THE HILBERT TRANSFORM, REARRANGEMENTS, AND LOGARITHMIC DETERMINANTS

VLADIMIR MATSAEV
School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, 69978, Israel E-mail: matsaev@post.tau.ac.il
IOSSIF OSTROVSKII
Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey E-mail: iossif@fen.bilkent.edu.tr
and
Verkin Institute for Low Temperature Physics and Engineering, 61103 Kharkov, Ukraine
MIKHAIL SODIN
School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv, 69978, Israel
E-mail: sodin@post.tau.ac.il

This is an extended version of notes prepared for the talk at the conference "Rajch-man-Zygmund-Marcinkiewicz 2000". They are based on recent papers [13] and [15] (see also [14] and [16]). The authors thank Professor Żelazko for the invitation to participate in the conference.

1. Let g be a bounded measurable real-valued function on \mathbb{R} with a compact support. We shall use the following notations:

- The Hilbert transform of g :

$$
(\mathcal{H} g)(\xi)=\frac{1}{\pi} \int_{\mathbb{R}}^{\prime} \frac{g(t)}{t-\xi} d t
$$

the prime means that the integral is understood in the principal value sense at the point $t=\xi$.

[^0]- The (signed) distribution function of g :

$$
N_{g}(s)=\left\{\begin{array}{r}
\operatorname{meas}\{x: g(x)>s\}, \text { if } s>0 \\
- \text { meas }\{x: g(x)<s\}, \text { if } s<0
\end{array}\right.
$$

The (signed) decreasing rearrangement of $g: g_{d}$ is defined as the distribution function of $N_{g}: g_{d}=N_{N_{g}}$.

Less formally, the functions N_{g} and g_{d} can be also defined by the following properties: they are non-negative and non-increasing for $s>0$, non-positive and non-increasing for $s<0$, and

$$
\int_{\mathbb{R}} \Phi(g(t)) d t=\int_{\mathbb{R}} \Phi(s) d N_{g}(s)=\int_{\mathbb{R}} \Phi\left(g_{d}(t)\right) d t
$$

for any function Φ such that at least one of the three integrals is absolutely convergent.
We shall use notation $A \lesssim B$ when $A \leq C \cdot B$ for a positive numerical constant C. We shall write $A \lesssim \lambda B$ if C in the previous inequality depends on the parameter λ only.

THEOREM 1.1. Let g be a bounded measurable real-valued function with a compact support. Then

$$
\begin{equation*}
\left\|\mathcal{H} g_{d}\right\|_{L^{1}} \leq 4\|\mathcal{H} g\|_{L^{1}} \tag{1.2}
\end{equation*}
$$

Hereafter, L^{1} always means $L^{1}(\mathbb{R})$.
Remarks.
1.3. Estimate (1.2) can be extended to a wider class of functions after an additional regularization of the Hilbert transform $\mathcal{H} g_{d}$ (see $\S 3$ below).
1.4. Probably, the constant 4 on the RHS is not sharp. However, Davis' discussion in [3] suggests that (1.2) ceases to hold without this factor on the RHS.
1.5. Theorem 1.1 yields a result of Tsereteli [19] and Davis [3]: if $g \in \operatorname{Re} H^{1}$, then g_{d} is also in $\operatorname{Re} H^{1}$, and $\left\|\mathcal{H} g_{d}\right\|_{L^{1}} \lesssim\|g\|_{\operatorname{Re} H^{1}}$, where $\operatorname{Re} H^{1}$ is the real Hardy space on \mathbb{R}.
1.6. Theorem 1.1 can be extended to functions defined on the unit circle \mathbb{T}. Let $g(t)$ be a bounded function on \mathbb{T}, g_{d} be its signed decreasing rearrangement, and \tilde{g} be the function conjugate to g :

$$
\tilde{g}(t)=\frac{1}{2 \pi} \int_{\mathbb{T}}^{\prime} g(\xi) \cot \frac{t-\xi}{2} d \xi .
$$

Then

$$
\begin{equation*}
\left\|\widetilde{g_{d}}\right\|_{L^{1}(\mathbb{T})} \leq 4\|\tilde{g}\|_{L^{1}(\mathbb{T})} \tag{1.7}
\end{equation*}
$$

Juxtapose this estimate with Baernstein's inequality [1]:

$$
\begin{equation*}
\|\tilde{g}\|_{L^{1}(\mathbb{T})} \leq\left\|\widetilde{g}_{s}\right\|_{L^{1}(\mathbb{T})}, \tag{1.8}
\end{equation*}
$$

where g_{s} is the symmetric decreasing rearrangement of g. In particular, if g_{s} has a conjugate in L^{1}, then any rearrangement of g has a conjugate in L^{1}, and if some rearrangement of g has a conjugate in L^{1}, then the conjugate of g_{d} is in L^{1}. We are not aware of a counterpart of Baernstein's inequality for the Hilbert transform and the $L^{1}(\mathbb{R})$-norm.
2. Here, we shall prove Theorem 1.1. WLOG, we assume that

$$
\begin{equation*}
\int_{\mathbb{R}} g(t) d t=0 \tag{2.1}
\end{equation*}
$$

otherwise

$$
(\mathcal{H} g)(\xi)=-\frac{1}{\pi \xi} \int_{\mathbb{R}} g(t) d t+O\left(1 / \xi^{2}\right), \quad \xi \rightarrow \infty
$$

and the L^{1}-norm on the RHS of (1.2) is infinite.
The first reduction: instead of (1.2), we shall prove the inequality

$$
\begin{equation*}
\left\|\mathcal{H} N_{g}\right\|_{L^{1}} \leq 2\|\mathcal{H} g\|_{L^{1}} \tag{2.2}
\end{equation*}
$$

then its iteration gives (1.2).
We introduce a (regularized) logarithmic determinant of g :

$$
u_{g}(z) \stackrel{\text { def }}{=} \int_{\mathbb{R}} K(z g(t)) d t, \quad K(z)=\log |1-z|+\operatorname{Re}(z) .
$$

This function is subharmonic in \mathbb{C} and harmonic outside of \mathbb{R}.
List of properties of u_{g} : Since g is a bounded function with a compact support,

$$
\begin{equation*}
u_{g}(z)=O\left(|z|^{2}\right), \quad z \rightarrow 0 \tag{2.3a}
\end{equation*}
$$

and by (2.1)

$$
\begin{equation*}
u_{g}(z)=\int_{\mathbb{R}} \log |1-z g(t)| d t=O(\log |z|), \quad z \rightarrow \infty \tag{2.3b}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{\left|u_{g}(x)\right|}{x^{2}}<\infty . \tag{2.3c}
\end{equation*}
$$

Next,

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{u_{g}(x)}{x^{2}} d x=0 . \tag{2.4}
\end{equation*}
$$

This follows from the Poisson representation:

$$
u_{g}(i y)=\frac{y}{\pi} \int_{\mathbb{R}} \frac{u_{g}(x)}{x^{2}+y^{2}} d y, \quad y>0 .
$$

Dividing by y, letting $y \rightarrow 0$, and using (2.3a), we get (2.4).
Further,

$$
\begin{equation*}
u_{g}(1 / t)=-\pi\left(\mathcal{H} N_{g}\right)(t) \tag{2.5}
\end{equation*}
$$

Indeed, integrating by parts and changing variables, we obtain for real x 's:

$$
u_{g}(x)=\int_{\mathbb{R}} \log |1-x s| d N_{g}(s)=x \int_{\mathbb{R}}^{\prime} \frac{N_{g}(s)}{1-x s} d s=-\pi\left(\mathcal{H} N_{g}\right)(1 / x)
$$

We have done the second reduction: Instead of (2.2), we shall prove the inequality

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{u_{g}^{-}(x)}{x^{2}} d x \leq \pi\|\mathcal{H} g\|_{L^{1}} . \tag{2.6}
\end{equation*}
$$

Then combining (2.4) and (2.6), we get (2.2).
Now, we set

$$
f(t)=g(t)+i(\mathcal{H} g)(t)
$$

This function has an analytic continuation into the upper half-plane:

$$
f(z)=\frac{1}{\pi i} \int_{\mathbb{R}} \frac{g(t)}{t-z} d t
$$

We define the regularized logarithmic determinant of f by the equation

$$
\begin{equation*}
u_{f}(z)=\int_{\mathbb{R}} K(z f(t)) d t \tag{2.7}
\end{equation*}
$$

The positivity of this subharmonic function is central in our argument:
Lemma 2.8. (cf. [4])

$$
u_{f}(z) \geq 0, \quad z \in \mathbb{C}
$$

Proof. It suffices to consider z 's such that all solutions of the equation $z f(w)=1$ are simple and not real. Then

$$
\begin{aligned}
u_{f}(z) & =\operatorname{Re}\left\{\int_{\mathbb{R}}[\log (1-z f(t))+z f(t)] d t\right\}=\operatorname{Re}\left\{z^{2} \int_{\mathbb{R}} \frac{t f(t) f^{\prime}(t)}{1-z f(t)} d t\right\} \\
& =\operatorname{Re}\left\{2 \pi i z^{2} \sum_{\{w: z f(w)=1\}} \operatorname{Res}_{w}\left(\frac{\zeta f(\zeta) f^{\prime}(\zeta)}{1-z f(\zeta)}\right)\right\}=2 \pi \sum_{\{w: z f(w)=1\}} \operatorname{Im}(w) \geq 0 .
\end{aligned}
$$

The application of the Cauchy theorem is justified since $f(\zeta)=O\left(1 / \zeta^{2}\right)$ when $\zeta \rightarrow \infty$, $\operatorname{Im}(\zeta) \geq 0$.

To complete the proof of the theorem, we shall use an argument borrowed from the perturbation theory of compact operators [5]. We use auxiliary functions $f_{1}=g+i|\mathcal{H} g|$ and

$$
u_{1}(z)=\int_{\mathbb{R}} \log \left|\frac{1-z g(t)}{1-z f_{1}(t)}\right| d t .
$$

Then on the real axis

$$
u_{g}(x)=u_{1}(x)+u_{f}(x), \quad x \in \mathbb{R},
$$

so that $u_{g}(x) \geq u_{1}(x)$, or $u_{g}^{-}(x) \leq u_{1}^{-}(x)=-u_{1}(x)$, since $u_{1}(x) \leq 0, x \in \mathbb{R}$.
Next, we need an elementary inequality: if w_{1}, w_{2} are complex numbers such that $\operatorname{Re}\left(w_{1}\right)=\operatorname{Re}\left(w_{2}\right)$ and $\left|\operatorname{Im}\left(w_{1}\right)\right| \leq \operatorname{Im}\left(w_{2}\right)$, then for all z in the upper half-plane,

$$
\left|\frac{1-z w_{1}}{1-z w_{2}}\right|<1 .
$$

Due to this inequality the function u_{1} is non-positive in the upper half-plane. Since this function is harmonic in the upper half-plane, we obtain

$$
\begin{aligned}
\int_{\mathbb{R}} \frac{u_{g}^{-}(x)}{x^{2}} d x & \leq-\int_{\mathbb{R}} \frac{u_{1}(x)}{x^{2}} d x=-\lim _{y \rightarrow 0} \int_{\mathbb{R}} \frac{u_{1}(x)}{x^{2}+y^{2}} d x \leq-\pi \lim _{y \rightarrow 0} \frac{u_{1}(i y)}{y} \\
& =-\pi \lim _{y \rightarrow 0} \frac{1}{y} \int_{\mathbb{R}} \log \left|\frac{1-i y g(t)}{1-i y g(t)+y|(\mathcal{H} g)(t)|}\right| d t=\pi \int_{\mathbb{R}}|(\mathcal{H} g)(t)| d t .
\end{aligned}
$$

This proves (2.6) and therefore the theorem.
3. Here, we will formulate a fairly complete version of estimate (2.2). The proof given in [15] follows similar lines as above, however is essentially more technical.

Now, we start with a real-valued measure $d \eta$ of finite variation on \mathbb{R}, and denote by $g=\mathcal{H} \eta$ its Hilbert transform. By $\|\eta\|$ we denote the total variation of the measure $d \eta$ on \mathbb{R}. Let $R_{g}=\mathcal{H}^{-1} N_{g}$ be a regularized inverse Hilbert transform of N_{g} :

$$
R_{g}(t) \stackrel{\text { def }}{=} \lim _{\epsilon \rightarrow 0} \frac{1}{\pi} \int_{|s|>\epsilon}^{\prime} \frac{N_{g}(s)}{t-s} d s
$$

The integral converges at infinity due to the Kolmogorov weak L^{1}-type estimate

$$
N_{g}(s) \lesssim\|\eta\| / s, \quad 0<s<\infty .
$$

Existence of the limit when $\epsilon \rightarrow 0$ (and $t \neq 0$) follows from the Titchmarsh formula [18] (cf. [15]):

$$
\lim _{s \rightarrow 0} s N_{g}(s)=\frac{\eta(\mathbb{R})}{\pi}
$$

Theorem 3.1. Let $d \eta$ be a real measure supported by \mathbb{R}. Then

$$
\begin{align*}
& \int_{\mathbb{R}} R_{g}^{+}(t) d t \leq\left\|\eta_{\text {a.c. }}\right\| \tag{3.2}\\
& \int_{\mathbb{R}} R_{g}^{-}(t) d t \leq\|\eta\|-|\eta(\mathbb{R})| \tag{3.3}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\mathbb{R}} R_{g}(t) d t=|\eta(\mathbb{R})|-\left\|\eta_{\operatorname{sing}}\right\| \tag{3.4}
\end{equation*}
$$

Corollary 3.5. The function R_{g} always belongs to L^{1} and its L^{1}-norm does not exceed $2\|\eta\|$.

The classical Boole theorem says that if $d \eta$ is non-negative and pure singular, then $N_{g}(s)=\eta(\mathbb{R}) / s$, and therefore R_{g} vanishes identically. The next two corollaries can be viewed as quantitative generalizations of this fact:

Corollary 3.6. If $d \eta \geq 0$, then $R_{g}(t)$ is non-negative as well, and $\left\|R_{g}\right\|_{L^{1}}=\eta_{\text {a.c. }}(\mathbb{R})$.
Corollary 3.7. If $d \eta$ is pure singular, then $R_{g}(t)$ is non-positive and $\left\|R_{g}\right\|_{L^{1}}=$ $\|\eta\|-|\eta(\mathbb{R})|$.

For other recent results obtained with the help of the logarithmic determinant we refer to [8], [14] and [16].
4. In $\S 2$ we used the subharmonic function technique for proving a theorem about the Hilbert transform. The idea of logarithmic determinants also provides us with a connection which works in the opposite direction: starting with a known result about the Hilbert transform, one arrives at a plausible conjecture about a non-negative subharmonic function in \mathbb{C} represented by a canonical integral of genus one. For illustration, we consider a well known inequality

$$
\begin{equation*}
m_{f}(\lambda) \lesssim \frac{1}{\lambda^{2}} \int_{0}^{\lambda} s m_{g}(s) d s+\frac{1}{\lambda} \int_{\lambda}^{\infty} m_{g}(s) d s, \quad 0<\lambda<\infty \tag{4.1}
\end{equation*}
$$

where $f=g+i \mathcal{H} g, g$ is a test function on $\mathbb{R}, m_{f}(\lambda)=\operatorname{meas}\{|f| \geq \lambda\}$, and $m_{g}(\lambda)=$ meas $\{|g| \geq \lambda\}=N_{g}(\lambda)-N_{g}(-\lambda)$. Inequality (4.1) contains as special cases Kolmogorov's
weak L^{1}-type inequality $\lambda m_{f}(\lambda) \lesssim\|g\|_{L^{1}}$, and M. Riesz' inequality $\|f\|_{L^{p}} \lesssim_{p}\|g\|_{L^{p}}$, $1<p \leq 2$. Inequality (4.1) can be justly attributed to Marcinkiewicz. He formulated his general interpolation theorem for sub-linear operators in [12], the proof was supplied by Zygmund in [21] with reference to Marcinkiewicz' letter. Its main ingredient is a decomposition $g=g \chi_{\{|g|<\lambda\}}+g \chi_{\{|g| \geq \lambda\}}$, where χ_{E} is the characteristic function of a set E. This decomposition immediately proves (4.1), see [7, Section V.C.2].

Define a logarithmic determinant u_{f} of genus one as in (2.7), and denote by $d \mu_{f}$ its Riesz measure (i.e. $1 /(2 \pi)$ times the distributional Laplacian $\left.\Delta u_{f}\right)$. For each Borelian subset $E \subset \mathbb{C}, \mu_{f}(E)=\operatorname{meas}\left(f^{-1} E^{*}\right)$, where $E^{*}=\left\{z: z^{-1} \in E\right\}$, and $f^{-1} E^{*}$ is the full preimage of E under f. Now, we can express the RHS and the LHS of inequality (4.1) in terms of μ_{f}. First, observe that the counting function of μ_{f} equals

$$
\mu_{f}(r) \stackrel{\text { def }}{=} \mu_{f}\{|z| \leq r\}=\operatorname{meas}\left\{|f(t)| \geq r^{-1}\right\}=m_{f}\left(r^{-1}\right) .
$$

In order to write down m_{g} in terms of μ_{f}, we introduce the Levin-Tsuji counting function (cf. [20], [6]):

$$
\begin{aligned}
\mathfrak{n}_{f}(r) & =\mu_{f}\{|z-i r / 2| \leq r / 2\}+\mu_{f}\{|z+i r / 2| \leq r / 2\} \\
& =\mu_{f}\left\{\left|\operatorname{Im}\left(z^{-1}\right)\right| \geq r^{-1}\right\}=\operatorname{meas}\left\{|g| \geq r^{-1}\right\}=m_{g}\left(r^{-1}\right) .
\end{aligned}
$$

Now, we can rewrite (4.1) in the form:

$$
\begin{equation*}
\mu_{f}(r) \lesssim r \int_{0}^{r} \frac{\mathfrak{n}_{f}(t)}{t^{2}} d t+r^{2} \int_{r}^{\infty} \frac{\mathfrak{n}_{f}(t)}{t^{3}} d t, \quad 0<r<\infty \tag{4.2}
\end{equation*}
$$

We shall show that (4.2) persists for any subharmonic function non-negative in \mathbb{C} represented by a canonical integral of genus one. In this case the operator $g \mapsto \mathcal{H} g$ disappears, and the Marcinkiewicz argument seems to be unapplicable anymore.

Let

$$
\begin{equation*}
u(z)=\int_{\mathbb{C}} K(z / \zeta) d \mu(\zeta) \tag{4.3}
\end{equation*}
$$

where $d \mu$ is a non-negative locally finite measure on \mathbb{C} such that

$$
\begin{equation*}
\int_{\mathbb{C}} \min \left(\frac{1}{|\zeta|}, \frac{1}{|\zeta|^{2}}\right) d \mu(\zeta)<\infty \tag{4.4}
\end{equation*}
$$

Subharmonic functions represented in this form are called canonical integrals of genus one.

Let $M(r, u)=\max _{|z| \leq r} u(z)$. A standard estimate of the kernel

$$
K(z) \lesssim \frac{|z|^{2}}{1+|z|}, \quad z \in \mathbb{C}
$$

yields Borel's estimate (cf. [6, Chapter II])

$$
M(r, u) \lesssim r \int_{0}^{r} \frac{\mu(t)}{t^{2}} d t+r^{2} \int_{r}^{\infty} \frac{\mu(t)}{t^{3}} d t
$$

In particular,

$$
M(r, u)=\left\{\begin{array}{l}
o(r), \quad r \rightarrow 0 \\
o\left(r^{2}\right), r \rightarrow \infty .
\end{array}\right.
$$

Theorem 4.5. Let $u(z) \geq 0$ be a canonical integral (4.3) of genus one, then

$$
\begin{equation*}
M(r, u) \lesssim r \int_{0}^{r} \frac{\mathfrak{n}(t)}{t^{2}} d t+r^{2} \int_{r}^{\infty} \frac{\mathfrak{n}(t)}{t^{3}} d t \tag{4.6}
\end{equation*}
$$

The RHS of (4.6) does not depend on the bound for the integral (4.4), this makes the result not so obvious. By Jensen's formula, $\mu(r) \leq M(e r, u)$, so that $\mu(r) \lesssim$ the RHS of (4.6). As a corollary we immediately obtain (4.2) and the Marcinkiewicz estimate (4.1).
5. Here we sketch the proof of Theorem 4.5.

We shall need two auxiliary lemmas. The first one is a version of the Levin integral formula without remainder term (cf. [10, Section IV.2], [6, Chapter 1]). The proof can be found in [13].

Lemma 5.1. Let v be a subharmonic function in \mathbb{C} such that

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|v\left(r e^{i \theta}\right)\right||\sin \theta| d \theta=o(r), \quad r \rightarrow 0 \tag{5.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0} \frac{\mathfrak{n}(t)+v^{-}(t)+v^{-}(-t)}{t^{2}} d t<\infty \tag{5.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} v\left(R e^{i \theta}|\sin \theta|\right) \frac{d \theta}{R \sin ^{2} \theta}=\int_{0}^{R} \frac{\mathfrak{n}(t)}{t^{2}} d t, \quad 0<R<\infty \tag{5.4}
\end{equation*}
$$

where $\mathfrak{n}(t)$ is the Levin-Tsuji counting function, and the integral on the LHS is absolutely convergent.

The next lemma was proved in a slightly different setting in [11, §2], see also [6, Lemma 5.2, Chapter 6]

Lemma 5.5. Let $v(z)$ be a subharmonic function in \mathbb{C} satisfying conditions (5.2) and (5.3) of the previous lemma, let

$$
T(r, v)=\frac{1}{2 \pi} \int_{0}^{2 \pi} v^{+}\left(r e^{i \theta}\right) d \theta
$$

be its Nevanlinna characteristic function, and let

$$
\left.\left.\mathfrak{T}(r, v)=\frac{1}{2 \pi} \int_{0}^{2 \pi} v^{+}\left(r e^{i \theta} \mid \sin \theta\right) \right\rvert\,\right) \frac{d \theta}{r \sin ^{2} \theta}
$$

be its Tsuji characteristic function. Then

$$
\begin{equation*}
\int_{R}^{\infty} \frac{T(r, v)}{r^{3}} d r \leq \int_{R}^{\infty} \frac{\mathfrak{T}(r, v)}{r^{2}} d r, \quad 0<R<\infty \tag{5.6}
\end{equation*}
$$

For the reader's convenience, we recall the proof. Consider the integral

$$
I(R)=\frac{1}{2 \pi} \iint_{\Omega_{R}} \frac{v^{+}\left(r e^{i \theta}\right)}{r^{3}} d r d \theta
$$

where $\Omega_{R}=\left\{z=r e^{i \theta}: r>R|\sin \theta|\right\}=\{z:|z \pm i R / 2|>R / 2\}$. Introducing a new variable $\rho=r /|\sin \theta|$ instead of r, we get

$$
I(R)=\int_{R}^{\infty} \frac{d \rho}{\rho^{2}}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} v^{+}\left(\rho|\sin \theta| e^{i \theta}\right) \frac{d \theta}{\rho \sin ^{2} \theta}\right\}=\int_{R}^{\infty} \frac{\mathfrak{T}(\rho, v)}{\rho^{2}} d \rho
$$

Now, consider another integral

$$
J(R)=\frac{1}{2 \pi} \iint_{K_{R}} \frac{v^{+}\left(r e^{i \theta}\right)}{r^{3}} d r d \theta
$$

where $K_{R}=\{z:|z|>R\}$. Since $K_{R} \subset \Omega_{R}$, we have $J(R) \leq I(R)$. Taking into account that

$$
J(R)=\int_{R}^{\infty} \frac{d r}{r^{3}}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} v^{+}\left(r e^{i \theta}\right) d \theta\right\}=\int_{R}^{\infty} \frac{T(r, v)}{r^{3}} d r
$$

we obtain (5.6).
Proof of Theorem 4.5. Due to Borel's estimate condition (5.2) is fulfilled. Due to nonnegativity of u and (4.4), condition (5.3) holds as well. Using monotonicity of $T(r, u)$, Lemma 5.5, and then Lemma 5.1, we obtain

$$
\begin{aligned}
\frac{T(R, u)}{R^{2}} & \leq 2 \int_{R}^{\infty} \frac{T(r, u)}{r^{3}} d r \stackrel{(5.6)}{\leq} 2 \int_{R}^{\infty} \frac{\mathfrak{T}(r, u)}{r^{2}} d r \\
& \stackrel{(5.4)}{=} 2 \int_{R}^{\infty} \frac{d r}{r^{2}} \int_{0}^{r} \frac{\mathfrak{n}(t)}{t^{2}} d t=\frac{2}{R} \int_{0}^{R} \frac{\mathfrak{n}(t)}{t^{2}} d t+2 \int_{R}^{\infty} \frac{\mathfrak{n}(t)}{t^{3}} d t
\end{aligned}
$$

The inequality $M(r, u) \leq 3 T(2 r, u)$ completes the job.
6. Non-negativity of $u(z)$ in \mathbb{C} seems to be a too strong assumption, a more natural one is non-negativity of $u(x)$ on \mathbb{R}.

Theorem 6.1. Let $u(z)$ be a canonical integral (4.3) of genus one, and let $u(x) \geq 0$, $x \in \mathbb{R}$. Then

$$
\begin{equation*}
M(r, u) \lesssim r^{2}\left[\int_{r}^{\infty} \frac{\sqrt{\mathfrak{n}^{*}(t)}}{t^{2}} d t\right]^{2} \tag{6.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathfrak{n}^{*}(r)=r \int_{0}^{r} \frac{\mathfrak{n}(t)}{t^{2}} d t+r^{2} \int_{r}^{\infty} \frac{\mathfrak{n}(t)}{t^{3}}\left(1+\log \frac{t}{r}\right) d t \tag{6.3}
\end{equation*}
$$

The proof of Theorem 6.1 is given in [13]. The method of proof differs from that of Theorem 4.5, and is more technical than one would wish.

Fix an arbitrary $\epsilon>0$. Then by the Cauchy inequality

$$
\begin{aligned}
{\left[\int_{r}^{\infty} \frac{\sqrt{\mathfrak{n}^{*}(t)}}{t^{2}} d t\right]^{2} } & =\left[\int_{r}^{\infty} \frac{\sqrt{\left(1+\log ^{1+\epsilon} \frac{t}{r}\right) \mathfrak{n}^{*}(t)}}{t^{3 / 2}} \frac{d t}{t^{1 / 2} \sqrt{1+\log ^{1+\epsilon} \frac{t}{r}}}\right]^{2} \\
& \lesssim \epsilon \int_{r}^{\infty} \frac{\mathfrak{n}^{*}(t)}{t^{3}}\left(1+\log ^{1+\epsilon} \frac{t}{r}\right) d t \\
& \lesssim \epsilon \frac{1}{r} \int_{0}^{r} \frac{\mathfrak{n}(s)}{s^{2}} d s+\int_{r}^{\infty} \frac{\mathfrak{n}(s)}{s^{3}}\left(1+\log ^{3+\epsilon} \frac{s}{r}\right) d s
\end{aligned}
$$

Thus we get
Corollary 6.4. For each $\epsilon>0$,

$$
\begin{equation*}
M(r, u) \lesssim_{\epsilon} r \int_{0}^{r} \frac{\mathfrak{n}(t)}{t^{2}} d t+r^{2} \int_{r}^{\infty} \frac{\mathfrak{n}(t)}{t^{3}}\left(1+\log ^{3+\epsilon} \frac{t}{r}\right) d t . \tag{6.5}
\end{equation*}
$$

Estimate (6.5) is slightly weaker than (4.6); however, it suffices for deriving inequalities of M. Riesz and Kolmogorov. Using Jensen's estimate $\mu(r) \leq M(e r, u)$, we arrive at

Corollary 6.6. The following inequalities hold for canonical integrals of genus one which are non-negative on the real axis:

- M. Riesz-type estimate:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\mu(r)}{r^{p+1}} d r \lesssim_{p} \int_{0}^{\infty} \frac{\mathfrak{n}(r)}{r^{p+1}} d r, \quad 1<p<2 \tag{6.7}
\end{equation*}
$$

- weak (p, ∞)-type estimate:

$$
\begin{equation*}
\sup _{r \in(0, \infty)} \frac{\mu(r)}{r^{p}} \lesssim_{p} \sup _{r \in(0, \infty)} \frac{\mathfrak{n}(r)}{r^{p}}, \quad 1<p<2 \tag{6.8}
\end{equation*}
$$

- Kolmogorov-type estimate:

$$
\begin{equation*}
\sup _{r \in(0, \infty)} \frac{\mu(r)}{r} \lesssim \int_{0}^{\infty} \frac{\mathfrak{n}(r)}{r^{2}} d r \tag{6.9}
\end{equation*}
$$

REmark 6.10. If the integral on the RHS of (6.9) is finite, then $u(z)$ has positive harmonic majorants in the upper and lower half-planes which can be efficiently estimated near the origin and infinity, see [13, Theorem 3].
7. Here we mention several questions related to our results.
7.1. How to distinguish the logarithmic determinants (2.7) of $f=g+i \mathcal{H} g$ from other canonical integrals (4.3) which are non-negative in \mathbb{C} ? In other words, let $d m_{f}$ be a distribution measure of f; i.e. a locally-finite non-negative measure in \mathbb{C} defined by $m_{f}(E)=$ meas $\{t \in \mathbb{R}: f(t) \in E\}$ for an arbitrary borelian subset $E \subset \mathbb{C}$. It should be interesting to find properties of $d m_{f}$ which do not follow only from non-negativity of the subharmonic function $u_{f}(z)$. A similar question can be addressed for analytic functions $f(z)$ of Smirnov's class in the unit disk.
7.2. Let X be a rearrangement invariant Banach space of measurable functions on \mathbb{R}. That is, the norm in X is the same for all rearrangements of $|g|$, and $\left\|g_{1}\right\|_{X} \leq\left\|g_{2}\right\|_{X}$ provided that $\left|g_{1}\right| \leq\left|g_{2}\right|$ everywhere. For which spaces does the inequality

$$
\left\|\mathcal{H} g_{d}\right\|_{X} \leq C_{X}\|\mathcal{H} g\|_{X}
$$

hold? This question is interesting only for spaces X where the Hilbert transform is unbounded; i.e. for spaces which are close in a certain sense either to L^{1} or to L^{∞}. Some natural restrictions on X can be assumed: the linear span of the characteristic functions χ_{E} of bounded measurable subsets E is dense in X, and $\left\|\chi_{E}\right\|_{X} \rightarrow 0$, when meas(E) $\rightarrow 0$, see [2, Chapter 3].
7.3. We do not know how to extend estimate (1.2) (as well as (1.8)) to more general operators like the maximal Hilbert transform, the non-tangential maximal conjugate harmonic function, or Calderón-Zygmund operators. A similar question can be naturally posed for the Riesz transform [17].
7.4. Does Marcinkiewicz-type inequality (4.6) hold under the assumption that a canonical integral u of genus one is non-negative on \mathbb{R} ? According to a personal communication from A. Ph. Grishin, the exponent $3+\epsilon$ can be improved in (6.5). However, his technique also does not allow to get rid at all of the logarithmic factor.
7.5. Let $u(z)$ be a non-negative subharmonic function in $\mathbb{C}, u(0)=0$. As before, by $\mu(r)$ and $\mathfrak{n}(r)$ we denote the conventional and the Levin-Tsuji counting functions of the Riesz measure $d \mu$ of u. Assume that $\mu(r)=o(r), r \rightarrow 0$. This condition is needed to exclude from consideration the function $u(z)=|\operatorname{Im}(z)|$ which is non-negative in \mathbb{C} and harmonic outside of \mathbb{R}. Let $\mathcal{M}, \mathcal{M}(0)=0, \mathcal{M}(\infty)=\infty$, be a (regularly growing) majorant for $\mathfrak{n}(r)$. What can be said about the majorant for $\mu(r)$? If $\mathcal{M}(r)=r^{p}, 1<p<\infty$, then we know the answer:

$$
\sup _{r \in(0, \infty)} \frac{\mu(r)}{r^{p}} \leq C_{p} \sup _{r \in(0, \infty)} \frac{\mathfrak{n}(r)}{r^{p}}
$$

and

$$
\int_{0}^{\infty} \frac{\mu(r)}{r^{p+1}} d r \leq C_{p} \int_{0}^{\infty} \frac{\mathfrak{n}(r)}{r^{p+1}} d r
$$

It is more difficult and interesting to study majorants $\mathcal{M}(r)$ which grow faster than any power of r when $r \rightarrow \infty$, and decay to zero faster than any power of r when $r \rightarrow 0$. The question might be related to the classical Carleman-Levinson-Sjoberg "log log-theorem", and the progress may lead to new results about the Hilbert transform.

References

[1] A. Baernstein, Some sharp inequalities for conjugate functions, Indiana Univ. Math. J. 27 (1978), 833-852.
[2] C. Bennett and R. Sharpley, Interpolation of Operators, Pure and Appl. Math. 129, Academic Press, 1988.
[3] B. Davis, Hardy spaces and rearrangements, Trans. Amer. Math. Soc. 261 (1980), 211-233.
[4] M. Essén, Some best constants inequalities for conjugate functions, Internat. Ser. Numer. Math. 103, Birkhäuser, Basel, 1992.
[5] I. Ts. Gohberg and M. G. Krein, Introduction to the Theory of Linear Non-Selfadjoint Operators in Hilbert Space, Transl. Math. Monographs 18, Amer. Math. Soc., Providence, RI, 1969.
[6] A. A. Goldberg and I. V. Ostrovskii, Value Distribution of Meromorphic Functions, Nauka, Moscow, 1970 (in Russian).
[7] P. Koosis, Introduction to H_{p} Spaces, 2nd ed., Cambridge Univ. Press, 1998.
[8] I. Klemes, Finite Toeplitz matrices and sharp Littlewood conjectures, Algebra i Analiz 13 (2001), 39-59.
[9] B. Ya. Levin, On functions holomorphic in a half-plane, Travaux de l'Université d'Odessa (Math.) 3 (1941), 5-14 (in Russian).
[10] B. Ya. Levin, Distribution of zeros of entire functions, Transl. Math. Monographs 5, AMS, Providence, RI, 1980.
[11] B. Ya. Levin and I. V. Ostrovskii, The dependence of the growth of an entire function on the distribution of the zeros of its derivatives, Sibirsk. Mat. Zh. 1 (1960), 427-455 (in Russian); English transl.: Amer. Math. Soc. Transl. (2) 32 (1963), 323-357.
[12] J. Marcinkiewicz, Sur l'interpolation d'opérations, C. R. Acad. Sci. Paris 208 (1939), 1272-1273.
[13] V. Matsaev, I. Ostrovskii and M. Sodin, Variations on the theme of Marcinkiewicz' inequality, J. Analyse Math. 86 (2002), 289-317.
[14] V. Matsaev and M. Sodin, Variations on the theme of M. Riesz and Kolmogorov, Int. Math. Res. Notices 6 (1999), 287-297.
[15] V. Matsaev and M. Sodin, Distribution of Hilbert transforms of measures, Geom. Funct. Anal. 10 (2000), 160-184.
[16] V. Matsaev and M. Sodin, Compact operators with S_{p}-imaginary component and entire functions, in: Entire Functions in Modern Analysis (Tel Aviv, 1997), Proc. Israel Math. Conf. 15, Bar Ilan Univ., Ramat Gan, 2001, 243-260.
[17] E. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, NJ, 1993.
[18] E. C. Titchmarsh, On conjugate functions, Proc. London Math. Soc. (2) 29 (1929), 49-80.
[19] O. Tsereteli, A metric characterization of the set of functions whose conjugate functions are integrable, Bull. Acad. Sci. Georgian SSR 81 (1976), 281-283 (in Russian).
[20] M. Tsuji, On Borel's directions of meromorphic functions of finite order, Tôhoku Math. J. 2 (1950), 97-112.
[21] A. Zygmund, On a theorem of Marcinkiewicz concerning interpolation of operators, J. Math. Pures Appl. 35 (1956), 223-248.

[^0]: 2000 Mathematics Subject Classification: 31A05, 42A50.
 V. Matsaev and M. Sodin supported by the Israel Science Foundation of the Israel Academy of Sciences and Humanities under Grant No. 37/00-1.

