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Abstract. Nonabsolutely convergent Henstock-type integrals are considered. Their applica-

tion to the problem of recovering the coefficients of orthogonal series is discussed. It is shown in

particular that a multiple Haar or Walsh series which converges rectangularly everywhere to a

finite function is the Fourier series of its sum in the sense of Henstock-type integral defined with

respect to the dyadic basis. In the case of a multiple trigonometric series the same problem of

recovering the coefficients by generalized Fourier formulas can be solved by iterated approximate

symmetric Henstock integral.

1. Introduction. There are some areas in analysis which require integration pro-

cesses more powerful than Lebesgue integration. In particular this is related to the prob-

lem of recovering the coefficients of orthogonal series from their sums. This problem is a

generalization of the uniqueness problem for the coefficients of orthogonal series, and it

makes sense to consider this problem of recovering only for those orthogonal systems for

which the uniqueness theorem is already established. If the coefficients of an orthogonal

series are uniquely determined by its sum, then it is natural to expect that they may

be recovered from the sum by Fourier formulas, as in the simplest cases, for example

in the case of the uniform convergence. Indeed for many known systems (trigonometric,

Haar, Walsh, Vilenkin systems) it is true that every series with respect to those systems

convergent everywhere to a summable function is the Fourier series of this function. But
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the point is that the sum of an everywhere convergent orthogonal series can fail to be

Lebesgue integrable. For example, it is known (see [37]) that the series

∞
∑

k=2

sin kx

ln k

converges everywhere but fails to be the Fourier-Lebesgue series. This kind of example

can be given for the other systems mentioned above as well. To integrate such series, one

needs nonabsolutely convergent integrals. In the cases where the sum is integrable in one

or other known general sense, the question is whether the coefficients can be determined

by Fourier formulas in which the integral is understood in the same particular sense. The

complete solution of the problem of recovering the coefficients of a convergent series with

respect to some system is found if a general process of integration is developed so that

any everywhere convergent series with respect to the considered system is the Fourier

series of its sum in the sense of the defined integral.

In the trigonometric case the first solution of the problem of defining an integral so

that the sum function f of an everywhere convergent series

a0
2

+
∞
∑

k=1

ak cos kx+ bk sin kx (1)

is integrable and the coefficients ak and bk can be written as Fourier coefficients of f

is due to Denjoy. He introduced in [7] a very complicated definition of a second order

integral called the totalization T2s, which recaptures a function from its second Riemann

symmetric derivative. The difficulty of the T2s-totalization which involves a transfinite

sequence of operations led other authors to look for an easier solution of the coefficients

problem.

Marcinkiewicz and Zygmund [17] were the first to produce a Perron typeMZ-integral

to solve this same question. They where followed by Burkill with his SCP -integral [6]

and by James [14] with P 2-integral. TheMZ-integral turned out to be more general than

SCP - and P 2-integrals (see [24]). The application of all those integrals to the coefficients

problem is based on Riemann theory and on reducing the problem to the one of recovering

a function from its second order Riemann symmetric derivative. The latest step in this

direction was done by Preiss and Thomson [20] who produced a first order integral that

itegrates approximate symmetric derivatives.

The problem of recovering the coefficients was also considered for other classical or-

thogonal systems (see [23], [25], [29], [16]).

Nowadays the unifying approach to this problem, including the multidimensional case,

is the reduction of the problem to the one of recovering the function from its derivative

with respect to an appropriate derivate basis. To solve the latter problem a Henstock-type

integral associated with respective basis is to be defined and applied.

In the first part of this survey we consider Henstock approach to defining integrals

and review some new results related to the Henstock theory of integration. In the second

part we examine an application of those generalized integrals of Henstock type to the

above mentioned problem of recovering the coefficients of orthogonal series.
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2. Henstock-type integrals with respect to different derivate bases. A gener-

alized Riemann integral which turned out to be equivalent to the Denjoy-Perron integral

was introduced independently by J. Kurzweil in [15] and R. Henstock in [11] and [12] to

integrate real-valued functions defined on an interval of the real line. The idea of the def-

inition is very simple and is based on replacing in the definition of the Riemann integral

a positive constant δ which regulates the length of the intervals constituting a partition,

with a positive function δ defined on the interval of integration.

These original papers written in the late fifties gave rise to a general theory of non-

absolutely convergent integrals. A unifying notion in this theory is that of derivate basis

(or differentiation basis). It is usually defined in the classical abstract derivation theory

as a family of sets contracting to a point (see [9]). In the theory we are discussing here,

a somewhat more subtle definition is needed (see [33], [18], [13]).

We introduce first some notations. If E ⊂ Rm then |E| denotes the Lebesgue measure

of E. The terms “almost everywhere” (br. a.e.) and “measurable” are always used in

the sense of the Lebesgue measure. In Rm we shall use the maximum norm ||x|| =

max1≤i≤n |xi|, so that a δ-neighborhood of x ∈ Rm denoted by U(x, δ) is an open cube

centered at x with sides equal to 2δ. An interval in Rm is a compact set

[a1, b1]× [a2, b2]× . . .× [am, bm] with ai < bi, i = 1, 2, . . . ,m. (2)

A collection of intervals is called nonoverlapping whenever their interiors are disjoint.

Let I be the family of all intervals in Rm. A nonempty family B of subsets of the

product I ×Rm will be termed a derivate basis (or simply a basis) on Rm. We assume

that all bases B are filtering down, i.e., for every β1, β2 ∈ B there exists a β ∈ B such

that β ⊂ β1 ∩ β2 (let us agree that B does not contain the empty set). We shall refer to

the elements β of B as basis sets. In this paper we shall always suppose that (I,x) ∈ β

implies x ∈ I, although it is not the case in the general theory.

Given a basis B, an interval I is called a B-interval if (I,x) ∈ β for some x and some

β ∈ B.

For a set E ⊂ Rm and β ∈ B we write

β(E) = {(I,x) ∈ β : I ⊂ E} and B[E] = {(I,x) ∈ β : x ∈ E}.

All the bases B we shall consider in this paper are so-called Vitali bases, i.e., such

that for any x and for any basis set β ∈ B the set β[{x}] contains a pair (I,x) with I of

arbitrary small diameter.

The simplest derivate basis on Rm is the full interval basis. In this specific case, each

basis set corresponds to a positive function δ defined on Rm and called a gage. For a

given gage δ, we denote

βδ = {(I,x) : I ∈ I, x ∈ I ⊂ U(x, δ(x))}.

So the full interval basis is the family {βδ} where δ runs over the set of all possible gages.

Beside full interval basis, we shall consider some other interval bases which can be

defined using only intervals satisfying some additional properties. For example, if in the

definition of the full interval basis we replace arbitrary intervals with intervals (2) subject
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to the regularity condition
mini(bi − ai)

maxi(bi − ai)
≥ r

with some fixed r, 0 < r ≤ 1, then we get the r-regular interval basis. If we denote the

family of all the r-regular intervals by Ir then basis sets of the r-regular basis are defined

by gages as

βr
δ = {(I,x) : I ∈ Ir, x ∈ I ⊂ U(x, δ(x))}.

Another important example of a basis which we shall use here is the dyadic basis Bd.

The basis sets of Bd consist of pairs (I,x), where intervals I are dyadic, i.e, they are

Cartesian products of one-dimensional dyadic intervals I = [j/2k, (j + 1)/2k], with some

integers j and k. Denoting the family of all the dyadic intervals by D and using gages we

define basis sets of Bd as

βd
δ = {(I,x) : I ∈ D, x ∈ I ⊂ U(x, δ(x))}.

We get the dyadic r-regular basis if we define basis sets as

βdr
δ = {(I,x) : I ∈ D ∩ Ir, x ∈ I ⊂ U(x, δ(x))}.

We shall also need the definition of the symmetric approximate basis. We confine

ourselves here to the one-dimensional case. To define this basis, we use the following

auxiliary notion. By a density gage γ on R we mean a measurable subset of the plane

R2 so that for each x ∈ R the set γx = {h : h > 0, (x, h) ∈ γ} has inner density 1 on the

right at 0. When a density gage is fixed, we put βs
γ = {([x− h, x+ h], x) : (x, h) ∈ γ}. All

such basis sets constitute the symmetric approximate basis Bs.ap.

A finite collection π ⊂ β is called a β-partition if for distinct elements (I ′, x′) and

(I ′′, x′′) in π, the intervals I ′ and I ′′ are nonoverlapping. If a partition π = {(Ii, xi)} ⊂

β(I) for some I ∈ I is such that ∪iIi = I, then we say that π is a β-partition of I.

We say that a basis B has the partitioning property if for any B-interval I and for any

β ∈ B there exists a β-partition of I. The partitioning property is not so trivial as it may

seem to be at first glance. Whereas in the particular case of the full interval basis on R,

this property has long been known as the Cousin lemma, in the multidimensional case

for some bases it was proved only recently (see [8]), and for some bases the property is

not valid at all or holds true only in some weaker sense as in the case of the symmetric

approximate basis (see [20], [35]). The weaker form of the partitioning property for the

basis Bs.ap is the following.

Proposition 1. For every basis set β ∈ Bs.ap there is a set N ⊂ R of measure zero

such that for every interval with endpoints in R \ N there exists a β-partition of this

interval.

Given a basis B, an interval function τ defined at least on all B-intervals, a set E ⊂ Rm

and a basis set β, we denote

V ar(β, τ, E) = sup
∑

(I,x)∈π

|τ(I)| ,

where “sup” is taken over all π ⊂ β[E], and we call it the β-variation of τ on the set E.
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Then we define

Vτ (E) = inf Var(β, τ, E),

where “inf” is taken over all basis sets β ∈ B.

We call Vτ the variational measure generated by τ with respect to the basis B. Note

that Vτ is a metric outer measure on [a, b] (see [34]) and so its restriction to the Borel

sets is a measure.

Definition 1. A variational measure Vτ is called absolutely continuous (with respect

to the Lebesgue measure) on a set E if |N | = 0 implies Vτ (N) = 0 for a set N ⊂ E.

The upper derivative of a B-interval function τ at a point x with respect to the basis

B is defined as

DBτ(x) = inf
β

sup

{

τ(I)

|I|
: (I, x) ∈ β[{x}]

}

.

Similarly, the lower derivative is defined as

DBτ(x) = sup
β

inf

{

τ(I)

|I|
: (I, x) ∈ β[{x}]

}

.

If DBτ(x) = DBτ(x) 6= ±∞, we say that τ is B-differentiable at x and the derivative is

denoted by DBτ(x). We recall the definition of Henstock-type integral with respect to

a basis B (see [18], [13]). In this definition we assume that B has the the partitioning

property.

Definition 2. A function f defined on a B-interval J is said to be HB-integrable on

J with integral A if for every ε > 0 there exists a basis set β such that
∣

∣

∣

∑

(I,x)∈π

f(x)|I| −A
∣

∣

∣
< ε ,

for any β-partition π of J . We write A = (HB)
∫

J
f .

It is easy to check that if a function f is HB-integrable on J , then it is also HB-

integrable on each B-interval I ⊂ J . Therefore the indefinite HB-integral F (I) is defined

as an additive interval function at least on the family of all B-intervals I ⊂ J .

The following useful descriptive characterization of the indefinite HB-integral was

established recently (see [3], [4], [2], [28], [36]) for some bases, including the regular basis

and regular dyadic basis defined above: An additive B-interval function F is the indefinite

HB-integral of some integrable function if and only if F generates an absolutely continuous

variational measure VF .

As the symmetric approximate basis has only a weakened form of the partitioning

property, a Henstock-type integral with respect to this basis has a slightly different def-

inition. We present here, following [20], a special case of the symmetric approximate

integral – the so-called periodic SA-integral – which is wide enough to solve the problem

of recovering the coefficients of trigonometric series.

We use Proposition 1. For a basis set β ∈ Bs.ap we take a set N ⊂ R of measure zero

such that for every interval with endpoints in R \ N there exists a β-partition of this

interval. Let N1 = N − 2π. The set M = (R \N)∩ (R \N1) is of full measure on R. It is
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clear that for any x0 ∈M one can find a collection of points x0 < x1 < . . . < xn = x0+2π

so that
(

[xi−1, xi],
xi−1 + xi

2

)

∈ β, i = 1, 2, . . . , n, (3)

i.e., the collection (3) constitutes a partition of the interval [x0, x0 + 2π] by elements of

β. This observation enables the following definition.

Definition 3. Let a function f : R → R be 2π-periodic. We say that f has a periodic

symmetric approximate integral (SA-integral) if there is a number A such that for every

ε > 0 there exists β ∈ Bs.ap such that

∣

∣

∣

∣

n
∑

i=1

f

(

xi−1 + xi
2

)

(xi − xi−1)−A

∣

∣

∣

∣

< ε ,

for any partition by elements (3) of any interval of length 2π for which such a partition

exists. We write A = (SA)
∫ 2π

0
f .

Note that the limits of integration in this notation are used just to indicate the period

but not the fixed interval [0, 2π].

Henstock integral with respect to any basis can be given an equivalent Perron-type

definition (see [18]), where major and minor functions are defined by lower and upper

derivatives with respect to that basis. In this connection we mention some new results

related to the known Marcinkiewicz theorem (see [22]) stating that in the case of ordinary

Perron integral a measurable function is Perron integrable if it has a pair of continuous

major and minor functions. This theorem was extended to some generalized Perron inte-

grals (see [5], [29]). And at the same time it was shown that Perron integral with respect

to the symmetric basis and dyadic basis does not have the Marcinkiewicz property (see

[31], [27]).

3. Solution of the problem of recovering the coefficients. We consider here

the problem of recovering the coefficients for multidimensional orthogonal series.

We start with series with respect to Haar and Walsh systems for which the dyadic

Henstock integral gives a solution of this problem. These orthogonal systems are of in-

terest from many points of view. In many applications related to signal processing, it has

turned out that such systems representing rectangular waves rather than sinosoidal ones,

appear to be preferred in a number of cases. Moreover, the Haar system is the simplest

example of wavelets and the Walsh system can be interpreted as a group of characters

of some totally disconnected Abelian group providing an important model on which one

can verify and illustrate many questions from abstract harmonic analysis. We recall the

definitions of these systems. For details see [10], [25].

Using the dyadic intervals

∆k
j =

(

j

2k
,
j + 1

2k

)

, 0 ≤ j ≤ 2k − 1, k = 0, 1, 2, . . . ,

we define the Haar system {hn} on the unit interval [0, 1] in the following way. Let
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h0(x) = 1 for all x ∈ [0, 1]. If n = 2k + j, j = 0, . . . , 2k − 1 we put

hn(x) =







2k/2 if x ∈ ∆k+1
2j ,

−2k/2 if x ∈ ∆k+1
2j+1,

0 if x ∈ [0, 1]\∆k
j .

At 0 and 1 the functions hn are defined by continuity from inside of (0, 1), and at the

points where the Haar functions are left undefined up to now let them be equal to the

average of their left and right limits.

To define the Walsh functions we use dyadic expansions of natural numbers as well

as those of real numbers in the half-open interval [0, 1). Let n =
∑∞

j=0 εj2
j with εj = 0

or 1, and x =
∑∞

j=0 xj2
−j−1 with xj = 0 or 1, with a stipulation that for the dyadic

rationals we use only finite expansions. With this notation we put

wn(x) = (−1)

∑

∞

j=0
εjxj , n = 0, 1, 2, . . . .

To turn to the multidimensional case let Z0 be the non-negative integers and m be the

dimension. Then for k = (k1, . . . , km) ∈ Zm
0 we use |||k||| to denote mini ki.

The m-dimensional Haar series can be written as

∑

n

an

m
∏

i=1

hni
(xi) =

∞
∑

n1=0

. . .

∞
∑

nm=0

an1,...,nm

m
∏

i=1

hni
(xi) (4)

where n = (n1, . . . , nm) ∈ Zm
0 and x = (x1, . . . , xm) belongs to the unit interval of Rm.

We say that this series is rectangularly convergent to a function f(x) if its rectangular

partial sums

Sk(x) =

k1
∑

n1=0

. . .

km
∑

nm=0

an

m
∏

i=1

hni
(xi) (5)

are convergent to f(x) when |||k||| → ∞.

We say that the series (4) is r-regular rectangularly convergent, 0 < r ≤ 1, to a

function f at a point x if in the previous definition we consider only those rectangular

sums (5) for which mini ki/maxi ki ≥ r.

In a similar way we define the m-dimensional Walsh series and its rectangular and

r-regular rectangular convegence.

The crucial step to the solution of the coefficients problem for the Haar and Walsh

series is to observe that the integral
∫

∆k
j

S2k where k = (k1, . . . , km), j = (j1, . . . , jm),

∆k
j = ∆k1

j1
× . . .×∆km

jm
, 2k =

(

2k1 , . . . , 2km
)

, defines an additive interval-function ψ(∆)

on the family D of the dyadic intervals and for this function

S2k(x) =
ψ(∆k

j )

|∆k
j |

, where x ∈ ∆k
j .

It follows from this formula that if the Haar or Walsh series is rectangularly convergent

(respectively r-regular rectangularly convergent) at a point x with irrational coordinates,

then the function ψ is differentiable (respectively r-regular differentiable). This implies

the following theorem on recovering the coefficients of Haar and Walsh series (see [26]).
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Theorem 1. If the Haar series (4) is convergent rectangularly everywhere on the unit

interval of Rm to a finite function f then it is the Fourier series of f in the sense of

HB-integral with respect to the dyadic basis Bd.

A similar theorem holds for multidimensional Walsh series. In the case of r-regular

rectangular convergence analogous theorems for Haar and Walsh series are also true if we

use Henstock integral with the r-regular dyadic basis and put some additional conditions

on the behaviour of the partial sums at the points with dyadic-rational coordinates.

Now we consider the trigonometric case. As it was already mentioned, symmetric

approximate integral (SA-integral) solves the coefficients problem in the one-dimensional

case. This solution can be formulated as follows (see [20]).

Theorem 2. Let the trigonometric series (1) be convergent everywhere to a finite

value f(x). Then f is SA-integrable on the period, and the series is the SA-Fourier

series for f , i.e., for each n

πak = (SA)

∫ 2π

0

f(x) cos ktdt and πbk = (SA)

∫ 2π

0

f(x) sin kxdt.

It is clear that the problem of recovering the coefficients is a generalization of the

uniqueness problem and makes sense only for those systems for which the uniqueness

theorem is proved. The uniqueness problem for multiple trigonometric series was solved

in 1991 by Tetunashvili [32] (see also [21]) and independently in 1993 by Ash, Freiling and

Rinne [1]. So the problem of recovering the coefficients has a meaning for the multiple

trigonometric system.

A multidimensional generalization of SA-integral or any other multidimensional in-

tegral which solves the coefficients problem in higher dimensions has not been obtained

yet. Nevertheless, the problem can be solved in a roundabout way on the basis of the

Tetunashvili method used in [32]. We show here in what way the Tetunashvili method

can be used to solve the recovering problem in higher dimensions (see [30]).

Let {tj}
∞
j=0 represent the one-dimensional trigonometric system so that t0 = 1/2,

t2j−1 = cos jx, t2j = sin jx, j = 1, 2, . . .. The rectangular convergence of the m-

dimensional trigonometric series

∑

n

an

m
∏

i=1

tni
(xi) =

∞
∑

n1=0

. . .

∞
∑

nm=0

an1,...,nm

m
∏

i=1

tni
(xi) (6)

is defined in the same way as for the Haar series in terms of convergence of its rectangular

partial sums

Sk(x) =

k1
∑

n1=0

. . .

km
∑

nm=0

an

m
∏

i=1

tni
(xi)

when |||k||| → ∞. We say that the series (6) converges iteratively to f(x) if it converges

when m infinite sums in (6) are iterated from right to left, i.e., when the series (6) is

understood as
∞
∑

n1=0

(

∞
∑

n2=0

(

. . .
(

∞
∑

nm=0

an1,...,nm

m
∏

i=1

tni
(xi)

)

. . .
))

.
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We note first that the problem of recovering the coefficients for iteratively convergent

trigonometric series can be solved by iterated SA-integral in the following way.

Theorem 3. If the series (6) converges iteratively everywhere on Rm to a finite func-

tion f , then it is the Fourier series of f in the sense of iterated SA-integral, i.e., for each

(n1, . . . , nm) ∈ Zm
0

πman1,...,nm
= (SA)

∫ 2π

0

(

. . .

(

(SA)

∫ 2π

0

f(x1, . . . , xm)

m
∏

i=1

tni
(xi)dx1

)

. . .

)

dxm. (7)

The following theorem is a special case of the Tetunashvili principal result in [32].

Theorem 4. A multiple trigonometric series that converges rectangularly everywhere

converges iteratively to the same function.

As a corollary from Theorems 2, 3, and 4 we get

Theorem 5. If the series (6) is convergent rectangularly everywhere on Rm to a finite

function f then it is the Fourier series of f in the sense of iterated SA-integral, i.e., its

coefficients an can be computed by (7).

Although the question of defining a multiple integral to solve the same problem is left

open, we get from theorem 4 that if it is known that the sum of rectangularly convergent

series (6) is integrable in the sense of a multiple integral for which the Fubini theorem

holds and for which the corresponding one-dimensional theorem holds, then the series

(6) is the Fourier series of its sum in the sense of this integral. In particular the Fubini

theorem holds for multiple Henstock integral defined with respect to the full interval basis

B (see [19]). So we get

Theorem 6. Let B be the full interval basis. If series (6) converges rectangularly

everywhere on [0, 2π]m to an HB-integrable function f then it is the Fourier-Henstock

series of f .
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