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This symposium is dedicated to the memory of A. Rajchman (1891–1940), A. Zyg-

mund (1900–1992) and J. Marcinkiewicz (1910–1940). They are outstanding Polish math-

ematicians and have gained worldwide recognition.

The scientific research of Rajchman, Zygmund and Marcinkiewicz was devoted to

calculus, theory of functions of real and complex variable, functional analysis and proba-

bility theory. In their research much attention was concentrated on the metric theory of

functions and its various applications.

Thus, a detailed investigation was made of trigonometric series, singular operators,

approximation and interpolation theory, applications of probability theory to calculus

and other questions.

It is common knowledge that Zygmund ([2], [3]) and Bari [1] published great mono-

graphs on trigonometric series, which became textbooks for many mathematicians of the

world.

In the present paper we will give only a short survey of a series of results, where the

research of Russian and Polish mathematicians aimed at solving common problems.

1. Uniqueness of series expansions. Let {ϕn(x)}
∞

n=1 be a system of functions

defined on [a, b], and let

f(x) =

∞
∑

n=1

anϕn(x), (1)

where the series in some sense or another represents f(x). The question arises: how many

series of the indicated form are there or how many sequences {an}
∞

n=1 do there exist for

which (1) holds?
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This is a very important question in analysis and depends on the system {ϕn(x)}, the

form of the representation in (1) and the set of classes {f(x)}.

An important case is when the representation is unique.

The first results in that direction refer to the trigonometric system and trigonometric

series
a0
2
+

∞
∑

n=1

(an cosnx+ bn sinnx). (2)

The partial sums of the series (2) are of the form

Sm(x) =
a0
2
+

m
∑

n=1

(an cosnx+ bn sinnx)

and [0, 2π] = [a, b].

A set E ⊂ (−∞,+∞) is called reduced if its derived set E′ is at most countable.

In 1872 Cantor proved the following (see [4] and [1, p. 191])

Theorem 1. If a series (2) converges to zero everywhere on [0, 2π], then all its coef-

ficients are zero, that is,

a0 = an = bn = 0, n ≥ 1. (3)

The above theorem implies that if a series (2) everywhere on [0, 2π] converges to a

finite function f(x), then such a series is unique for f(x). Theorem 1 was extended by

Cantor to the case where (2) converges to zero on [0, 2π] \ E, where E is a reduced set.

Probably, investigating these questions Cantor conceived the idea of countable sets, and

then the cardinality of sets.

Early in the 20th century Young (see [5], [1, p. 792]) proved

Theorem 2. Let E be a countable set and suppose a series (2) converges to zero

everywhere on [0, 2π] \ E. Then all its coefficients are zero, that is, (3) holds.

All the above leads to the following definitions. E ⊂ [0, 2π] is called an M-set if there

exists a series of the form (2) that converges to zero on [0, 2π] \ E and that has nonzero

coefficients. If E is not an M-set, it is called a U-set.

Evidently, if E ⊂ [0, 2π] is measurable and the measure |E| > 0, then E is an M-set.

Theorem 1 and Theorem 2 suggested that if |E| = 0, then E is a U-set (see Lusin [6, pp.

249–250]). However in 1916 Menchoff (see [1, pp. 804–806], [2, p. 546] and [16, p. 31])

proved

Theorem 3 (Menchoff [7]). There exists a perfect set E ⊂ [0, 2π] with |E| = 0 which

is an M-set.

Then the question came up of whether there exist uncountable U-sets. A positive

answer to this question was given by Rajchman [8] and Bari [10] in the early twenties.

We will describe here the results of Rajchman.

In connection with these questions Rajchman came to consider H-sets introduced

previously by Hardy and Littlewood (see [1, p. 732]). For these sets Rajchman gave two

definitions (see [8] and [9]). E ⊂ [0, 2π] is called a set of the type H if there exists a sequence

of integers 0 < n1 < n2 < ... and an interval ∆ such that for every x ∈ E and every
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k = 1, 2, ... the points nkx do not belong to ∆ modulo 2π (see [1, pp. 732–733] and [2,

pp. 498–499]). It can be noted that the closure of an H-set is an H-set. Another definition

is: E ⊂ [0, 1] is called an H-set if there exists a sequence of integers 0 < n1 < n2 < ...

and two numbers α ∈ [0, 1) and δ ∈ [0, 1) such that 0 ≤ {nkx − α} ≤ δ for every x ∈ E

and k = 1, 2, ..., where {t} is the fractional part of t (see [1, p. 733]). If E is an H-set on

[0, 1], then ε = {2πx : x ∈ E} is an H-set on [0, 2π] (see [1, p. 796]).

Every H-set is of measure zero and nowhere dense (see [1, pp. 734–735]). The following

theorems hold (see [1, pp. 797 and 801]).

Theorem 4 (Rajchman [8]). Every H-set with respect to [0, 2π] is a U-set.

Theorem 5 (Marcinkiewicz, Zygmund [11]). Let E ⊂ [0, 2π] be a U-set and θ > 0

such that

E(θ) = {θx : x ∈ E} ⊂ [0, 2π].

Then E(θ) is a U-set.

In the same paper Marcinkiewicz and Zygmund [11] proved that there exists a Toeplitz

method for which the empty set is not a U-set for series (2) with an → 0, bn → 0 as

n→∞ (see also [1, p. 845]).

Until the present day no general conditions to distinguish M-sets and U-sets have

been found. In this connection various sets were studied including symmetric perfect sets

on [0, 2π]. To construct these sets: from the segment [0, 2π] of length ρ0 = 2π a central

interval is removed and there remain two segments of equal length ρ1; next from each

of these segments central intervals of equal length are removed and there remain four

segments of length ρ2. In the k-th step from 2
k−1 segments of equal length ρk−1 central

intervals of equal length are removed and there remain 2k segments of length ρk, etc. As

a result of the process, after removing the intervals, a symmetric perfect set E on [0, 2π]

is constructed. Let ξk =
ρk+1
ρk
. If 2kρk → 0 as k → ∞ then |E| = 0. It is apparent that

0 < ξk <
1
2 . Bari [12] showed that if ξk →

1
2 as k→∞, then E is an M-set.

If ξk =
1
3 for every k, then we get the Cantor set and it is an H-set, therefore by the

Rajchman theorem it is a U-set.

Let ξk = ξ ∈ (0, 12 ) for every k. Then E = Eξ is an M-set or a U-set depending on

arithmetic properties of the number ξ. This fact was discovered first by Bari ([13] and

[12]). She proved in 1937 the following

Theorem 6 (Bari [13]). If ξ ∈ (0, 12 ) is a rational number, then E = Eξ is a U-set if

and only if 1
ξ
is an integer number, that is, if ξ = 1

n
with n = 3, 4, ....

For other ξ we need a definition: a number y > 1 is called a Pisot number of n-th

degree if it is a solution of the equation yn+ bn−1y
n−1+ ...+ b0 = 0 with minimal n and

integer coefficients {bi}
n−1
i=0 , whereas the absolute values of the other roots of the equation

are less than 1 (see [1, p. 829] and [3, p. 222]).

The sets Eξ have been investigated in the papers of Salem, Piatetski-Shapiro and

Zygmund. In 1955 the following definitive result was obtained.

Theorem 7 (Salem, Zygmund [14]). A symmetric set Eξ ⊂ [0, 2π] with a constant

ratio ξ is a U-set if and only if 1
ξ
is a Pisot number.
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The necessity was proved by Salem and the sufficiency by Piatetski-Shapiro (ξ2n < 1),

Salem and Zygmund (see [1, p. 829] and [3, p. 227]).

As for sums of U-sets, we have ([1, p. 795])

Theorem 8 (Bari [10], [12]). A countable sum of closed U-sets is a U-set.

N. K. Bari [10] proved that every M-set contains a perfect subset and noted (see [1,

p. 796]) that the union of two U-sets, one of which is closed, is a U-set, as well as, when

two U-sets lie on nonoverlapping intervals, their union is a U-set. She constructed also

two nonmeasurable U-sets, the sum of which coincides with [0, 2π] and therefore is an

M-set. Using this fact Zygmund [2, p. 547] constructed two measurable U-sets of measure

zero, the sum of which is an M-set, and Kholshevnikova [15] gave an example of a U-set

of measure zero and of the second category. She established also that the union of an

arbitrary U-set and a U-set of type Fσ ∩Gδ, as well as the union of two nonoverlapping

U-sets of type Gδ, are U-sets. These results were partly generalized by Carlet and Debs

(see [16, p. 400]). In 1986 Debs and Saint Raymond [18] proved that every U-set having

the Baire property is of the first category.

Recall that a set E has the Baire property if there exists an open set B such that

B \E and E \B are of the first category. By the Kuratowski theorem this is equivalent to

the fact that E is the union of a Gδ set and a set of the first category. Since the twenties

the following problem has been unsolved.

Problem. Is the union of two Borel U-sets a U-set?

This is unknown even for two U-sets of type Gδ (even if one of them is countable)

(see [16, p. 400]).

The answer to the following question is also unknown. Let E ⊂ [0, 2π] be a Borel U-set

and suppose a series (2) converges to a finite function f ∈ L(E1), where E1 = [0, 2π] \E.

Is the series (2) a Fourier–Lebesgue series of f? A positive answer to this question was

given by I. I. Privalov in 1923 for closed U-sets. He considered also the summation of

series (2) by the Poisson method (see [1, p. 790] and [2, p. 567]). The book of Kechris

and Louveau [17] describes the modern state of this theory.

Finally, we notice that problems of uniqueness of representing functions by series have

been studied for various systems of functions, for example, for Walsh, Haar, Rademacher,

Franklin systems, etc. (see [19], [20]).

2. Riemann theorems for function spaces. Suppose on ∆ = [a, b] there is given

a function series
∞
∑

n=1

ϕn(x). (4)

If functions ϕn(x) = an ∈ R and (4) conditionally converges, then by the Riemann theo-

rem proved in 1853 it is known that for every number c ∈ R there exists a rearrangement

σ(k) = (n1, n2, ...) of the positive integers (1, 2, ...) such that (see [21, p. 232])

c =
∞
∑

k=1

aσ(k) =
∞
∑

k=1

ank ,
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that is, the set of sums of rearranged series is the entire line. Therefore for any series (4)

in the case of ϕn(x) = an ∈ R the set of the rearranged sums is either empty, a single

point, or the entire line (−∞,+∞).

Let K be a type of series convergence (or summability). It may be uniform, almost

everywhere, in measure, in Lp(∆), in a Banach space, summability by means of a Toeplitz

method in some sense, etc.

Suppose we have a series (4) and a type K of convergence. Let S be the set of sums

of rearranged series (4), that is, the set of functions f for which there exists a rearranged

series (4) that converges to f in the sense of K.

A set A is called linear if f1 ∈ A and f2 ∈ A implies that λf1 + (1 − λ)f2 ∈ A for

every λ ∈ R.

Early in the 20th century Levy and Steinitz (see [22, p. 4]) proved that the set S of

sums of any series consisting of n-dimensional vectors is linear, that is, either empty or

a k-dimensional hyperplane with 0 ≤ k ≤ n.

In 1927 Banach (see [23, p. 124]) set the problem: if a series (4) consisting of mea-

surable functions ϕn(x) for two different rearrangements converges almost everywhere to

the functions ϕ(x) and ψ(x), does there exist for every λ ∈ (0, 1) a rearrangement σ(k)

such that

λϕ(x) + (1− λ)ψ(x) =

∞
∑

k=1

ϕσ(k)(x)

almost everywhere on ∆? In the “Scottish Book” under N 106 Banach asked to prove

that in the sense of the norm in a space B for every series
∑

xn, where xn ∈ B, the set

S of all its rearranged sums is a linear set. In the same book the negative answer was

given.

Theorem 9 (Marcinkiewicz [24, p. 188]). In L2(0, 1) there is a series that under

some rearrangements converges to ϕ(x) ≡ 1 and ψ(x) ≡ 0, but under no rearrangements

converges in L2(0, 1) to λϕ(x) for any 0 < λ < 1.

This theorem was obtained by Marcinkiewicz in the thirties. But in Marcinkiewicz’s

writing there is an inaccuracy in indexing functions. Besides, in the USSR this result was

reported only after 1981, when the book [24] was published (see [22, pp. 44–45]).

In 1970 Nikishin proved the following

Theorem 10 (Nikishin [26]). Let ∆ be [−1,+1]. Then there exists a series (4) of

functions ϕn(x) bounded on ∆ such that

∞
∑

n=1

|ϕn(x)|
2+ε
≤ Cε <∞ for every ε > 0 and every x ∈ ∆ (5)

and the series (4) has two rearrangements: the first converges uniformly on ∆ to f1(x) ≡ 0

and the second to

f2(x) =

{

0 for x ∈ [−1, 0],
1 for x ∈ (0, 1].
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Moreover, no rearrangement of the series (4) has a subsequence of partial sums that

converges to the function λf1 + (1 − λ)f2 for λ ∈ (0, 1) on any set E ⊂ [−1,+1] with

measure |E| > 1.

It was the first negative solution in the USSR of the above Banach problems for the

case of convergence almost everywhere, in measure and Lp (1 ≤ p < ∞), that is, the

set of rearranged sums of the series (4) may be nonlinear. Earlier, in 1954 M. I. Kadec

proved

Theorem 11 (Kadec [27]). Let p ∈ [1,∞) and suppose a series (4) satisfies the

condition
∞
∑

n=1

‖ϕn‖
min(2,p)
p <∞. (6)

Then the set S of rearranged sums of the series (4) in Lp(0, 1) is closed and linear.

The requirement (6) is sharp, as Nikishin ([26] for 2 ≤ p <∞) and Kornilov ([28] for

1 ≤ p ≤ 2) have shown that the condition

∞
∑

n=1

‖ϕn‖
ε+min(2,p)
p <∞ for every ε > 0, (7)

in general, does not assure in Lp the linearity of the rearranged sums S of the series (4).

It can be noted that from the paper of Kornilov [28] of 1980 for p = 2 we can

understand what Marcinkiewicz had in mind in solving the Banach problem in the case

of L2(0, 1). Most likely Theorem 9 belongs to Marcinkiewicz–Nikishin–Kornilov (see also

[22, pp. 44–45]).

For the case of convergence almost everywhere and in measure we have

Theorem 12 (Nikishin [25]). Suppose a series (4) satisfies

∞
∑

n=1

|ϕn(x)|
2
<∞ almost everywhere on ∆. (8)

Then the set S of all rearranged sums of the series (4) in the sense of convergence almost

everywhere on ∆ is linear and closed in measure.

The same holds also for convergence in measure (Nikishin [26]). The inequalities (8)

and (5) provide exact conditions where the Riemann theorem holds for convergence almost

everywhere and in measure, and (6) and (7) when it holds in Lp(0, 1) for 1 ≤ p <∞.

For the space C(∆) we have

Theorem 13 (Kornilov [28]). Let ω(x) be a positive function on (0,∞) such that

limx→+0 ω(x) = 0. Then there is a series (4) of ϕn ∈ C(∆) such that

∞
∑

n=1

‖ϕn‖C(∆)ω(‖ϕn‖C(∆)) <∞ (9)

and, nonetheless, the set S of rearranged sums, uniformly converging on ∆, is not linear.
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The same conclusion holds also under the condition
∞
∑

n=1

|ϕn(x)|ω(|ϕn(x)|) <∞ for every x ∈ ∆. (10)

This shows that the conditions (9) and (10) do not assure the validity of the Riemann

theorem in C(∆).

Let there be given a space Lp(0, 1) for 1 ≤ p < ∞ and a series (4). Let S0 be the

following set:

1) for k ≥ 1 the set S0 = {0, 1, 2, ..., k}, that is, it consists of k+1 functions fi(x) ≡ i

for x ∈ [0, 1] and 0 ≤ i ≤ k;

2) S = {0,+1,−1,+2,−2, ...}, that is, an infinite arithmetic progression, where

fi(x) ≡ i for x ∈ [0, 1] and i ∈ Z;

3) the finite-dimensional lattice

S0 =
{

d0(x) +
k
∑

j=1

cjdj(x) : cj ∈ {0,mj} or cj ∈ Z
}

,

for fixed k ≥ 1 and dj(x) ∈ L
p(0, 1) with 0 ≤ j ≤ k.

In 1987 the following was proved:

Theorem 14 (Kornilov [29], [30]). For every p ∈ [1,∞) and every set S0 there is a

series (4) having the set of rearranged sums S = S0 and (7) holds.

Similar results hold for convergence in measure [30] and in Banach spaces of infinite

dimension (see [30] and [22, p. 116]). From Theorem 14 we see that the set S of rearranged

sums of a series (4) can be very complicated. In this connection the following problem is

still unsolved.

Problem. Let K be a type of convergence (or summability). For series (4) or series

in Banach space there are no exact characterizations of rearranged sums S, that is, sets

of the Riemann type.

Even for C(∆) the definite solution is unknown. It remains unknown to me whether

there exists a series (4) with S = {x, x2, x3} for the case of uniform convergence.

3. Absolute convergence of Fourier series. Let E be a linear set of functions f

defined on [0, 2π] or [0, 1]. In the case of [0, 2π] we will consider f to be 2π-periodic. The

set E is called an algebra if f1 ∈ E and f2 ∈ E implies f1 · f2 ∈ E. A Banach space E is

called a Banach algebra if f1 ∈ E and f2 ∈ E implies

‖f1 · f2‖E ≤ ‖f1‖E · ‖f2‖E .

Let T = {eint}
+∞

n=−∞ be the trigonometric system on [0, 2π] and ϕ = {ϕn(t)}
∞

n=1 be

an orthonormal system on [0, 1]. Let f ∈ L(0, 2π), α ∈ (0, 2) and

Aα=Aα(T ) =
{

f :

+∞
∑

n=−∞

|cn(f)|
α<∞

}

,where cn=cn(f)=
1

2π

∫ 2π

0

f(t)e−intdt.

In a similar manner Aα = Aα(ϕ) for ONS ϕ = {ϕn} are defined.
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In 1932 Wiener proved that if a continuous 2π-periodic function f(t) 6= 0 for every

t ∈ [0, 2π], then f ∈ A1 implies f
−1 ∈ A1 (see [1, p. 644] and [2, p. 391]). This theorem

arose from the study of Tauber theorems.

Wiener also showed that A1 is a Banach algebra with the norm

‖f‖B =

+∞
∑

n=−∞

|cn(f)| <∞.

In 1934 Levy proved that if f ∈ A1 and F is analytic on f([0, 2π]), then F (f) ∈ A1
(see [1, p. 640] and [2, p. 391]). In 1958 Katznelson established an inverse assertion to the

Levy theorem: if F is defined on [A,B] and for every f ∈ A1 with f([0, 2π]) ⊂ [A,B] the

function F (f) ∈ A1, then F is analytic on [A,B] ([31, p. 102]). Therefore, the following

theorem holds:

Theorem 15 (Levy, Katznelson). Only analytic functions F transform the class

A1(T ) into the class A1(T ) (that is, F (f) ∈ A1 if f ∈ A1).

Let β > 0 and J = (a, b). A function F is said to be in the Gevrey class Gβ(J)

(F ∈ Gβ(J)) if on every compact K ⊂ (a, b),

|F (n)(t)| ≤ Bnnnβ for every t ∈ K and n = 0, 1, ...,

where B = B(F,K) < ∞. For β = 1 the Gevrey class G1 coincides with the class of

analytic functions on (a, b) (Pringsheim theorem) and, moreover, Gβ ⊃ G1 for β > 1.

In 1940 the following theorem was proved (see [32, p. 66–73]).

Theorem 16 (Marcinkiewicz). If a real function f ∈ Aα(T ) for some α ∈ (0, 1) and

F ∈ G 1
α

on (a, b) ⊃ f([0, 2π]), then F (f) ∈ A1(T ).

Later Zygmund and the author have noted that in this theorem F (f) ∈ Aα(T ), that

is, F (f) ∈ Aα if f ∈ Aα and F ∈ G 1
α

.

In 1966 Riviere and Sagher [33] established: if a function F is defined on J = (a, b),

s ∈ (0, 1] and if for every f ∈ As with f([0, 2π]) ⊂ [a, b] the function F (f) ∈ Ap for p < 2

(p depends on f), then F ∈ G 1
s

. For the case s = 1 this result was obtained by Helson,

Kahane, Katznelson and Rudin (see [31] and [33]).

From the results of Marcinkiewicz, Riviere and Sagher it follows that if α ∈ (0, 1),

then only the functions F from the class G 1
α

transform the class Aα(T ) into the class

Aα(T ) (that is, F (f) ∈ Aα if f ∈ Aα).

We do not know the solution of the following problem. Let a modulus of continuity

ω(δ) and a sequence τ(n) define the class

Aω,τ =
{

f :

+∞
∑

n=−∞

ω(|cn(f)|)τ(n) <∞
}

.

What conditions on F are necessary and sufficient for f ∈ Aω,τ to imply F (f) ∈ Aω,τ?

In this direction general results have been obtained by the author for the Haar system

X = {χm}
∞

m=1, where the results have quite different form (see [34]–[36]) than for the

trigonometric system.

Haar proved that the system X is a system of convergence almost everywhere for the

class L(0, 1), that is, the partial sums of Fourier series with respect to the Haar system
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from f ∈ L(0, 1) converge almost everywhere in [0, 1]. In 1928 Schauder established that

{χm}
∞

m=1 is a basis in L
p(0, 1) with p ∈ [1,∞) and in 1937 Marcinkiewicz [37] showed

that {χm} is an unconditional basis in L
p(0, 1) with p ∈ (1,∞).

Let f ∈ L(0, 1) and

am(f) =

∫ 1

0

f(t)χm(t)dt

be its Fourier–Haar coefficient. For a modulus of continuity ω(δ) (with ω(−δ) = ω(δ)

for δ ∈ (0,∞)) and a sequence τ = {τ(m)}
∞

m=1 with τ(m) > 0 we define the class of

functions

Aω,τ = {f : Aω,τ (f) <∞} where Aω,τ (f) =

∞
∑

m=2

ω(|am(f)|)τ(m).

Let Aω = Aω,τ for τ(m) ≡ 1 and Aα = Aδα with 0 < α ≤ 1.

Theorem 17. Let α ∈ (0, 1] and a finite function F (t) be defined on (−∞,+∞). Then

F (f) ∈ Aα for every f ∈ Aα if and only if there is a number D for which F ∈ LipD1

(that is, |F (x) − F (y)| ≤ D|x− y| for every x and y). Under these conditions

Aα(F (f)) ≤ D
αγαAα(f) for every f ∈ Aα, γα =

2
α

2

2
α

2 − 1
.

It may be noted that in Theorem 17 for the Haar system the conditions on F do not

depend on α, whereas in the trigonometric case they depend on α (Gevrey classes G 1
α

).

Theorem 18. Let ω = ω(δ) be a modulus of continuity. For every F ∈ LipD1 the

inequality

Aω(F (f)) ≤ Cω,FAω(f) for every f ∈ L
∞(0, 1)

holds if and only if
∫ δ

0

ω(t)

t
dt ≤ Bω(δ) for every δ ∈ (0,∞). (11)

This condition for δ ∈ (0, 1] arises in 1955 in a paper of Bari. The author obtained it

in 1953 but in a different form (see [38]).

To formulate general results we need a definition. A measurable and positive function

ψ(t) is called almost-increasing (resp. almost-decreasing) on (a, b) if there exists a constant

C > 0 such that ψ(t1) ≤ Cψ(t2) (resp. ψ(t1) ≥ Cψ(t2)) for every t1 and t2 from a < t1 <

t2 < b. The following theorem holds.

Theorem 19. Let ω(δ) be a modulus of continuity and τ = τ(t) be an almost-in-

creasing function on [1,∞) with τ(2t) ≤ C1τ(t) for t ≥ 1. The inequality

Aω,τ (F (f)) ≤ Cω,τ,DAω,τ (f) (12)

holds for every f ∈ L(0, 1), F ∈ LipD1 and for some constant Cω,τ,D if and only if
∫ 1

2−
N

2

ω(δt)

t
τ(2N t2)dt ≤ C2τ(2

N )ω(δ) for every δ ≥ 0 and N = 1, 2, ....

Corollary 1. If τ(t) = tβ for t ∈ [1,∞) and β > 0, then (12) holds for every

modulus of continuity ω(δ).
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Corollary 2. If τ(t) = (ln t)
β
for t ∈ [1,∞) and β ≥ 0, then (12) holds if and only

if (11) holds.

It can be noted that in Corollary 2 the condition (11) does not depend on β ≥ 0. For

decreasing functions the following theorem holds.

Theorem 20. Let ω(δ) be a modulus of continuity and τ(t) be an almost-decreasing

function on [1,∞) with τ(t) ≤ C3τ(2t) for t ≥ 1. The inequality (12) holds if and only if
∫ 1

2−
(N+1)
2

ω(δt)

t
τ(1 + 2N+1t2)dt ≤ C4τ(2

N + 1)ω(δ)

for every δ ≥ 0 and N = 0, 1, ....

Corollary 3. If τ(t) = t−γ for t ∈ [1,∞) and γ > 0, then (12) holds if and only if

δ2γ
∫ δ

0

ω(t)

t1+2γ
dt ≤ C5ω(δ) for every δ ∈ (0,∞). (13)

Note that the condition (13) for ω(δ) 6≡ 0 can hold only for 0 ≤ γ < 1
2 . For γ ≥

1
2 the

condition (13) holds only for ω(δ) ≡ 0. It can be noted that in this case the conditions

depend on γ.

Now about algebras. With respect to the Haar system the set A1 is not an algebra,

as there exists f ∈ A1 such that f
2 /∈ A1. Hence some limitations are needed. Let

A
(∞)
ω = Aω ∩ L

∞.

Theorem 21. 1) Let ω(δ) be a modulus of continuity. A
(∞)
ω is an algebra and, more-

over,

Aω(f
2) ≤ CωAω(f) for f ∈ A

(∞)
ω with ‖f‖

∞
≤ 1,

if and only if (11) holds for δ ∈ (0, 1].

2) Let ω(δ) be a modulus of continuity. A
(∞)
ω is an algebra and

Aω(f
2) ≤ CωAω(‖f‖∞f) for every f ∈ A

(∞)
ω

if and only if (11) holds for δ ∈ (0,∞).

Problem. We do not know of any result in this direction for other orthogonal systems

(Walsh, Franklin, Ciesielski systems, etc.).
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