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Abstract.We use the Capelli identity to give an explicit realization of some relative discrete

series of the L2-space of sections of a line bundle over a tube domain. This amounts to a geometric

construction of some Opdam shift operators.

1. Introduction. In this paper we shall study the connection between the Capelli

identity for tube type Hermitian symmetric spaces, and the problem of constructing ex-

plicitly the discrete spectrum of L2- spaces of sections of line bundles over such domains.

The main result is Theorem 4.2 which gives the explicit intertwining operator between

the two models of holomorphic discrete series representations of the group. It is interest-

ing to remark (as is done after Corollary 4.4) that this differential operator is actually

of a very canonical type, namely that of a generalized gradient operator. In effect, we

are giving a geometric construction of a differential operator which shifts parameters in

hypergeometric functions, just as is the case for the so-called Opdam shift operators,

constructed for arbitrary root systems using different methods.

Let D = G/K be an irreducible Hermitian symmetric space of non-compact type

realized as a bounded symmetric domain in a complex vector space. The group K thus
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has one-dimensional center and the one-dimensional representations on K then induce

homogeneous line bundles over D. In his paper [15] Shimeno gives the Plancherel decom-

position for the L2-space of sections of a homogeneous line bundle over D. There appear

finitely many discrete parts in the decomposition; they are also called relative discrete

series. It is proved in [15] that all the relative discrete parts are G-equivalent to holo-

morphic discrete series by identifying the infinitesimal character. For the unit ball in Cn

this was proved also in [22] by explicit calculations. On the other hand the holomorphic

discrete series have their standard module as weighted Bergman spaces of holomorphic

functions on D, namely (for the so-called scalar holomorphic discrete series) the holo-

morphic functions square-integrable with respect to a certain probability measure on D.

Thus it is of interest to find the explicit intertwining operators from the relative discrete

series into the holomorphic discrete series. For the unit disk this is done in [21] via the

holomorphic differential operator ( ∂
∂z
)l and the classical Bol’s lemma, which asserts that

the operator intertwines two actions of G = SU(1, 1) on certain line bundles over the

unit disk. Later we realized that the those intertwining operators can also be constructed

via the invariant Cauchy-Riemann operator, and we found the intertwining operators for

the unit ball in [13] and a general bounded symmetric domain in [23]; see also [12] for

the case of the Riemann sphere.

The L2-space of sections of the line bundle can be realized as a functions on the

domain D, this being effected by the standard parallelization of homogeneous bundles

over Hermitian symmetric spaces. The corresponding L2 space then becomes a weighted

L2-space on D, for a suitable quasi-invariant measure on D. The corresponding weighted

Bergman space of holomorphic functions onD is one of the relative discrete series, whereas

the other relative discrete series consist of non-holomorphic scalar-valued functions on

D. It is proved in [15] that they are G-equivalent to a holomorphic discrete series with

the highest weight being irreducible representations of K in the symmetric tensors of the

tangent space of D. Now some of those representations of K are one-dimensional, namely

those corresponding to the Jordan determinant representation. In the present note we

find the intertwining operator for the corresponding relative discrete series via the Cayley

type operator, which is a generalization of the differential operator ∂
∂z
. Up to a constant,

we may express this intertwining operator in the form (see Section 4 for notation, in

particular Pl denotes a projection)

Sl = PlDrl

where D is the holomorphic part of the canonical Hermitian connection on the holomor-

phic line bundle in question on D. Acting with this on the lowest K - type, we construct

explicitly the extreme weight vector (see Corollary 4.5)

h(z, z)−(ν−l−d
r
)∆(∂)lh(z, z)ν−l−d

r =
r
∏

j=1

(−(ν − d

r
)− a

2
(j − 1) + l)l

∆(z)
l

h(z, z)l

where this is an element of the space of sections of the line bundle generating a holomor-

phic discrete series representation.

The authors would like to thank the organizers, in particular Prof. A. Strasburger,

for the invitation to the Bdlewo conference.
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2. Weighted L2-space on bounded symmetric domains. We briefly recall the

bounded realization of a Hermitian symmetric space, see [5], and [9].

Let D = G/K be an irreducible bounded symmetric domain of tube type in a complex

vector space V of dimension d. The space V has the structure of a Jordan algebra. Let

∆(z) be the corresponding Jordan determinant function. We normalize a Hermitian inner

product on V so that a minimal tripotent has norm 1, and denote dm(z) the corresponding

Lebesgue measure on V . Let g = k+ p be the Cartan decomposition of the Lie algebra of

G and let h be a Cartan subalgebra of k, which is then also a Cartan subalgebra of g. Let

gC = kC+p++p− be the decomposition of the complexification of gC under adjoint action

of the center of k, with p+ being identified with the vector space V . We fix an element

Z in the center of k so that it has eigenvalue (
√
−1 times) 2

r
on the space p+. Here r

denotes the rank of the Jordan algebra. Let γ1, . . . , γr be the Harish-Chandra strongly

orthogonal roots and fix a system of corresponding unit root vectors {e1, e2, . . . , er} in

V . We define a K-invariant polynomial h(z) on V by

h(c1e1 + . . .+ crer) =

r
∏

j=1

(1− |cj |2)

and let h(z, w) be its polarization, which is holomorphic in z and anti-holomorphic in

w. The Bergman reproducing kernel of D is then ch(z, w)−p for some positive constant

c, where p is an integer called the genus of D. Since we are in the case where D is a

tube domain we have the relation 2d = pr. Recall that the Bergman space is the space

of holomorphic functions on D square-integrable with respect to the Lebesgue measure.

Let α > −1. Denote

ν = ν(α) = p+ α,(2.1)

and consider the weighted probability measure

dµν(z) = Cνh(z)
αdm(z) = Cνh(z)

ν−pdm(z)(2.2)

on D. Here Cν is a normalizing constant whose precise value will not concern us.

There is a unitary representation of G on L2(D, dµα) given by the formula

U (ν)
g : f(z) 7→ f(g−1(z))(Jg−1 (z))

ν
p (g ∈ G)(2.3)

where Jg−1 stands for the Jacobian of the transformation g−1. Here we have parallelized

the homogeneous line bundle over D induced from a character on the (covering of the)

center of K.

3. Capelli identity. In this section we will use the results of Faraut-Koranyi to

prove the Capelli identity, the result is by now well known and we include a proof for the

sake of completeness.

Let P be the space of all holomorphic polynomials on V . By a well known result

of Hua and Schmid, the space P under the action of K is decomposed into irreducible

subspaces Pm of signatures (corresponding to highest weights) m = m1γ1 + . . .+mrγr,

with m1 ≥ · · · ≥ mr ≥ 0. Consider the Fock space F of entire functions on V with

reproducing kernel e(z,w), i.e. the entire functions square-integrable with respect to the

Gaussian density. Let Km(z, w) be the reproducing kernel of the space Pm with the Fock
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space norm. By the decomposition F =
∑

m
Pm and definition of Km(z, w), we have

e(z,w) =
∑

m

Km(z, w).

Recall the usual Pochhammer symbol (x)r = x(x + 1) · · · (x+ r − 1).

Theorem 3.1. The operator ∆(z)l∆(∂)l acts on each K-space Pm as a scalar

∆(z)l∆(∂)lf = ql(m)f, f ∈ Pm,

with

ql(m) =

r
∏

k=1

(
a

2
(r − k) + 1 +mk − l)l = (−1)rl

r
∏

k=1

(−mk −
a

2
(r − k))l

Proof. For any f ∈ Pm ⊂ P ,

f(z) =

∫

p+

e(z,w)f(w)e−(w,w)dw.

We act on both sides by ∆(z)l∆(∂)l,

∆(z)l∆(∂)f(z) =

∫

p+

∆(z)l∆(w)le(z,w)f(w)e−(w,w)dw

=

∫

p+

∆(z)l∆(w)l
∑

m
′

Km
′

(z, w)f(w)e−(w,w)dw,

where we have used the previous expansion for e(z,w). Now the map g(z) 7→ ∆(z)lg(z) is

a K-intertwining map from Pm
′

onto Pm
′+l, thus

∆(z)l∆(w)lKm
′

(z, w) = C(m′, l)Km
′+l(z, w)(3.1)

for some positive constant C(m′, l). Taking z = w = e and using Lemma 3.1 and Theorem

3.4 in [5] we find

C(m′, l) =
Km

′

(e, e)

Km
′+l(e, e)

=
dm′

(n/r)m′

(n/r)m′+l

dm′+l

=
r
∏

k=1

(

a

2
(r − k) + 1 +m′

k

)

l

.

Thus

∆(z)l∆(∂)lf(z) =

∫

p+

∑

m
′

C(m′, l)Km
′+l(z, w)f(w)e−(w,w)dw

=

∫

p+

C(m − l, l)Km(z, w)f(w)e−(w,w)dw = C(m − l, l)f(z),

where in the second last equality we use the fact that f ∈ Pm and Schur’s lemma. Thus

ql(m) = C(m − l, l) =
r
∏

k=1

(
a

2
(r − k) + 1 +mk − l)l.

This completes the proof.

Remark 3.2. Theorem A has been previously proved by Dib [3] and Arazy [1]. See

also [20], [19] and [17]. Our proof above is essentially the same as that in [1].
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Remark 3.3. As is shown in [14], Proposition 1.2, the above formula is a reformula-

tion of the main result of [7], which essentially calculates the Laplace transform of ∆m by

using the Gindikin Gamma function. Note that here we are still using a different ordering.

(Our γj is Sahi’s 2εn−j and r = n.)

4. Line bundles over tube domains. In this section we will use the Capelli identity

to realize explicitly some relative discrete series of L2-space of sections of a line bundle

over a tube domain, namely by constructing irreducible invariant subspaces of L2(D,µα).

The irreducible decomposition of the space L2(D,µα) has been found by Shimeno

[15], where the full Plancherel decomposition in terms of both continuous and discrete

spectrum is given. It is proved there that all the relative discrete series (i.e. the irreducible

invariant subspaces) appearing in the decomposition are holomorphic discrete series. We

summarize the result there in the following.

Fix α > −1 and let ν be as in (2.1). We define

k =

{

α+1
2 − 1 = ν−p+1

2 if α is an odd integer
[

α+1
2

]

=
[

ν−p+1
2

]

otherwise.
(4.1)

Here [t] stands for the integer part of t ∈ R. Denote

Dν =
{

m =

r
∑

j=1

mjγj , 0 ≤ m1 ≤ · · · ≤ mr ≤ k
}

.

Shimeno proved in [15], Theorem 5.10, that all the relative discrete series in L2(D,µα)

are indexed by the set Dν and they are equivalent to a holomorphic discrete series. We

reformulate this result in the following. Let h− be the subspace of h generated by the

dual elements of γj , namely the elements 1
2 [e

+
j , e

−

j ] where e+j = ej and e−j are the root

vectors of ±γj, and let h = h− + h+ be the corresponding decomposition of h. We let

ks = [k, k] be the simple component of k so that k = ks + RZ.

Theorem 4.1 (Shimeno [15]). For each m in Dν there exists a relative discrete series

A2
m
(D, ν) appearing in L2(D,µα), and it is equivalent to a holomorphic discrete series

with highest weight (under certain ordering of the root spaces of gC)

Λ|(h−)C = m− ν

2

r
∑

j=1

γj, m ∈ Dν

and Λ(h ∩ ks) = 0, Λ(iZ) = −ν in case D = G/K is a non-tube domain.

When m = (l, . . . , l) we denote simply the relative discrete series A2
m
(D, ν) by

A2
l (D, ν). Our main result is the following, denoting by L2

a(D, ν − 2l) the subspace of

holomorphic functions, i.e. the standard module for these discrete series, namely

L2
a(D, ν − 2l) =

{

f : D 7→ C holomorphic;

∫

D

|f(z)|2dµν−2l(z) < ∞
}

,

where dµν−2l(z) = Cν−2lh(z, z)
ν−2l−pdm(z) is as in (2.2).

Theorem 4.2. With the above notation we have that the operator

Sl : f(z) 7→ h(z, z)−(ν−l−d
r
)∆(∂)l(h(z, z)ν−l−d

r f(z))

is an intertwining operator mapping L2
a(D, ν − 2l) onto A2

l (D, ν) for l = 0, 1, . . . , k.
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To prove the theorem we need the following intertwining property of the Cayley-

Capelli operator ∆(∂), which was proved by Arazy [2], Theorem 6.4; see also [16], Lemma

7.1 and [8].

Theorem 4.3. The Cayley-Capelli operator ∆(∂) intertwines the action U ( d
r
−1) with

U ( d
r
+1), namely

∆(∂)(Jg(z))
d
r
−1

p f(gz) = (Jg(z))
d
r
+1

p (∆(∂)f)(gz)

for holomorphic functions f on D and g ∈ G. Similarly, for every natural number l we

have

∆(∂)l(Jg(z))
d
r
−l

p f(gz) = (Jg(z))
d
r
+l

p (∆(∂)lf)(gz)

for holomorphic functions f on D and g ∈ G.

Note that since the operator ∆(∂) is a holomorphic differential operator, we see that

the above result holds for all C∞-functions f .

With this theorem we can establish the formal intertwining property of of Sl.

Corollary 4.4. The operator Sl intertwines the action U (ν−2l) with the action U (ν)

of G on C∞-functions on D.

Proof. In order to exhibit the intertwining property of the multiplication by h(z, z)c,

we introduce the notation (see [11])

U (ν,κ)(g) : f(z) 7→ f(g(z))(Jg(z))
ν
p (Jg(z))

κ
p (g ∈ G)

Let T be the operator

Tκ: f(z) 7→ f(z)h(z, z)κ.

Then by the transformation property of h(z, z) we know that T intertwines the action

U (ν,κ) with U (ν−κ,0); see Lemma 5 in [11]. Now our operator Sl is

Sl = T
−(ν−l−d

r
)∆(∂)lTν−l− d

r
,

the results follows by the above intertwining properties of the operator Tκ and that of

∆(∂)l in Theorem 4.3.

The operator Sl can also be constructed geometrically via the covariant holomorphic

differential operator; see [18] and [24]. Indeed, consider the holomorphic line bundle on

D defined via the action U (ν−2l). Let ∇ be the Hermitian connection compatible with

the complex structure and D the holomorphic part, so that ∇ = D + ∂̄. The operator

D maps the line bundle to its tensor product with the holomorphic cotangent bundle;

so that it maps a scalar-valued function to a V ′ = p−-valued function, after trivializing

the bundles. The power Drl maps to the symmetric tensor ⊗lrV ′ of V ′. However there

is a distinguished K-component in the symmetric tensor, namely the one-dimensional

representation with highest weight l(γ1 + . . .+ γr) (disregarding the action of the center

of K). Let Pl be the orthogonal projection onto the component. Then we have

PlDrl = cSl

for some non-zero constant c; see Lemma 4.3 in [18] and Lemma 3.2 in [24]. As an in-

tertwining operator between two line bundles, the operator Sl maps in particular the



CAPELLI IDENTITY AND RELATIVE DISCRETE SERIES 355

spherical functions for the line bundle U (ν−2l) to those for U (ν), and thus are the hy-

pergeometric shift operators [6]. So our result gives a geometric construction of some

of the Opdam shift operators. It has not been known before that there is a geometric

interpretation of the shift operators [10].

We now prove our Theorem 4.2.

Proof. We have established the formal intertwining property of the operator Sl. We

prove now that it maps into A2
l (D, ν). Note that the condition on l implies that the

weighted space L2
a(D, ν − 2l) is non-trivial. Take f ∈ L2

a(D, ν − 2l) to be the constant

function 1. We calculate its image, namely,

h(z, z)−(ν−l−d
r
)∆(∂)l(h(z, z)ν−l−d

r ).

We consider first ∆(z)l∆(∂)l. We use the Faraut-Koranyi expansion [5] of the reproducing

kernel

h(z, w)−κ =
∑

m

(κ)mKm(z, w),

so that

∆(z)l∆(∂)lh(z, z)ν−l−d
r =

∑

m

(−(ν − l − d

r
))m∆(z)l∆(∂)lKm(z, z).(4.2)

By Theorem 3.1 (with the same notation in the proof) we have

∆(z)l∆(∂)lKm(z, z) = C(m− l, l)Km(z, z)

which vanishes whenever mr < l. We write therefore m = m′ + l and each term in the

above summation is

(−(ν − l − d

r
))mC(m− l, l)Km(z, z) = (−(ν − l − d

r
))m′+lC(m′, l)Km

′+l(z, w)

= (−(ν − l − d

r
))m′+l∆(z)l∆(w)lKm

′

(z, z),

(4.3)

by (3.1). However clearly,

(−(ν − l− d

r
))m′+l = (−(ν − l − d

r
))(l,...,l)(−(ν − l − d

r
) + l)m′ ,

the summation (4.2) is then

(−(ν − l − d

r
))(l,...,l)∆(z)l∆(z)l

∑

m
′

(−(ν − l − d

r
) + l)m′Km

′

(z, z)

= (−(ν − l − d

r
))(l,...,l)∆(z)l∆(z)lh(z, z)ν−2l−d

r ,

(4.4)

where we have used again the Faraut-Koranyi expansion. From this it follows that

h(z, z)−(ν−l−d
r
)∆(∂)l(h(z, z)ν−l− d

r ) = (−(ν − l − d

r
))(l,...,l)

∆(z)l

h(z, z)l
.

which is nonzero, and its L2(D,α)-norm is dominated by
∫

D

h(z)α−2ldm(z)
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which is finite since α − 2l > −1, by our assumption on l. That is, the function Slf is

in A2
l (D, ν) and non-zero. Now both L2

a(D, ν − 2l) and A2
l (D, ν) are irreducible unitary

representations of G (and of gC). Thus the operator Sl is a nonzero intertwining operator

into A2
l (D, ν). As both representations are unitary and irreducible there exist a unitary

isomorphism between them, derived from Sl for example by polar decomposition ( -

the operator is closed and densely defined). Alternatively, we could say that Sl gives an

equivalence of the two Harish-Chandra (g,K) - modules, and hence they are also globally

equivalent.

The above proof actually also implies

Corollary 4.5. The highest weight vector of A2
l (D, ν) is

h(z, z)−(ν−l−d
r
)∆(∂)lh(z, z)ν−l−d

r =

r
∏

j=1

(−(ν − d

r
)− a

2
(j − 1) + l)l

∆(z)
l

h(z, z)l
.

This highest weight vector has also been calculated previously in [4] by using tensor

product arguments.
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