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Abstract. Any integrable function can be corrected, so that its Fourier series converges

almost everywhere to the correct limit, by the addition of a measure whose singular support is

small both in the algebraic and the Hausdorff sense.

1. Introduction. I should like to thank the organisers for a conference which was

extraordinarily enjoyable for many reasons — one of which was the opportunity to meet

mathematicians whose work I have long admired but whom I had never met. My talk

at the conference was based on [1], but this paper contains new results on the topic

suggested to me by conversations at the conference.

In this paper we identify T with [0, 2π) in the usual way. All measures will be Borel

measures and, where we do not specify otherwise, the Haar measure (that is normalised

Lebesgue measure) m is intended. If E is measurable, we write |E| for the measure m(E)

of E. If f ∈ L1(T), we write

Sn(f, x) =
∑

|r|≤n

f̂(r) exp irx.

If µ is a measure, Sn(µ, x) is defined similarly. We write A(T) for the set of absolutely

convergent Fourier series and, if f ∈ A(T), we write ‖f‖A =
∑∞

u=−∞ |f̂(u)|. If µ is a

measure then suppµ denotes its closed support.

In [1] I proved the following result which is closely related to various results of Menšov.

Theorem 1. Given any f ∈ L1, and any ǫ > 0, there exists a singular measure µ

with ‖µ‖ ≤ ǫ such that

Sn(f − µ, x) → f(x)

almost everywhere as n → ∞.
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It is natural to ask ‘how small’ the measure µ must be. Here is one answer to this

question.

Theorem 2. Given any f ∈ L1 any strictly increasing continuous h : [0,∞) → [0,∞)

with h(0) = 0 and any ǫ > 0, there exists a measure µ with ‖µ‖ ≤ ǫ and an independent

Borel set E with zero Hausdorff h measure such that |µ|(T \ E) = 0 and

Sn(f − µ, x) → f(x)

almost everywhere as n → ∞.

The reader may wish to be reminded of the following definitions.

Definition 3. (i) A set E is independent if, whenever n ≥ 1 and x1, x2, . . . , xn are

distinct points in E, the only solution of the equation
n∑

j=1

mjxj = 0

with the mj integers is m1 = m2 = . . . = mn = 0.

(ii) If h : [0,∞) → [0,∞) is a strictly increasing continuous function with h(0) = 0,

then a set E has zero Hausdorff h measure if, given any ǫ > 0, we can find intervals I1,

I2, . . . such that
⋃∞

j=1 Ij ⊇ E and
∑∞

j=1 h(|Ij |) < ǫ.

The main ideas of the construction appear in the proof of the simpler result.

Theorem 4. Given any f ∈ L1 any strictly increasing continuous h : [0,∞) → [0,∞)

with h(0) = 0 and any ǫ > 0, there exists a measure µ with ‖µ‖ ≤ ǫ and a Borel set E of

zero Hausdorff h measure such that |µ|(T \ E) = 0 and

Sn(f − µ, x) → f(x)

almost everywhere as n → ∞.

We shall therefore concentrate first on proving this result and sketch the more intricate

proof towards the end of the paper.

2. The key lemma. The main step in the proof of Theorem 4 is the proof of the

following lemma.

Lemma 5. Given any η > 0 we can find a K1(η) > 1 with the following property.

Given any strictly increasing continuous function h : [0,∞) → [0,∞) with h(0) = 0 and

any ǫ > 0 we can find a positive measure µ and a Borel set G with

(i) µ̂(0) = 1,

(ii) µ̂(n) → 0 as |n| → ∞,

(iii) |µ̂(u)| ≤ ǫ for all u 6= 0,

(iv) |Sn(µ, x)| ≤ K1(η) for all n ≥ 0 and all x 6∈ G,

(v) |G| < η,

(vi) suppµ has Hausdorff h measure zero.

In this section we show how to prove Theorem 4 using Lemma 5, and, in the next

section, we prove Lemma 5.
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Lemma 6. Given any η > 0 we can find a K2(η) > 1 with the following property.

Given any trigonometric polynomial Q and any strictly increasing continuous function

h : [0,∞) → [0,∞) with h(0) = 0 and any ǫ > 0, we can find a measure τ and a Borel

set G with

(i) ‖τ‖ ≤ ‖Q‖1,

(ii) τ̂ (n) → 0 as |n| → ∞,

(iii) |Sn(τ, x)− Sn(Q, x)| ≤ K2(η)|Q(x)| for all n ≥ 0 and all x 6∈ G,

(iv) |G| < η,

(v) supp τ has Hausdorff h measure zero.

Proof. Suppose that, for each ǫ > 0 we have a positive measure µǫ such that

(i) µ̂ǫ(0) = 1,

(ii) µ̂ǫ(n) → 0 as |n| → ∞,

(iii) |µ̂ǫ(u)| ≤ ǫ for all u 6= 0.

If we set τǫ = Qµǫ then ‖τǫ‖ ≤ ‖Q‖∞ and
∫

T

P (t) dτǫ(t) =

∫

T

P (t)Q(t) dµǫ(t) →

∫

T

P (t)Q(t) dm(t)

as ǫ → 0, so a simple density argument shows that

‖τǫ‖ → ‖Q‖1

as ǫ → 0.

Next we observe that

| ̂µǫ −m(u)| ≤ ǫ for all u,

and so

(Sn(τǫ, t)− Sn(Q, t))−Q(t)Sn(µǫ, t) = Sn(Q(µǫ −m), t)−Q(t)Sn(µǫ, t) → 0

uniformly in t and n ≥ 0 as ǫ → 0 (Similar calculations are done at length in [1].)

Thus, if we set K2(η) = K1(η)+1, take ǫ sufficiently small, take µ as in the conclusion

of Lemma 6 and set

τ = kQµ

with k chosen so that ‖τ‖ = ‖Q‖1, all the conclusions required can be read off.

We can now prove Theorem 4.

Proof of Theorem 4. Let K2 be defined as in the statement of Lemma 6. We may

assume 1 > ǫ and we set ǫj = 2−2jǫK2(2
−j)−1. If f ∈ L1 we can find trigonometric

polynomials Qj such that ‖Qj‖1 < ǫj for j ≥ 1 and
∑∞

j=0 Qj = f , the convergence being

both L1 and pointwise almost everywhere. In particular we can find a set B of measure

zero such that
∑N

j=0 Qj(x) → f(x) for all x 6∈ B.

By Lemma 6 we can find measures τj and a closed set Gj with

(i)j ‖τj‖ ≤ ‖Qj‖1,

(ii)j τ̂j(n) → 0 as |n| → ∞,

(iii)j |Sn(τj , x)− Sn(Qj , x)| ≤ K2(2
−j)|Qj(x)| for all n ≥ 0 and all x 6∈ Gj ,
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(iv)j |Gj | < 2−j,

(v)j supp τj has Hausdorff h measure zero.

Since ‖τj‖ ≤ ‖Qj‖1 < ǫj ≤ ǫ2−j, we can form the measure µ =
∑∞

j=1 τj with ‖µ‖ ≤ ǫ.

If we set E =
⋃∞

j=1 supp τj then E is a Borel set such that |µ|(T \ E) = 0 and, by

condition (v), E has zero Hausdorff h measure.

Since ‖Qj‖1 < ǫj ≤ 2−2jK2(2
−j)−1, a simple Tchebychev type estimate shows that,

if

Hj = {x : |Qj(x)| ≥ 2−jK2(2
−j)−1},

then |Hj | ≤ 2−j. Thus, setting Aj = Gj ∪Hj and using (iii)j , and (iv)j we have

(vi)j |Sn(τj , x)− Sn(Qj, x)| ≤ 2−j for all n ≥ 0 and all x 6∈ Aj ,

(vii)j |Aj | < 2−j+1.

Thus if we set

A = B ∪

∞⋃

j=1

supp τj ∪

∞⋂

j=1

∞⋃

k=j

Aj ,

it follows that A has Lebesgue measure zero. We complete the proof by showing that

Sn(f − µ, x) → f(x)

as n → ∞ for all x ∈ A.

By classical localisation theorems,

Sn(τj , x) → 0

for all x 6∈ supp τj , and, since Qj is a trigonometric polynomial, it is trivial that

Sn(Qj , x) → Qj(x)

for all x. Thus if

x 6∈ B ∪

N⋃

j=1

supp τj ∪

∞⋃

k=N+1

Aj

we have

|Sn(f − µ, x)− f(x)| ≤

N∑

j=1

|Sn(τj , x)|+

N∑

j=1

|Sn(Qj , x)−Qj(x)|

+

∞∑

j=N+1

|Sn(τj , x) − Sn(Qj , x)|+

∞∑

j=N+1

|Qj(x)|

≤
N∑

j=1

|Sn(τj , x)|+
N∑

j=1

|Sn(Qj , x)−Qj(x)|

+
∞∑

j=N+1

2−j +
∞∑

j=N+1

2−j

≤

N∑

j=1

|Sn(τj , x)|+

N∑

j=1

|Sn(Qj , x)−Qj(x)|+ 2−N+1
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and so

lim sup
n→∞

|Sn(f − µ, x)− f(x)| ≤ 2−N+1.

Allowing N → ∞, we have the result.

3. Proof of the key lemma. The measure µ in our key Lemma 5 is obtained as

the weak star limit of a sequence of smooth functions.

Lemma 7. Given any η > 0 we can find a K1(η) > 1 with the following property.

Given any strictly increasing continuous function h : [0,∞) → [0,∞) with h(0) = 0 and

any ǫ > 0 we can find a sequence of positive infinitely differentiable functions fk and sets

Gk such that

(i)k f̂k(0) = 1,

(ii)k |f̂k(u)− f̂k−1(u)| ≤ 2−k for all u if k ≥ 2,

(iii)k |f̂k(u)| ≤ ǫ(1− 2−k) for all u 6= 0,

(iv)k |Sn(fk, x)| ≤ K1(η)(1 − 2−k) for all n ≥ 0 and all x 6∈ Gk,

(v)k |Gk| < η(1 − 2−k)),

(vi)k If k ≥ 2 we can find a finite set I(k) of closed intervals such that
⋃

I∈I(k) I ⊇

supp fk but
∑

I∈I(k) h(|I|) ≤ 2−k,

(vii)k Gk ⊇ Gk−1 if k ≥ 2,

(viii)k supp fk−1 ⊇ supp fk if k ≥ 2,

(ix)k Gk ⊇ supp fk.

Proof of Lemma 5 from Lemma 7. Using conditions (i)k and (ii)k, we see that fkm

converges weakly to a positive measure µ with

(i) µ̂(0) = 1.

Since fn is smooth f̂k(u) → 0 as n → ∞ for each k so

(ii) µ̂(n) → 0 as |n| → ∞.

Condition (iii)k shows that

(iii) |µ̂(u)| ≤ ǫ for all u 6= 0,

and if, we set G =
⋃∞

k=1 Gk, conditions (iv)k and (viii)k show that

(iv) |Sn(µ, x)| ≤ K1(η) for all n ≥ 0 and all x 6∈ G,

whilst conditions (v)k and (vii)k show that

(v) |G| < η.

Finally, conditions (viii)k and (vi)k show that

(vi) suppµ has Hausdorff h measure zero.

It is important to observe that the first step in proving Lemma 7 is of a different

nature to the others and, so far as I can see, non-trivial. To see why this might be the

case observe that whilst condition (vi)k shows an improvement as we increase k, this

improvement is bought at the cost of a deterioration in conditions (iv)k, (v)k and (iii)k.
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Looking more closely, we see that our first step requires us to prove the following

lemma.

Lemma 8. Given any η > 0 we can find a K1(η) > 1 with the following property.

Given any ǫ > 0 we can find a positive infinitely differentiable function f1 and a set G1

such that

(i)1 f̂1(0) = 1,

(iii)1 |f̂1(u)| ≤ ǫ/2 for all u 6= 0,

(iv)1 |Sn(f1, x)| ≤ K1(η)/2 for all n ≥ 0 and all x 6∈ G1,

(v)1 |G1| < η/2,

(vii)1 G1 is the union of a finite set of closed intervals with end points rational mul-

tiples of 2π,

(x)1 G1 ⊇ supp f1.

The difficult point here is that we may choose ǫ as small as we like without affecting

K1(η). The result is proved as Lemma 2 in [1].

4. The inductive step for the key lemma. We observe that the induction required

for Lemma 7 and thus the result required will be established if we can prove the following

result.

Lemma 9. Let h : [0,∞) → [0,∞) be a strictly increasing continuous function with

h(0) = 0. Suppose that f is a positive infinitely differentiable function with f̂(0) = 1.

Then, given any δ > 0, we can find a positive infinitely differentiable function F and a

closed set H such that

(i) F̂ (0) = 1,

(ii) |F̂ (u)− f̂(u)| ≤ δ,

(iii) |Sn(F, x)| ≤ |Sn(f, x)| + δ for all n ≥ 0 and all x 6∈ H,

(iv) We can find a finite set I of closed intervals such that
⋃

I∈I I ⊇ suppF but∑
I∈I h(|I|) ≤ δ,

(v) suppF ⊆ supp f ,

(vi) H ⊇ supp f ,

(vii) |H | < | supp f |+ δ.

Justification of the inductive step in Lemma 7. Set fk = f , fk+1 = F and Gk+1 =

Gk∪H . Provided that δ is small enough, we have the desired result. Note that we need to

know that H ⊇ supp fk and Gk ⊇ supp fk in order to obtain (v)k+1 from (vii) and (v)k.

However, things are not quite as simple as a hasty inspection of Lemma 9 might lead

one to believe. The inductive step itself needs (so far as I can see) to be broken up into

several steps and (again so far as I can see) it is here that we need to be most careful.

We start with a preparatory step.

Lemma 10. Suppose that f is a positive infinitely differentiable function with f̂(0)

= 1. Then, given any δ > 0, we can find an η > 0, a finite collection K of closed intervals

such that every pair of intervals in K intersect at at most one point, and a closed set H

such that
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(a) H ⊇ supp f ,

(b) |H | < | supp f |+ δ,

(c) If x 6∈ H and y ∈
⋃

K∈K K then |x− y| > η,

(d) If K ∈ K then 102η−1
∫
K
f(t) dt < δ.

Proof. Since supp f is closed we can find a finite collection of intervals J1, J2, . . . , Jm,

say with
⋃m

r=1 Jr ⊇ supp f and
∑m

r=1 |Jr| < | supp f | + δ/2. Choose η > 0 such that

8mη < δ and set

H =
m⋃

r=1

(Jr + [−2η, 2η])

where we write [a, b] + [−2η, 2η] = [a− 2η, b+2η]. Conditions (a) and (b) are automatic.

Now choose K to be a finite collection of closed intervals such that

(i)
⋃

K∈KK =
⋃m

r=1 Jr,

(ii) every pair of intervals in K intersect at at most one point,

(iii) if K ∈ K then |K| < ‖f‖−1
∞ 10−2ηδ.

Conditions (c) and (d) are automatic.

We now need to apply the following lemma repeatedly.

Lemma 11. Let h : [0,∞) → [0,∞) be a strictly increasing continuous function with

h(0) = 0. Suppose that we are given f a positive infinitely differentiable function with

f̂(0) = 1, δ > 0 and η > 0, together with a finite collection K of closed intervals such that

every pair of intervals in K intersect at at most one point, and a closed set H such that

(a) H ⊇ supp f ,

(b) |H | < | supp f |+ δ,

(c) If x 6∈ H and y ∈
⋃

K∈K K then |x− y| > η,

(d) If K ∈ K then 102η−1
∫
K
f(t) dt < δ.

Then, given any K1 ∈ K and any ǫ > 0, we can find a positive infinitely differentiable

function F such that

(d)′ If K ∈ K then 102η−1
∫
K
F (t) dt < δ,

and

(i) F̂ (0) = 1,

(ii) |F̂ (u)− f̂(u)| ≤ ǫ if |f̂(u)| > δ/4,

(ii)′ |F̂ (u)| ≤ δ/2 if |f̂(u)| ≤ δ/4,

(iii) |Sn(F, x)| ≤ |Sn(f, x)| + ǫ for all n ≥ 0 and all x 6∈ H with |Sn(f, x)| > δ/4,

(iii)′ |Sn(F, x)| ≤ δ/2 for all n ≥ 0 and all x 6∈ H with |Sn(f, x)| ≤ δ/4,

(iv) We can find a finite set IK1 of closed intervals such that
⋃

I∈IK1
I ⊇ suppF ∩K1

but
∑

I∈I h(|I|) ≤ ǫ,

(v) suppF ⊆ supp f .

Proof of Lemma 9. First apply Lemma 10 to obtain K with the properties given in

that Lemma. We suppose that K contains M intervals K(1), K(2), . . . , K(M). Now set
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ǫ = δ/(4M), and F0 = f . By applying Lemma 11 repeatedly we obtain a sequence of M

positive infinitely differentiable functions Fj with F̂j(0) = 1 such that if 1 ≤ j ≤ M .

(i)j F̂j(0) = 1,

(ii)j |F̂j(u)− F̂j−1(u)| ≤ ǫ if |F̂j−1(u)| > δ/4,

(ii)′j |F̂j(u)| ≤ δ/2 if |F̂j−1(u)| ≤ δ/4,

(iii)j |Sn(Fj , x)| ≤ |Sn(Fj−1, x)| + ǫ for all n ≥ 0 and all x 6∈ H with |Sn(Fj−1, x)| >

δ/4,

(iii)′j |Sn(Fj , x)| ≤ δ/2 for all n ≥ 0 and all x 6∈ H with |Sn(Fj−1, x)| ≤ δ/4,

(iv)j We can find a finite set IK(j) of closed intervals such that
⋃

I∈IK(j)
I ⊇ suppF ∩

K(j) but
∑

I∈I h(|I|) ≤ ǫ,

(v)j suppFj ⊆ suppFj−1.

If we now set F = FM and I =
⋃M

j=1 IK(j) then the conclusions of Lemma 9 can be read

off.

Proof of Lemma 11. We may suppose ǫ < 10−2δ and η < 1. Choose positive infinitely

differentiable functions φ1 and φ2 such that φ1 + φ2 = 1, φ1(t) = 0 for all t 6∈ K1 and we

can find two intervals J1 and J2 such that

h(|J1|) + h(|J2|) ≤ ǫ/2, and φ2(t) = 0 for all t ∈ K1 \ (J1 ∪ J2).

We set f1 = φ1f , f2 = φ2f .

Since f1 and f2 are infinitely differentiable, we can find a positive integer N such that

(1)
∑

|u|≥N

|f̂1(u)|+ |f̂2(u)| ≤ δ/16.

We now approximate f1 in the weak star sense by a function g1 of the form

g1 =

M∑

j=1

λjδxj
∗G

where δxj
is the Dirac delta measure at xj , G is an infinitely differentiable function of

integral 1 and support a small interval containing 0. Provided we take M large enough

and the support of G small enough and choose the λj and xj appropriately, we can ensure

that

(2)
∑

|u|≤N

|f̂1(u)− ĝ1(u)| ≤ ǫ/16

supp g1 ⊆ K1, and in addition

(i)′ ĝ1(0) = f̂1(0),

(iv)′ We can find a finite set of closed intervals J such that
⋃

J∈J I ⊇ supp g1 but∑
J∈J h(|J |) ≤ ǫ/2,

(v)′ supp g1 ⊆ supp f1.

Now set F = g1+ f1 and IK1 = J ∪{J1}∪{J2}. Conclusions (d)
′ and (i) follow from

(i)′ and the definitions of f1 and f2. Similarly conclusions (iv) and (v) follow more or

less directly from (iv)′ and (v)′. To prove (ii) observe that, if |f̂(u)| > δ/4, then (since
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|f̂1(u)|+ |f̂2(u)| ≥ |f̂(u)|) equation (1) tells us that |u| < N and so equation (2) gives us

|F̂ (u)− f̂(u)| = |ĝ1(u)− f̂1(u)| ≤ ǫ.

To prove (ii)′ observe that

‖f1‖1 + ‖g1‖1 = f̂1(0) + ĝ0(0) = 2f̂1(0) ≤ 10−2η−1δ < δ/4

by condition (d) and so

|F̂ (u)| ≤ |f̂(u)|+ |ĝ1(u)− f̂1(u)| ≤ |f̂(u)|+ |ĝ1(u)|+ |f̂1(u)| ≤ |f̂(u)|+ δ/4

for all u.

The proof of (iii) and (iii)′ follows the same pattern but constitutes a central step

in the proof. Suppose x 6∈ H and so in particular, x 6∈ supp f . Since f is smooth,∑∞
r=−∞ f̂(r) exp irx converges absolutely to f(x) = 0 and so, if |Sn(f, x)| > δ/4, equation

(1) tells us that |u| < N . Equation (2) now tells us that

|Sn(F, x) − Sn(f, x)| = |Sn(g1, x)− Sn(f1, x)| ≤
∑

|u|≤N

|f̂1(u)− ĝ1(u)| ≤ ǫ

and so

|Sn(F, x)| ≤ |Sn(f, x)| + ǫ

as required. To prove (iii)′, observe that, as we noted in the previous paragraph ‖f1‖ +

‖g1‖ ≤ 10−2η−1δ and, using condition (c), |x− y| > η. Now, using the Dirichlet formula

Sn(µ, x) =

∫
sin(n+ 1

2 )

sin t
2

dµ(t),

we have

|Sn(f1, x)| ≤
π

η
‖f1‖, Sn(g1, x)| ≤

π

η
‖g1‖

and
|Sn(F, x)| ≤ |Sn(f, x)| + |Sn(g1, x)− Sn(f1, x)|

≤ |Sn(f, x)| + |Sn(g1, x)|+ |Sn(f1, x)| ≤ |Sn(f, x)| + δ/4.

This completes the proof of the main lemma and so of Theorem 4.

5. Algebraic independence. We now turn to the proof of the full Theorem 2. To

this end we use the following modification of Lemma 5.

Lemma 12. We can find a sequence Kj with the following property. Given any strictly

increasing continuous function h : [0,∞) → [0,∞) with h(0) = 0 and any sequence ǫj
with ǫj > 0 we can find a sequence of positive measures µj and Borel sets Gj such that

(i)j µ̂j(0) = 1,

(ii)j µ̂j(n) → 0 as |n| → ∞,

(iii)j |µ̂j(u)| ≤ ǫ for all u 6= 0,

(iv)j |Sn(µj , x)| ≤ Kj for all n ≥ 0 and all x 6∈ Gj,

(v)j |Gj | < 2−j,

(vi)j suppµj has Hausdorff h measure zero,

(vii)
⋃∞

j=1 Gj independent.



90 T. W. KÖRNER

The proof of Theorem 2 follows that of Theorem 4. We take

µ =
∑

j=1

Qjµj

for appropriate trigonometric polynomials Qj and an appropriate ǫj.

To obtain Lemma 12 we need a more complicated version of Lemma 7. If a =

(a1, a2, . . . , aM ) is a non-zero finite sequence of integers and δ > 0, let us say that a

set E is (a, δ) independent if there is no solution of

M∑

m=1

amxm = 0

with xm ∈ E for 1 ≤ m ≤ M and minm 6=k |xm − xk| > δ. We choose, once and for all,

a sequence a(n) of non-zero finite sequences such that each possible sequence appears

infinitely often.

Lemma 13. We can find a sequence Kj with the following property. Given any strictly

increasing continuous function h : [0,∞) → [0,∞) with h(0) = 0 and any sequence ǫj with

ǫj > 0 we can find positive infinitely differentiable functions fj,k and sets Gj,k such that

(i)k f̂j,k(0) = 1 for 1 ≤ j ≤ k,

(ii)k |f̂j,k(u)− f̂j,k−1(u)| ≤ 2−k for all u if 1 ≤ j ≤ k − 1,

(iii)k |f̂j,k(u)| ≤ ǫj(1 − 2−k) for all u 6= 0 and 1 ≤ j ≤ k,

(iv)k |Sn(fj,k, x)| ≤ Kj(1 − 2−k) for all n ≥ 0, all x 6∈ Gj,k and 1 ≤ j ≤ k,

(v)k |Gj,k| < 2−j(1 − 2−k)) for all 1 ≤ j ≤ k,

(vi)k If 1 ≤ j ≤ k − 1 we can find a finite set I(j, k) of closed intervals such that⋃
I∈I(j,k) ⊇ supp fk but

∑
I∈I(j,k) h(|I|) ≤ 2−k,

(vii)k Gj,k ⊇ Gj,k−1 if 1 ≤ j ≤ k − 1,

(viii)k supp fj,k−1 ⊇ supp fj,k if 1 ≤ j ≤ k − 1,

(ix)k Gj,k ⊇ supp fj,k for 1 ≤ j ≤ k,

(x)k
⋃k−1

j=1 Gj,k is (an, 2
−k) independent.

Proof of Lemma 12 from Lemma 13. This follows the proof of Lemma 5 closely. Using

conditions (i)k, (ii)k and (ix)k we see that fj,km converges weakly to a positive measure

µj with support lying within Gj =
⋂∞

j=k Gj,k. Conditions (i)j to (vi)j are deduced in the

same way that we obtained conditions (i) to (vi) of Lemma 5.

Suppose now that a = (a1, a2, . . . , aM ) is a non-zero finite sequence of integers and

x1, x2, . . . , xM are distinct points of
⋃∞

j=1 suppµj . Simple arguments show that we can

find an N such that

(a) maxm 6=q |xm − xq| > 2−N ,

(b) xm ∈ supp
⋃N−1

j=1 Gj for all 1 ≤ m ≤ M ,

(c) aN = a.

Since Gj ⊆ Gj,N for each 1 ≤ j ≤ N condition (x)N tells us that

M∑

m=1

amxm 6= 0.

Thus
⋃∞

j=1 Gj is independent and we are done.
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6. Discussion of the inductive step. If we look at Lemma 13 and compare it

with Lemma 7 it is clear that (if we proceed as before) each inductive step will itself

involve many substeps. The introduction of the function fk,k and the set Gk,k will follow

Lemma 8. The steps required to ensure (vi)k will follow the method given in Lemma 9.

We shall therefore only deal with the steps required to obtain (x)k.

Essentially, we need to prove the following version of Lemma 9:

Lemma 14. Suppose that we are given R positive infinitely differentiable functions fk
with f̂k(0) = 1 [1 ≤ k ≤ R]. Then, given any δ > 0 and any non-zero finite sequence

a = (a1, a2, . . . , aM ) of integers, we can find positive infinitely differentiable functions Gj

and a closed set H such that

(i) Ĝk(0) = 1 for all 1 ≤ k ≤ R,

(ii) |Ĝk(u)− f̂k(u)| ≤ δ for all 1 ≤ k ≤ R,

(iii) |Sn(Gk, x)| ≤ |Sn(fk, x)| + δ for all n ≥ 0, all 1 ≤ k ≤ R and all x 6∈ H,

(iv)
⋃R

k=1 suppGk is (a, δ) independent.

(v) suppGk ⊆ supp fk for all 1 ≤ k ≤ R,

(vi) H ⊇
⋃R

k=1 supp fk,

(vii) |H | < |
⋃R

k=1 suppGk|+ δ.

The rest of this paper is devoted to proving this result.

We shall follow the proof of Lemma 9 with appropriate modifications. As might be

expected, we start with a version of Lemma 10.

Lemma 15. Suppose that we are given R positive infinitely differentiable functions fk
with f̂k(0) = 1 [1 ≤ k ≤ R]. Then given any δ > 0 and any non-zero finite sequence

a = (a1, a2, . . . , aM ) of integers we can find an η > 0, a finite collection K of closed

intervals such that every pair of intervals in K intersect at at most one point, and a

closed set H such that

(a) H ⊇ supp f ,

(b) |H | < | supp f |+ δ,

(c) If x 6∈ H and y ∈
⋃

K∈K K then |x− y| > η,

(d) If K ∈ K then 103η−1
∫
K
fk(t) dt < δ/M ,

(e) If K ∈ K then |K| < δ/10.

Proof. Essentially the same as that of Lemma 10.

Our central step corresponds to Lemma 11.

Lemma 16. Suppose that we are given R positive infinitely differentiable functions

fk with f̂k(0) = 1 [1 ≤ k ≤ R]. together with δ > 0, a non-zero finite sequence a =

(a1, a2, . . . , aM ) of integers, an η > 0, and a finite collection K of closed intervals such that

every pair of intervals in K intersect at at most one point, and a closed set H such that

(a) H ⊇ supp f ,

(b) |H | < | supp f |+ δ,

(c) If x 6∈ H and y ∈
⋃

K∈K K then |x− y| > η,

(d) If K ∈ K then 103η−1
∫
K
fk(t) dt < δ/M .
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(e) If K ∈ K then |K| < δ/10.

Then given any K1, K2, . . . , KM ∈ K such that

inf
x∈Kr, y∈Ks

|x− y| > δ/2 whenever 1 ≤ r < s ≤ M

and any ǫ > 0 we can find R positive infinitely differentiable functions Fk [1 ≤ k ≤ R]

such that

(d)′ If K ∈ K then 102η−1
∫
K
Fk(t) dt < δ, for all 1 ≤ k ≤ R

and

(i) F̂k(0) = 1,

(ii) |F̂k(u)− f̂k(u)| ≤ ǫ if |f̂k(u)| > δ/4,

(ii)′ |F̂k(u)| ≤ δ/2 if |f̂k(u)| ≤ δ/4,

(iii) |Sn(Fk, x)| ≤ |Sn(fk, x)|+ ǫ for all n ≥ 0 and all x 6∈ H with |Sn(fk, x)| > δ/4,

(iii)′ |Sn(Fk, x)| ≤ δ/2 for all n ≥ 0 and all x 6∈ H with |Sn(fk, x)| ≤ δ/4,

(iv) If xm ∈
⋃R

k=1 suppFk ∩Km for 1 ≤ m ≤ M then
∑M

j=1 ajxj 6= 0.

(v) suppFk ⊆ supp fk.

Sketch proof of Lemma 14. This follows the proof of Lemma 9 but the details, if we

were to give them, would require quite complex notation. We first need to apply Lemma 15

to obtain K with the properties given in that Lemma. We now apply Lemma 16 to each

possible collection K1, K2, . . . , KM ∈ K such that

inf
x∈Kr, y∈Ks

|x− y| > δ/2 whenever 1 ≤ r < s ≤ R,

in turn. The arguments of the proof of Lemma 9 from Lemma 11 give, mutatis mutandis,

all the conditions of Lemma 14 with the exception of (iv).

To prove (iv), observe that if xm ∈
⋃R

k=1 suppGk for 1 ≤ m ≤ M and

minm 6=k |xm − xk| > δ then, automatically xm ∈
⋃

K∈KK and there must be a collection

K1,K2, . . . ,KM ∈ K such that

inf
x∈Kr, y∈Ks

|x− y| > δ/2 whenever 1 ≤ r < s ≤ R

and xm ∈ Km for 1 ≤ m ≤ M . Thus, by looking at condition (vi) of Lemma 16, for the

appropriate step we obtain
m∑

j=1

ajxj 6= 0,

as required.

Sketch proof of Lemma 16. We may suppose ǫ < 10−2δ and η < 1. Choose positive

infinitely differentiable functions φ1 and φ2 such that φ1 + φ2 = 1, φ1(t) = 1 for all t ∈

and φ1(t) = 0 unless t lies in some interval K ∈ K which shares an end point with one of

the Km with 1 ≤ m ≤ M . We set f1,r = φ1fr, f2 = φ2fr.

Since f1,r and f2,r are infinitely differentiable we can find a positive integer N such

that

(1)
∑

|u|≥N

|f̂1(u)|+ |f̂2(u)| ≤ δ/16
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for all 1 ≤ r ≤ R. We now approximate the f1,r in the weak star sense by a function g1,r
of the form

g1,r =

J∑

j=1

λjδyj
∗G

where δyj
is the Dirac delta measure at yj and G is an infinitely differentiable func-

tion of integral 1 and support a small interval containing 0. We demand that the yj be

independent.

Provided we take M large enough and choose the λj and xj appropriately we can

ensure that, provided only suppG lies within a sufficiently small distance of 0,

(2)
∑

|u|≤N

|f̂1,r(u)− ĝ1,r(u)| ≤ ǫ/16

and in addition

(i)′ ĝ1,r(0) = f̂1(0),

(v)′ supp g1,r ⊆ supp f1,r,

(d)′′
∫
K
g1,r(t) dt =

∫
K
f1,r(t) dt for all K ∈ K.

Since the yj are independent we can find a ρ > 0 such that, if |xj − yj | ≤ ρ for

1 ≤ j ≤ M ,
M∑

j=1

ajxj 6= 0.

ChooseG so that suppG ⊆ [−ω, ω] and all the conclusions of the previous paragraph hold.

Conclusion (iv) of our lemma is now immediate and conclusion (d)′ follows from (d)′′.

The remaining conclusions are proved in the same way as the corresponding conclusions

in Lemma 11.

It would be nice to think that the correction theorems obtained in this paper had

something to do with questions of pointwise convergence such as are considered in Car-

leson’s theorem, but, so far as I can see, they do not. It would be surprising if they did,

since the methods of this paper may be complicated but are certainly not deep.
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