ց
O(A,R) → O(

(

A
0
0
A

)

,R)/U(A,C) → O(
(

0
A
A
0

)

,C)/GL(n,C).

ց O(
(

0
A
A
0

)

,R)/GL(n,R) ր
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The twisted complexification of O(A,R) given in the middle line can be interpreted as

the space of complex structures on R2n which are orthogonal with respect to the form

on R2n defined by the matrix
(

A 0
0 A

)

;

it generalizes the well-known Siegel space (see [Sa80]). Complex or quaternionic unitary

groups can be treated in a similar way.

Example 3.13 (Spheres). The sphereM = SO(n+1)/ SO(n) is a compact symmetric

space; its tangent space at a base point is Rn with the “conformal” Jordan triple product

T (x, y, z) = (x|z)y − (x|y)z − (z|y)x

which indeed extends the LTS of Sn. The complexification diagram of the sphereM = Sn

is:

ր Sn
C

ց
Sn → SO(n+ 2)/(SO(n)× SO(2)) → SO(n+ 2,C)/(SO(n,C)× SO(2,C)).
ց SO(n+ 1, 1)/(SO(1)× SO(1, 1)) ր

In order to understand the middle line, we realize Sn as the complete affine picture of

the real quadric given by the homogeneous equation

n
∑

i=1

x2i + xn+1xn+2 = 0.

Denote by N the complex quadric in P(Cn+2) given by the same equation (projective

completion of the complex sphere). One can show that N has the structure of a compact

(Hermitian) symmetric space, isomorphic to SO(n + 2)/(SO(n) × SO(2)), and N is a

twisted complexification of M .

Example 3.14 (Real hyperbolic spaces). The real hyperbolic space M = Hn(R) =

SO(n, 1)/ SO(n) has two non-equivalent complexification diagrams, corresponding to two

non-equivalent Jordan extensions of its LTS: for the first diagram it is the “conformal”

JTS Rn with

T (x, y, z) = (x|y)z + (z|y)x− (x|z)y,

and for the second it is the “projective” JTS Mat(1, n;R) with

T (x, y, z) = xytz + zytx.

The corresponding diagrams are:

ր Sn
C

ց
M → SO(n, 2)/(SO(n)× SO(2)) → SO(n+ 2,C)/(SO(n,C)× SO(2,C)).
ց SO(n+ 1, 1)/(SO(n)× SO(1, 1)) ր

ր O(n+ 1,C)/(O(n,C)×O(1,C)) ց
M → U(n, 1)/(U(n)×U(1)) → GL(n+ 1,C)/(GL(n,C)×GL(1,C)).
ց GL(n+ 1,R)/(GL(n,R)×GL(1,R)) ր
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Explanation

• Hn(R) is the non-compact dual of two locally isomorphic compact symmetric spaces:

the sphere Sn (Example 3.13) and the real projective space RPn (Example 3.10 with

p = 1).

• The twisted complexifications of Sn and of RPn are not locally isomorphic! (You see

that Jordan theory is a pair of glasses for Lie theory allowing to distinguish spheres

and projective spaces already on the local level...)

• Dualizing these two inequivalent twisted complexifications yields two locally inequ-

ivalent twisted complexifications of Hn(R).

Remarks on the classification. The simple symmetric spaces (equivalently, the simple

LTS) have been classified by M. Berger [B57]; there are about hundred classical series

and hundred exceptional spaces. Simple JTS have been classified by E. Neher [Ne80,

81]. Comparison of these two classifications reveals the following surprising fact: “Gene-

rically”, a simple LTS has one and only one twisted complexification. Put another way:

The Jordan-Lie functor is not far from being a bijection of simple objects. On the alge-

braic level, these observations are due to E. Neher [Ne85]; more precise statements can

be found there and in [Be00], [Be01]. We have seen that the Jordan-Lie functor is not

injective (Example 3.14); but there are are only a few exceptions; it is neither surjective:

for instance, SL(n,R) is not in its image, but its central extension GL(n,R) is (Exam-

ple 3.15; note that SL(2,R) is of course covered by Example 3.16 since it is Sp(1,R));

the exceptional group cases are never in the image of the Jordan-Lie functor, but many

of them appear naturally as certain automorphism groups in this context which makes

things even more puzzeling...

A general theory explaining these facts is missing; this is certainly the most challenging

problem in the realm of geometric Jordan and Lie theory.

4. Outlook: Integrability and conformal group. What is the relation between

the theory developed in the preceding two chapters with the geometry from the first

chapter? For instance, how do causal or generalized conformal structures arise in the

present context, and what is the role of the automorphism group? Let me sketch the

main features at the example of the real Grassmannians (Example (8) of Chapter 1 and

Example 3.10): we write a complexification diagram such as e.g. the one given in Example

3.10 in the form
ր MC = GC/HC ց

M = G/H → MhC → (MhC)C = LC/QC.
ց MphC = L/Q ր

Then, as noted in 3.10, MphC can be intepreted as a set of pairs of subspaces, i.e. as a

subset of Grasp,p+q(R)×Grasq,p+q(R) which is in fact open dense. This can be generalized:

MphC always imbeds as an open dense subset of some direct product space; this is obtained

by “integration” of the direct product structure of tangent spaces. It is precisely here that

the integrability of invariant almost (para-) complex structures on symmetric spaces is

used; then a classical theorem of Frobenius can be applied.

This first observation leads to a second one: the group L acting on MphC acts also on

both factors of the direct product structure and thus also (by local diffeomorphisms) onM
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itself. In the Grassmannian example this is the “projective” action of L = PGL(p+ q,R)

on M , which leads precisely to the automorphism group of the generalized conformal

structure mentioned in Example (8) of Ch. 1. Many of these features carry over to the

general case—see [Be00] for the systematic theory.
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[HO96] J. Hilgert and G. Ólafsson, Causal Symmetric Spaces—Geometry and Harmonic

Analysis, Perspectives in Math. 18, Academic Press, San Diego, 1996.

[KanKo85] S. Kaneyuki and M. Kozai, Paracomplex structures and affine symmetric spaces,

Tokyo J. Math. 8 (1985), 81–98.

[Kan89] S. Kaneyuki, On the causal structures of the Shilov boundaries of symmetric bound-

ed domains, in: Prospects in Complex Geometry, Lecture Notes in Math. 1468,

Springer, New York 1989.

[Koe69] M. Koecher, Gruppen und Lie-Algebren von rationalen Funktionen, Math. Z. 109

(1969), 349–392.

[Ko72] S. Kobayashi, Transformation Groups in Differential Geometry, Springer, New

York, 1972.

[KoNo69] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry II,Wiley, New

York, 1969.

[Lo69a] O. Loos, Symmetric Spaces I, Benjamin, New York, 1969.

[Lo77] O. Loos, Bounded symmetric domains and Jordan pairs, Lecture Notes, Irvine,

1977.

[Ne80] E. Neher, Klassifikation der einfachen reellen speziellen Jordan-Tripelsysteme, Ma-

nuscripta Math. 31 (1980), 197–215.



226 W. BERTRAM

[Ne81] E. Neher, Klassifikation der einfachen reellen Ausnahme-Jordan-Tripelsysteme, J.

Reine Angew. Math. 322 (1981), 145–169.

[Ne85] E. Neher, On the classification of Lie and Jordan triple systems, Comm. Algebra

13 (1985), 2615–2667.

[Sa80] I. Satake, Algebraic Structures of Symmetric Domains, Iwanami Shoten, Princeton,

1980.

[Se76] I. E. Segal, Mathematical Cosmology and Extragalactic Astronomy, Academic

Press, 1976.


