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Ghaith A. Hiary (Columbus, OH)

1. Introduction. Let χ be a Dirichlet character modulo q, and let
L(1/2 + it, χ) be the corresponding Dirichlet L-function on the critical line.
Let τ(q) be the number of divisors of q. If |t| ≥ 3, say, we define the analytic
conductor of L(1/2 + it, χ) to be q := q|t|.

We are interested in finding an explicit hybrid estimate for L(1/2+ it, χ)
in terms of q and τ(q). Specifically, we would like to find constants c, κ1,
κ2, κ3, and t0 ≥ 3 as small as possible, such that

(1) |L(1/2 + it, χ)| ≤ cτ(q)κ1qκ2 logκ3 q (|t| ≥ t0).
If |t| ≤ t0, then estimating L(1/2+it, χ) reduces, essentially, to bounding

pure character sums. Barban, Linnik, and Tshudakov [1] gave Big-O bounds
for such sums, as well as some applications.

The convexity bound in our context is L(1/2+ it, χ)� q1/4. This can be
derived using the standard method of the approximate functional equation.
Habsieger derived such an approximate equation in [4]. And we use this in
§7 to prove that if χ is a primitive character (1) modulo q > 1, then we have
the convexity bound

(2) |L(1/2 + it, χ)| ≤ 124.46q1/4 (q ≥ 109, |t| ≥ √q).
Previously, Rademacher [11] derived the explicit bound

|L(σ + it, χ)| ≤
(
q|1 + σ + it|

2π

)(1+η−σ)/2
ζ(1 + η),

valid if 0 < η ≤ 1/2, σ ≤ 1 + η, and χ (mod q) is primitive. This is nearly a
convexity bound except for an additional η > 0 in the exponent.
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Using partial summation, we obtain an explicit bound applicable for
any t. Specifically, if χ is primitive modulo q > 1, then we derive in §7 that

(3) |L(1/2 + it, χ)| ≤ 4q1/4
√

(|t|+ 1) log q.

The bound (3) is weaker than the convexity bound in general, but it can be
useful in the limited region where t is small.

Our main result is Theorem 1.2. This theorem supplies the first example
of an explicit hybrid Weyl bound (i.e. with κ2 = 1/6 in (1)) for an infinite
set of Dirichlet L-functions, namely, the set of Dirichlet L-functions corre-
sponding to powerfull moduli. Theorem 1.2 takes a particularly simple form
if q is a sixth power and χ is primitive, yielding Corollary 1.1 below.

Corollary 1.1. Let χ be a primitive Dirichlet character modulo q. If
q is a sixth power, then

|L(1/2 + it, χ)| ≤ 9.05τ(q)q1/6 log3/2 q (|t| ≥ 200).

In the notation of (1), Corollary 1.1 asserts that if q is a sixth power
and χ is primitive, then the choice c = 9.05, κ1 = 1, κ2 = 1/6, κ3 = 3/2,
and t0 = 200 is admissible. The constant κ3 = 3/2 arises from two sources:
a dyadic division that contributes 1, and the Weyl differencing method (see
[13, §5.4]) which contributes 1/2. The constant κ1 = 1 arises, in part, when
counting the number of solutions to quadratic congruence equations in the
Weyl differencing method. The κ2 = 1/6 arises from proving that, on aver-
age, square-root cancellation occurs in certain short segments of the dyadic
pieces

∑
V≤n<2V χ(n)/n1/2+it. The constant c = 9.05 is largely contributed

by the part of the main sum over q1/3 � n � q2/3. Last, the constant
t0 = 200 is due to technical reasons, and can be lowered with some work.

We state the main theorem below. See §2 for the definitions of sqf(q),
cbf(q), spf(q), B, B1, D, and Λ(D). For now we remark that if χ is primitive,
thenB = B1 = 1. And if q is a sixth power, then sqf(q) = cbf(q) = spf(q) = 1.
The number Λ(D) is bounded by τ(D), and D is usually of size about q1/3.

Theorem 1.2. Let χ be a Dirichlet character modulo q. If |t| ≥ 200,
then

|L(1/2 + it, χ)| ≤ q1/6Z(log q) +W (log q)

where

Z(X) := 6.6668
√

cbf(q)− 16.0834 spf(q) + 15.6004 spf(q)X

+ 1.7364
√
Λ(D) cbf(q)(65.5619− 17.1704X − 2.4781X2 + 0.6807X3)

+ 1.7364
√
Λ(D) cbf(q)Bτ(D/B)(−1732.5−817.82X+71.68X2+47.57X3)

and

W (X) := −101.152− 195.696B1 sqf(q) + 19.092X + 94.978B1 sqf(q)X.
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For many applications, it suffices to focus on the case where χ is primi-
tive. For if not, then letting χ1 (mod q1) be the primitive character inducing
χ and using the Euler product and analytic continuation of L(s, χ), we have

(4) |L(1/2 + it, χ)| ≤ |L(1/2 + it, χ1)|
∏
p|q
p-q1

(1 + 1/
√
p).

Thus, we obtain an explicit bound on L(1/2 + it, χ) by bounding L(1/2 +
it, χ1) and using the inequality (4). In our proof of Theorem 1.2, though,
we bound general sums of the form (5), and keep track of the dependence
on B and B1.

The main devices in our proofs are the hybrid van der Corput–Weyl
Lemmas 4.1 and 4.2. These lemmas provide explicit bounds for sums of the
form

(5)

N+L∑
n=N+1

χ(n)e2πif(n),

where we take f(x) = − t
2π log x in our application. A pleasant feature of

the resulting bounds is that they naturally split into two main terms, one
originating from χ(n) and the other from n−iqt. In particular, we can detect
cancellation in the q and t aspects separately, then combine the savings
routinely using the well-spacing Lemma 3.1.

The starting point in our proof of Theorem 1.2 is the Dirichlet series

(6) L(1/2 + it, χ) =
∞∑
n=1

χ(n)

n1/2+it
,

valid for χ nonprincipal. (If χ is principal, we use a bound for the Riemann
zeta function.) We partition the sum in (6) into four parts: 1 � n � q1/3

which is bounded trivially, q1/3 � n � q2/3 for which Lemma 4.1 is used,
q2/3 � n � q for which Lemma 4.2 is used, and the tail q � n which is
bounded using the Pólya–Vinogradov inequality.

We remark that the restriction in Corollary 1.1 that q is a sixth power
may be relaxed to q being a cube provided that one starts with a main sum
of length about

√
q (as in the approximate functional equation) instead of

the main sum (6). One then applies van der Corput lemmas analogous to
those in [9], but for the twisted sums (5).

Interest in powerfull modulus L-functions has grown recently, both from
the theoretical and computational perspectives. Milićević [10] has recently
derived sub-Weyl bounds for pure character sums to prime-power modulus.
And the present author [7] had derived an algorithm to compute hybrid
sums to powerfull modulus in q1/3+o(1) time. If q is smooth (but not neces-
sarily powerfull) or prime, then one can obtain explicit hybrid subconvexity
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bounds by deriving an explicit version of Heath-Brown’s q-analogue of the
van der Corput method in [5], and an explicit version of Heath-Brown’s
hybrid Burgess method in [6].

2. Notation. Let χ be a Dirichlet character modulo q. We factorize the
modulus

q := pa11 · · · p
aω
ω ,

where the pj are distinct primes and aj ≥ 1. For each prime power pa, we
define

C1(p
a) := pda/2e, D1(p

a) := pa−da/2e,

then extend the definitions multiplicatively, i.e. C1(q) = C1(p
a1
1 ) · · ·C1(p

aω
ω ).

In addition, we define

C(pa) := pda/3e, D(pa) :=


1, a = 1,

pa−2da/3e+1, p = 2 and a > 1,

pa−2da/3e, p 6= 2 and a > 1,

then extend the definitions multiplicatively. Since the quantitiesC1(q),D1(q),
C(q), and D(q) will appear often, it is useful to introduce the short-hand
notation C1 := C1(q),D1 := D1(q), C := C(q), andD := D(q). For example,
C1D1 = q.

Some additional arithmetic factors will appear in our estimates: (m,n) ≥
0 is the greatest common divisor of m and n, ω(m) is the number of distinct
prime divisors of m, and Λ(m) is the number of solutions of the congruence
x2 ≡ 1 (mod m) with 0 ≤ x < m. Explicitly,

Λ(m) =


2ω(m)−1, m ≡ 2 (mod 4),

2ω(m), m 6≡ 2 (mod 4) and m 6≡ 0 (mod 8),

2ω(m)+1, m ≡ 0 (mod 8).

We define Λ := Λ(D), and

sqf(pa) := pda/2e−a/2, cbf(pa) := pda/3e−a/3,

spf(pa) :=
pda/2e−da/3e/2−a/6√

D(pa)
,

then extend the definitions multiplicatively. Note that sqf(q) is determined
by the primes pj | q such that aj 6≡ 0 (mod 2), and cbf(q) by the primes pj
such that aj 6≡ 0 (mod 3). If q is a square, then sqf(q) = 1. If q is a cube,
then cbf(q) = 1. And if q is a sixth power, then sqf(q) = cbf(q) = 1 and
spf(q) ≤ 1.

The numbers B and B1 that appear in Theorem 1.2 are defined in
Lemma 3.3.
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In the remainder of the paper, we use the following notation: exp(x) = ex

is the usual exponential function, [x] is the closest integer to x, ‖x‖ is the
distance to the closest integer to x, ¯̀ (mod C) is the modular inverse of `
(mod C) if it exists, and

sgn(x) =

{
1, x ≥ 0,

0, x < 0.

3. Preliminary lemmas

Lemma 3.1. Let {yr : r = 0, 1, . . .} be a set of real numbers. Suppose
that there is a number δ > 0 such that minr 6=r′ |yr − yr′ | ≥ δ. If P ≥ 2 and
y ≥ x then

(7)
∑

yr∈[x,y]

min(P, ‖yr‖−1) ≤ 2(y − x+ 1)
(
2P + δ−1 log(eP/2)

)
.

If P < 2, then replace the r.h.s. by 2(y − x+ 1)(P + δ−1).

Proof. We may assume that δ ≤ 1/2, otherwise the bounds follow on
trivially estimating the number of points yr in [x, y] by 2(y − x) + 1 and
using the trivial bound min(P, ‖yr‖−1) ≤ P .

For each integer k ∈ [x, y], we consider the interval [k − 1/2, k + 1/2].
There are at most two points yr in [k − δ, k + δ), say y+k ∈ [k, k + δ) and
y−k ∈ [k− δ, k). If no such points exist, then we insert one (or both) of them
subject to the condition |y+k − y

−
k | ≥ δ. To preserve the δ-spacing condition,

we slide the remaining points in (y+k , k + 1/2] (resp. [k − 1/2, y−k )) to the
right of y+k (resp. left of y−k ) in the obvious way. It is possible that a point
falls off each edge, in which case we may discard it. This is permissible since
the overall procedure that we described can only increase the magnitude of
the sum in (7).

We have y+k = k + ρkδ for some ρk ∈ [0, 1), and so y−k ≤ k + (ρk − 1)δ.
Hence, using the inequality

min(P, ‖yr‖−1) + min(P, ‖yr′‖−1) ≤ min(2P, ‖yr‖−1 + ‖yr′‖−1),

and the formula ‖yr‖ = |yr − k| if |yr − k| ≤ 1/2, we obtain∑
|yr−k|≤1/2

min(P, ‖yr‖−1) ≤
∑

0≤r≤1/(2δ)

min

(
2P,

1

δ(r + ρk)
+

1

δ(r + 1− ρk)

)
.

We observe that

1

δ(r + ρk)
+

1

δ(r + 1− ρk)
=

1

δ

2r + 1

r2 + r + ρk − ρ2k
≤ 2

δr
.
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Combining this with the observation 2
rδ ≥ 2P if r ≤ 1

δP , we conclude that

(8)
∑

|yr−k|≤1/2

min(P, ‖yr‖−1) ≤ 2P

⌈
1

δP

⌉
+

∑
d1/(δP )e≤r≤1/(2δ)

2

rδ
.

To bound the sum over r, we isolate the first term and estimate the remain-
der by an integral. If P ≥ 2 (so that the integral below makes sense), then
this gives the bound ∑

d1/(δP )e≤r≤1/(2δ)

2

rδ
≤ 2P + 2δ−1

1/(2δ)�

1/(δP )

1

x
dx.

The integral evaluates to log(P/2). Therefore, the r.h.s. in (8) is bounded
by 2δ−1 + 2P + 2P + 2δ−1 log(P/2). So the lemma follows if P ≥ 2 as the
cardinality of {k : x ≤ k ≤ y} is ≤ y−x+ 1. Finally, if P < 2, then the sum
on the r.h.s. in (8) is empty, and so the bound is 2δ−1 + 2P .

Lemma 3.2. Let f be an analytic function on a disk of radius λ(L− 1)
centered at N + 1, where λ > 1 and 1 ≤ L ∈ Z. If there is a number η and
an integer J ≥ 0 such that |f (j)(N + 1)|λj(L− 1)j/j! ≤ η/λj for j > J ,
then∣∣∣ N+L∑

n=N+1

χ(n)e2πif(n)
∣∣∣ ≤ νJ(λ, η) max

0≤∆<L

∣∣∣ N+L∑
n=N+1+∆

χ(n)e2πiPJ (n−N−1)
∣∣∣,

where

PJ(x) :=

J∑
j=0

f (j)(N + 1)xj

j!
,

νJ(λ, η) :=

(
1 +

λ−J

λ− 1

)
exp

(
2πηλ−J

λ− 1

)
.

Proof. If L = 1, the lemma is trivial. So assume that L > 1. We apply
the Taylor expansion to obtain

f(N + 1 + z) = PJ(z) +
∑
j>J

f (j)(N + 1)

j!
zj (|z| ≤ λ(L− 1)).

Using the Taylor expansion once more, we find that

e2πi(f(N+1+z)−PJ (z)) =

∞∑
j=0

cj(J,N)zj (|z| ≤ λ(L− 1)).

So if we define ν∗J :=
∑∞

j=0 |cj(J,N)(L− 1)j |, then partial summation gives∣∣∣ N+L∑
n=N+1

χ(n)e2πif(n)
∣∣∣ ≤ ν∗J max

0≤∆<L

∣∣∣ N+L∑
n=N+1+∆

χ(n)e2πiPJ (n−N−1)
∣∣∣.
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To estimate the coefficients cj(J,N), we use the Cauchy theorem applied
with a circle of radius λ(L − 1) around the origin. In view of the growth
condition on the derivatives of f , this yields

|cj(J,N)| ≤ 1

2π

∣∣∣∣ � e2πi(f(N+1+z)−PJ (z))

zj+1
dz

∣∣∣∣ ≤ exp
(2πηλ−J

λ−1
)

λj(L− 1)j
.

Noting that cj(J,N) = 0 for 1 ≤ j ≤ J , we therefore deduce that

ν∗J ≤ exp

(
2πηλ−J

λ− 1

)[
1 +

∑
j>J

(L− 1)j

λj(L− 1)j

]
= νJ(λ, η).

Lemma 3.3. There exists an integer L̃ such that χ(1 +C1x) = e2πiL̃x/D1

for all x ∈ Z. If χ is primitive, then B1 := (L̃,D1) = 1. Furthermore, there

exist integers L0 and L such that χ(1 +Cx) = e4πiL0x/(CD)+2πiLx2/D for all
x ∈ Z. If χ is primitive, then L can be chosen so that B := (L,D) = 1.

Proof. We start with the decomposition χ = χ1 · · ·χω, where χj is a
Dirichlet character modulo p

aj
j . By [8, Lemma 3.4], there exists an integer

L̃j such that

χj(1 + C1(p
aj
j )x) = exp(2πiL̃jx/D1(p

aj
j ))

for all x ∈ Z. Hence,

χ(1 + C1x) = χ1(1 + C1x) · · ·χω(1 + C1x) = e2πiL̃x/D1 ,

where, because of C1D1 = q, we have

L̃ = q

ω∑
j=1

L̃j/p
aj
j .

Let B1 = (L̃,D1). It is clear that χ(1 + qx/B1) = 1 for all x. So q/B1 is an
induced modulus for χ. In particular, if B > 1 then χ is imprimitive. This
completes the proof of the first part of the lemma.

For the second part, we use [7, Lemma 4.2]. Consider first the case p
aj
j 6∈

{4, 8} and aj > 1. Then there are integers L0,j and Lj such that

(9) χj(1 + C(p
aj
j )x) = exp

(
4πiL0,jx

C(p
aj
j )D(p

aj
j )

+
2πiLjx

2

D(p
aj
j )

)
for all x ∈ Z, and moreover we can take L0,j = −Lj . If aj = 1, then

C(pa
j

j ) = p
aj
j . So χj(1 + C(p

aj
j )x) = 1 and we can take L0,j = Lj = 0. If

p
aj
j = 4, then either L0,j = 0 and Lj = 1, or χ is principal. If p

aj
j = 8, then

either L0,j = Lj = 1, or L0,j = 2 and Lj = 0 (an imprimitive character), or
L0,j = −1 and Lj = 1, or χ is principal. Put together, this gives

χ(1 + Cx) = χ1(1 + Cx) · · ·χω(1 + Cx) = exp

(
4πiL0x

CD
+

2πiLx2

D

)
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where

L0 = C2D
ω∑
j=1

L0,j

C(p
aj
j )2D(p

aj
j )

,

L = C2D

ω∑
j=1

Lj

C(p
aj
j )2D(p

aj
j )

.

It remains to prove that if χ is primitive then B = 1. To this end, we
note that Lq2/(B2C2D) is an integer. So if we show that 2L0q/(BC

2D) is an
integer too, then χ(1+qx/B) = 1 for all x ∈ Z. In particular, if B > 1, then
q/B is a nontrivial induced modulus and χ is imprimitive, which completes
the proof of the second part of the lemma.

Now, to show that 2L0q/(BC
2D) is an integer, we first note that L0q/C

2

is always an integer. (Recall that L0 = 0 if aj = 1.) Furthermore, if aj = 1
then (D, pj) = 1 and so (B, pj) = 1. In light of this, we may assume that
aj > 1 for all j.

We consider two possibilities. If p
aj
j 6∈ {4, 8} for any j, then C2D = q

(if q is odd) or 2q (if q is even), and in any case L0,j = −Lj for all j. The
last fact implies in turn that L0 = −L, hence B = (L0, D). In particular,
B divides L0 and we conclude that 2L0q/(BC

2D) = L0/B or 2L0/B, and
so this is an integer in either case.

On the other hand, if p
aj
j ∈ {4, 8} for some j, then C2D = 2q and we

appeal to the remark following (9). Accordingly, if χ is primitive and p
aj
j ∈

{4, 8} then Lj = 1 and so L must be odd. This shows that B = (L,D/2).
In addition, we have

L0 = L−


C2(Lj − L0,j)

4

D

2
, pa11 = 4,

C2(Lj − L0,j)

8

D

2
, pa11 = 8.

Therefore, given the possibilities for L0,j and Lj stated after (9), we see that
if χ is primitive then L0 ≡ L (mod D/2), and so B = (L0, D/2). This shows
that B is a divisor of L0, hence 2L0q/(BC

2D) = L0/B is an integer.

Lemma 3.4. Let M,N ∈ Z≥1, WM (m) := 1 − m/M , and dm(N) :=
(2m,N). Then

(10)

M∑
m=1

WM (m)
dm(N)

m
≤ τ(N) logM,

M∑
m=1

WM (m)dm(N) ≤ τ(N)M.
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Proof. We prove the first bound, the second one being analogous. Let
us write N = 2aN ′ with N ′ odd. We induct on a. If a = 0, then dm(N) =
(m,N) and the result follows because

M∑
m=1

WM (m)
dm(N)

m
≤
∑
r|N
r≤2M

∑
1≤m′≤M/r

WM (rm′)
1

m′

≤ τ(N)
∑

1≤m′≤M
WM (m′)

1

m′
≤ τ(N) logM.

If a = 1, then dm(N) = 2dm(N ′). So using the previous calculation and
observing that 2τ(N ′) = τ(N) yields the desired bound.

Henceforth, we assume that a ≥ 2. We may further assume that M > 2,
for if M = 1 or 2 then the lemma is trivial.

Since N is even by hypothesis, we have dm(N) = 2(m,N/2). Using this,
and dividing the sum over m into even and odd terms, we obtain

(11)
M∑
m=1

WM (m)
dm(N)

m
= 2

∑
1≤m′≤bM/2c

WM (2m′)
(2m′, N/2)

2m′

+ 2
∑

0≤m′≤b(M−1)/2c

WM (2m′ + 1)
(2m′ + 1, N/2)

2m′ + 1
.

We haveWM (2m′) ≤WdM/2e(m
′) and, by definition, (2m′, N/2)=dm′(N/2).

It follows by induction that the first sum on the r.h.s. of (11) is bounded by
τ(N/2) logdM/2e. Furthermore, the second sum is clearly bounded by∑

0≤m′≤b(M−1)/2c

WM (2m′ + 1)
(2m′ + 1, N ′)

m′ + 1/2

≤ 2(1− 1/M) +
∑

1≤m≤M
WM (m)

dm(N ′)

m
,

which, by induction, is ≤ 2(1 − 1/M) + τ(N ′) logM . Therefore, using the
bound logdM/2e ≤ logM + 1/M − log 2 and the formula τ(N/2) + τ(N ′) =
τ(N), we arrive at

M∑
m=1

WM (m)
dm(N)

m

≤ τ(N) logM +
(
2− 2/M + τ(N/2)/M − τ(N/2) log 2

)
.

We conclude that the bound (10) holds provided that τ(N/2) ≥ 4. This is
always fulfilled if a ≥ 2 unless N = 4 or 8. But the lemma follows in these
cases also by direct calculation.
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4. Hybrid van der Corput–Weyl lemmas

Lemma 4.1. Suppose that f is a function satisfying the hypothesis of
Lemma 3.2 for some λ > 1, η ≥ 0, and with J = 1. If f(x) is real for real x,
then∣∣∣ N+L∑

n=N+1

χ(n)e2πif(n)
∣∣∣ ≤ 2ν1(λ, η)C1

π

(
log

D1

2B1
+

7

4
+
π

2

)
+
ν1(λ, η)C1

π
min

(
πB1L

q
, ‖qf ′(N + 1)/B1‖−1

)
.

Proof. Applying Lemma 3.2 with J = 1 gives

(12)
∣∣∣ N+L∑
n=N+1

χ(n)e2πif(n)
∣∣∣ ≤ ν1(λ, η) max

0≤∆<L

∣∣∣ N+L∑
n=N+1+∆

χ(n)e2πiP1(n−N−1)
∣∣∣,

where P1(x) = f(N + 1) + f ′(N + 1)x. Let ∆∗ be where the maximum is
achieved on the r.h.s. of (12). Let N∗ := N + ∆∗ and L∗ = L −∆∗. So we
have

(13)
∣∣∣ N+L∑
n=N+1

χ(n)e2πif(n)
∣∣∣ ≤ ν1(λ, η)

∣∣∣ N∗+L∗∑
n=N∗+1

χ(n)e2πiP1(n−N−1)
∣∣∣.

We split the range of summation N∗ + 1 ≤ n ≤ N∗ + L∗ into arithmetic
progressions along the residue classes ` (mod C1). For each residue class
0 ≤ ` < C1, the terms in the progression n ≡ ` (mod C1) are indexed by
the integers k that verify N∗ + 1 ≤ `+ C1k ≤ N∗ + L∗. So we have

d(N∗ + 1− `)/C1e ≤ k ≤ b(N∗ + L∗ − `)/C1c.

Using the formula dx + δe − bxc = 1, valid for any x and δ ∈ (0, 1), we
deduce that d(N∗+ 1− `)/C1e − b(N∗− `)/C1c = 1. Therefore, if we define
H` := b(N∗− `)/C1c, then each ` determines an integer Ω` ≤ dL∗/C1e such
that (we use the triangle inequality below)∣∣∣ N∗+L∗∑
n=N∗+1

χ(n)e2πiP1(n−N−1)
∣∣∣ ≤ C1−1∑

`=0

∣∣∣ H`+Ω`∑
k=H`+1

χ(`+ C1k)e2πiP1(`+C1k−N−1)
∣∣∣.

From Lemma 3.3, and the formula χ(`+ C1k) = χ(`)χ(1 + C1`k), valid for
(`, q) = 1, we deduce that there are integers γ1 and B1 such that (γ1, D1)=1,
B1 |D1, and

χ(`+ C1k) = χ(`)e2πiB1γ1`k/D1 , (`, q) = 1.
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If (`, q) > 1, then χ(`+ C1k) = 0. Therefore,

(14)
∣∣∣ N∗+L∗∑
n=N∗+1

χ(n)e2πiP1(n−N−1)
∣∣∣ ≤ C1−1∑

`=0
(`,q)=1

∣∣∣ H`+Ω`∑
k=H`+1

e2πi(B1γ1`/D1+C1f ′(N+1))k
∣∣∣.

Let us define

zf :=

[
qf ′(N + 1)

B1

]
, δf := ±

∥∥∥∥qf ′(N + 1)

B1

∥∥∥∥,
where δf is positive if zf is obtained by rounding down, and negative if zf
is obtained by rounding up. In either case, since D1C1 = q by construction,
we have C1f

′(N + 1) = (zf + δf )B1/D1. Therefore,

(15)

∥∥∥∥B1γ1`

D1
+ C1f

′(N + 1)

∥∥∥∥ =

∥∥∥∥γ1`+ zf + δf
D1/B1

∥∥∥∥ =: Uγ1`+zf+δf .

In view of this, it follows by the Kuz’min–Landau Lemma [2, Lemma 2] that
the inner sum in (14) satisfies∣∣∣ H`+Ω`∑

k=H`+1

e2πi(B1γ1`/D1+C1f ′(N+1))k
∣∣∣ ≤ min

(
Ω`,

1

π
U−1
γ1`+zf+δf

+ 1

)
.

Given this, we divide the sum over ` in (14) into segments of length D1/B1.[
uD1

B1
,
(u+ 1)D1

B1

)
, u ∈ Z, 0 ≤ u < B1C1

D1
.

Over each segment, we can get an easy handle on Uγ1`+zf+δf . Indeed, as

` runs over the reduced residue classes modulo q (hence reduced modulo
D1/B1) in a given segment, γ1`+zf runs over a subset of the residue classes
modulo D1/B1, hitting each class at most once. Therefore, summing over
the B1C1/D1 segments, and recalling that Ω` ≤ dL/C1e by construction,
we obtain

(16)
∣∣∣ N∗+L∗∑
n=N∗+1

χ(n)e2πiP1(n−N−1)
∣∣∣

≤ B1C1

D1

∑
` (modD1/B1)

min

(
dL/C1e,

1

π
U−1`+δf + 1

)
.

We choose the residue class representatives modulo D1/B1 to be in
[−D1/2B1, D1/2B1) if δf ≥ 0, and in (−D1/2B1, D1/2B1] if δf < 0. In

either case, let ˜̀ denote the representative of `. Since 0 ≤ |δf | ≤ 1/2, we
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deduce the formula

U`+δf =


|˜̀|+ sgn(˜̀)δf

D1/B1
, ˜̀ 6= 0,

|δf |
D1/B1

, ˜̀= 0.

Now, if δf ≥ 0, we isolate the terms corresponding to ˜̀= 0 and ˜̀= −1
(if they exist) on the r.h.s. of (16). And if δf < 0, we isolate the terms for
˜̀ = 0 and ˜̀ = 1. Moreover, we use the lower bound U±1+δf ≥ B1/(2D1) to

control the term ˜̀ = ±1. Then we sum over the remaining ˜̀, pairing the
terms for ˜̀ and −˜̀− 1 if δf ≥ 0, and the terms for ˜̀+ 1 and −˜̀ if δf < 0.
In summary, assuming that D1/B1 ≥ 2 (so there are at least two residue
classes modulo D1/B1), we obtain

(17)
∑

` (modD1/B1)

min

(
dL/C1e,

1

π
U−1`+δf + 1

)
≤ min

(
dL/C1e,

1

π
U−1δf + 1

)

+

(
2D1

πB1
+ 1

)
+

(
D1

B1
− 2

)
+

D1

πB1

∑
1≤`<D1/(2B1)

(
1

`+ |δf |
+

1

`+ 1− |δf |

)
.

The second sum over ` on the r.h.s. of (17) is bounded by

(18)
∑

1≤`<D1/(2B1)

2`+ 1

`2 + `+ |δf | − δ2f
≤ 3

2
+

∑
2≤`<D1/(2B1)

2

`
≤ 3

2
+ 2 log

D1

2B1
.

It is easy to check that the last two estimates still hold if D1/B1 = 1. Hence,
substituting (18) into (17) we obtain, on noting that dL/C1e ≤ L/C1 + 1,∑

` (modD1/B1)

min

(
dL/C1e,

1

π
U−1`+δf + 1

)

≤ min

(
L

C1
,

1

π
U−1δf

)
+

2D1

πB1

(
1 +

π

2
+

3

4

)
+

2D1

πB1
log

D1

2B1
.

We multiply the last estimate by the outer factor B1C1/D1 in (16). This
gives

(19)
∣∣∣ N∗+L∗∑
n=N∗+1

χ(n)e2πiP1(n−N−1)
∣∣∣

≤ B1C1

D1

(
min

(
L

C1
,

1

π
U−1δf

)
+

2C1

π

(
log

D1

2B1
+

7

4
+
π

2

))
.

Finally, we use the formula U−1δf = ‖qf ′(N+1)/B1‖−1D1/B1, and substitute

(19) back into (13). After straightforward rearrangements, we obtain the
lemma.
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Lemma 4.2. Suppose that f is a function satisfying the hypothesis of
Lemma 3.2 for some λ > 1, η ≥ 0, and with J = 2. Let dm := (2m,D/B).
If f(x) is real for real x, then

(20)
∣∣∣ N+L∑
n=N+1

χ(n)e2πif(n)
∣∣∣2 ≤ 4ν2(λ, η)2ΛCL

π

(
log

D

2B
+

7

4
+

3π

2Λ

)

+
4ν2(λ, η)2ΛC2

π

dL/Ce∑
m=1

(
1− m

dL/Ce

)

×min

(
πdmBL

CD
,

∥∥∥∥mC2Df ′′(N + 1)

Bdm

∥∥∥∥−1).
Proof. We apply Lemma 3.2 with J = 2 to the sum. This shows (simi-

larly to the beginning of the proof of Lemma 4.1) that

(21)
∣∣∣ N+L∑
n=N+1

χ(n)e2πif(n)
∣∣∣ ≤ ν2(λ, η)

∣∣∣ N∗+L∗∑
n=N∗+1

χ(n)e2πiP2(n−N−1)
∣∣∣,

where P2(x) = f(N+1)+f ′(N+1)x+f ′′(N+1)x2/2 and [N∗+1, N∗+L∗]
⊂ [N + 1, N + L]. We split the range of summation on the r.h.s. of (21)
into arithmetic progressions along the residue classes ` modulo C. Letting
K` := b(N∗ − `)/Cc and ∆` := b(N∗ + L∗ − `)/Cc −K`, we have

(22)
N∗+L∗∑
n=N∗+1

χ(n)e2πiP2(n−N−1) =
C−1∑
`=0

K`+∆`∑
k=K`+1

χ(`+ Ck)e2πiP2(`+Ck−N−1).

We make use of the following properties of ∆`. First, by construction, we
have

(23)

C−1∑
`=0

∆` = L∗ ≤ L.

Second, using the periodicity of ∆` as a function of ` (mod C), and the
change of variable r ≡ N∗ − ` (mod C), we obtain

(24)

C−1∑
`=0

√
∆` =

C−1∑
r=0

√
b(L∗ + r)/Cc ≤

C−1∑
r=0

√
b(L+ r)/Cc.

Furthermore, supposing that L ≡ `0 (mod C), where 0 ≤ `0 < C, on
considering the summation ranges 0 ≤ r ≤ C−`0−1 and C−`0 ≤ r ≤ C−1
in (24) separately, we obtain

C−1∑
r=0

√
b(L+ r)/Cc = (C − `0)

√
(L− `0)/C + `0

√
(L− `0)/C + 1.
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If we view the r.h.s. above as a function of 0 ≤ `0 < C, say p(`0), then its
maximum is achieved when `0 = 0. Thus,

C−1∑
`=0

√
∆` ≤ p(0) =

√
CL.

Also, we have the bound

(25)
C−1∑
`=0

∆2
` ≤

L2

C
+ (ρ̃− ρ̃2)C, ρ̃ := `0/C.

We are now ready to return to (22). Lemma 3.3 asserts that there is a
polynomial g`(x) of degree 2 in x such that

χ(`+ Ck) = χ(`)e2πig`(k), (`, q) = 1,

where g`(x) = α`x + Bγ`
2
x2/D, (γ, q) = 1, and B |D. Therefore, applying

the Cauchy–Schwarz inequality to the r.h.s. in (22), we obtain

(26)
∣∣∣ N∗+L∗∑
n=N∗+1

χ(n)e2πiP2(n−N−1)
∣∣∣2 ≤ C C−1∑

`=0
(`,q)=1

∣∣∣ K`+∆`∑
k=K`+1

e2πiQ`(k)
∣∣∣2,

where Q`(x) := g`(x) +P2(`+Cx−N − 1). We bound the inner sum using
the van der Corput–Weyl Lemma [2, Lemma 5]. In fact, we use the more
precise form of the lemma at the bottom of page 1273 in [2]. This form
implies that if M is a positive integer then

(27)
∣∣∣ K`+∆`∑
k=K`+1

e2πiQ`(k)
∣∣∣2 ≤ (∆` +M)

(
∆`

M
+

2

M

M∑
m=1

(
1− m

M

)
|S′m(`)|

)
,

where

S′m(`) :=

K`+∆`−m∑
r=K`+1

e2πi(Q`(r+m)−Q`(r)).

Substituting (27) into (26), and using the properties (23) and (25) together
with the upper bound ∆` ≤ dL/Ce, we obtain

(28)
∣∣∣ N∗+L∗∑
n=N∗+1

χ(n)e2πiP2(n−N−1)
∣∣∣2

≤ CL+
L2 + ρ̃(1− ρ̃)C2

M
+ 2C

(
1 +
dL/Ce
M

) M∑
m=1

(
1− m

M

) C−1∑
`=0

(`,q)=1

|S′m(`)|.
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Since Q`(x) is a quadratic polynomial, we have the simpler expression

|S′m(`)| =
∣∣∣K`+∆`−m∑
r=K`+1

e2πi(2mBγ`
2
/D+mC2f ′′(N+1))r)

∣∣∣.
We plan to bound S′m(`) using the Kuz’min–Landau Lemma [2, Lemma 2].
With this in mind, recall the definition dm = (2m,D/B). Let

m′ =:
2m

dm
, Pm :=

D

Bdm
.

Let (2)

wm := [PmmC
2f ′′(N + 1)] =

[
m′C2Df ′′(N + 1)

2B

]
,

εm := ‖PmmC2f ′′(N + 1)‖ = ±
∥∥∥∥m′C2Df ′′(N + 1)

2B

∥∥∥∥.
Here, εm is positive if wm is obtained by rounding down, and negative if wm
is obtained by rounding up. Hence,∥∥∥∥2mBγ`

2

D
+mC2f ′′(N + 1)

∥∥∥∥ =

∥∥∥∥m′γ`2 + wm + εm
Pm

∥∥∥∥.
With Uz,m := ‖z/Pm‖, the Kuz’min–Landau Lemma furnishes the estimate

|S′m(`)| ≤ min

(
∆` −m,

1

π
U−1
m′γ`

2
+wm+εm,m

+ 1

)
.

Therefore, using the inequality ∆` ≤ dL/Ce yields

Sm =

C−1∑
`=0

(`,q)=1

|S′m(`)| ≤
C−1∑
`=0

(`,q)=1

min

(
dL/Ce −m, 1

π
U−1
m′γ`

2
+wm+εm,m

+ 1

)
.

To get an explicit expression for Uz,m, we consider subsums of Sm over the
segments

[uPm, (u+ 1)Pm), u ∈ Z, 0 ≤ u < C/Pm.

To this end, let

Λm := #{0 ≤ x < Pm : x2 ≡ 1 (mod Pm)}.
As ` runs over the reduced residue classes in each segment, we see that since

(m′γ, Pm) = 1 and ` is squared, ifm′γ`
2
+wm hits a residue class modulo Pm,

it does so Λm times. Let Rm denote the classes that are hit. We find that the
cardinality ofRm is≤ Pm/Λm. If εm ≥ 0 we takeRm ⊂ [−Pm/2, Pm/2), while
if εm < 0 we take Rm ⊂ (−Pm/2, Pm/2]. Furthermore, given m′γ ¯̀2 + wm,

(2) If each prime factor of q occurs with multiplicity > 1, then C2D = q if q is odd,
and C2D = 2q if q is even. So the expressions that follow can be simplified in this case.
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let ˜̀∈ Rm denote the class representative that it hits. Then, summing over
the C/Pm segments, we obtain

Sm ≤
CΛm
Pm

∑
˜̀∈Rm

min

(
dL/Ce −m, 1

π
U−1˜̀+εm,m

+ 1

)
,

and we have the formula

U˜̀+εm,m
=


|˜̀|+ sgn(˜̀)εm

Pm
, ˜̀ 6= 0,

|εm|
Pm

, ˜̀= 0.

At worst, the classes that are hit concentrate in [−Pm/2Λm, Pm/2Λm]. If
εm ≥ 0, we isolate the terms corresponding to ˜̀ = 0 and ˜̀ = −1 (if they
exist), and pair the remaining terms for ˜̀ and −˜̀− 1. On the other hand,
if εm < 0, we isolate the terms for ˜̀ = 0 and ˜̀ = 1, and pair the remaining
terms for ˜̀+ 1 and −˜̀. Since 0 ≤ |εm| ≤ 1/2 and Pm/Λm ≥ 1, this gives

Sm ≤
CΛm
Pm

min

(
dL/Ce −m, Pm

π|εm|
+ 1

)
+
CΛm
Pm

(
2Pm
π

+ 1

)
+
CΛm
Pm

(
Pm
Λm
− 1

)
+
CΛm
π

∑
1≤`<Pm/(2Λm)

(
1

`+ |εm|
+

1

`+ 1− |εm|

)
.

Furthermore,∑
1≤`<Pm/(2Λm)

(
1

`+ |εm|
+

1

`+ 1− |εm|

)

≤
∑

1≤`<Pm/(2Λm)

2`+ 1

`2 + `
≤ 3

2
+ 2 log

Pm
2Λm

.

Hence, using the trivial inequalities dL/Ce < L/C + 1 and 1 ≤ Λm ≤ Pm,
together with the observation Pm |D so that Λm = Λ(Pm) ≤ Λ(D) = Λ, we
obtain

Sm ≤
CΛm
Pm

min

(
L/C −m, Pm

π|εm|

)
+

2CΛ

π
+ 2C +

CΛ

π

(
3

2
+ 2 log

D

2B

)
.

Now, we have
∑

1≤m≤M (1 −m/M) = (M − 1)/2. So summing over m we
arrive at

M∑
m=1

(
1− m

M

)
Sm ≤ C

M∑
m=1

(
1− m

M

)
Λm
Pm

min

(
L/C −m, Pm

π|εm|

)
(29)

+ C(M − 1) +
CΛ(M − 1)

π

(
7

4
+ log

D

2B

)
.
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In (29), we chooseM = dL/Ce, so thatM = L/C+1− ρ̃. Then we substitute
the resulting expression into (28), which gives

(30)
∣∣∣ N∗+L∗∑
n=N∗+1

χ(n)e2πiP2(n−N−1)
∣∣∣2 ≤ CL+

L2 + ρ̃(1− ρ̃)C2

L/C + 1− ρ̃

+ 4C2

dL/Ce∑
m=1

(
1− m

dL/Ce

)
Λm
Pm

min

(
L/C −m, Pm

π|εm|

)
+ 4CL+

4ΛCL

π

(
7

4
+ log

D

2B

)
.

At this point, we may assume that L ≥ C, otherwise the lemma is trivial
due to the first term in (20). Given this assumption, it is easy to check that
the second term in (30), viewed as a function of ρ̃, has no critical points in
the interval [0, 1), and so it is monotonic over that interval. Comparing the
values at ρ̃ = 0 and ρ̃ = 1, we deduce that the maximum is at ρ̃ = 1. Using
this in (30) and substituting the result into (21) (after squaring both sides
there) yields the lemma.

5. Proof of Theorem 1.2. If χ = χ0 is the principal character, then

L(s, χ0) = ζ(s)
∏
p|q

(1− p−s).

Bounding the product above trivially, we obtain

|L(1/2 + it, χ0)| ≤ |ζ(1/2 + it)|
∏
p|q

(1 + 1/
√
p) ≤ |ζ(1/2 + it)|τ(q).

(Note that this is a large overestimate, but it is still fine since the difficult
part of the proof is χ 6= χ0.) Combining this with the bound for the Riemann
zeta function in [9], we arrive at

(31) |L(1/2 + it, χ0)| ≤ 0.63τ(q)q1/6 log q (|t| ≥ 3).

So the theorem follows in this case. Henceforth, we assume that χ is non-
principal, and so q > 2.

Let ρ = 1.3, which is a parameter that will control the size of the seg-
ments in our dyadic subdivision. The starting point of the dyadic subdivision
is

v0 =

⌈
C|t|1/3

(ρ− 1)2

⌉
.

We assume that |t| ≥ t0 ≥ ρ3/(ρ − 1)3 where t0 := 200. Since q > 2 by
assumption, we observe that q ≥ q0 := 3t0.
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From the Dirichlet series definition of L(s, χ), we have

(32) |L(1/2 + it, χ)| ≤
∣∣∣ ∞∑
n=1

χ(n)

n1/2+it

∣∣∣.
We divide the summation range on the r.h.s. of (32) into an initial sum
followed by dyadic segments [ρ`v0, ρ

`+1v0). This gives

|L(1/2 + it, χ)| ≤
∣∣∣∣v0−1∑
n=1

χ(n)

n1/2+it

∣∣∣∣+

∞∑
`=0

∣∣∣∣ ∑
ρ`v0≤n<ρ`+1v0

χ(n)

n1/2+it

∣∣∣∣.
The `th dyadic segment is subdivided into blocks of length L` where

L` =


d(ρ− 1)ρ`v0/|t|1/3e, 0 ≤ ` < `0 := log(CD|t|2/3/v0)/log ρ

d(ρ− 1)ρ`v0/|t|1/2e, `0 ≤ ` < `1 := log(q|t|/5v0)/log ρ,

d(ρ− 1)ρ`v0/|t|e, `1 ≤ `,

plus a (possibly empty) boundary block. (Note that our assumption |t| ≥ t0
and the fact that CD ≤ q imply `0 < `1.) So there are R` = d(ρ−1)ρ`v0/L`e
blocks in the `th segment. The rth block in the `th segment begins at

Nr,` + 1 = dρ`v0e+ rL` (0 ≤ r < R`).

We first bound the initial sum, then we bound the sum over each range of
` separately.

5.1. Initial sum. The initial sum is bounded trivially by using the
triangle inequality and the fact that |χ(n)/n1/2+it| ≤ 1/

√
n, and comparing

with the integral
	v0−1
0

1√
x
dx. Recalling that C/q1/3 = cbf(q), this gives

(33)

∣∣∣∣v0−1∑
n=1

χ(n)

n1/2+it

∣∣∣∣ ≤ 2
√
v0 − 1 ≤ v0

√
cbf(q)q1/6, v0 :=

2

ρ− 1
.

5.2. Sum over 0 ≤ ` < `0. Using the Cauchy–Schwarz inequality we
obtain

(34)

∣∣∣∣ ∑
0≤`<`0

∑
ρ`v0≤n<ρ`+1v0

χ(n)

n1/2+it

∣∣∣∣2≤ (`0 + 1)
∑

0≤`<`0

∣∣∣∣ ∑
ρ`v0≤n<ρ`+1v0

χ(n)

n1/2+it

∣∣∣∣2.
We partition the `th dyadic segment in (34) into blocks of length L`. Then
we apply partial summation to each segment to remove the weighting factor
1/
√
n. Finally, we apply the Cauchy–Schwarz inequality to the sum of the

blocks. This yields

(35)

∣∣∣∣ ∑
ρ`v0≤n<ρ`+1v0

χ(n)

n1/2+it

∣∣∣∣2 ≤ R`
ρ`v0

R`−1∑
r=0

max
0≤∆≤L`

∣∣∣∣ Nr,`+∆∑
n=Nr,`+1

χ(n)

nit

∣∣∣∣2.
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We estimate the inner sum in (35) via Lemma 4.2. To this end, let

λ =
1√
ρ− 1

, f(x) = − t

2π
log x,

and 1 ≤ L = ∆ ≤ L`. (Note that λ > 1, as required by the lemma.) We
have

(36)
λ(L` − 1)

Nr,` + 1
<

1

λ|t|1/3
< 1.

So f(Nr,` + 1 + z) is analytic on a disk of radius |z| ≤ λ(L` − 1). Moreover,
as a consequence of (36),

|f (j)(Nr,` + 1)|
j!

λj(L− 1)j =
|t|λj(L− 1)j

2πj(Nr,` + 1)j
≤ 1

2πjλj
(j ≥ 3).

In particular, the required bound on |f (j)(Nr,` + 1)|/j! in Lemma 4.2 holds
with η = 1/(6π). Therefore, if we let ν2 = ν2(1/

√
ρ− 1, 1/(6π)) and

yr,m,` :=
mC2Df ′′(N`,r + 1)

Bdm
=

m

dm

C2Dt

2πB

1

(Nr,` + 1)2
,

Lemma 4.2 shows that the r.h.s. in (34) is bounded by

(37)
4ν22Λ

π
(`0 + 1)

∑
0≤`<`0

(∗` + ∗∗`)

with

∗` :=
CL`R

2
`

ρ`v0

(
log

D

2B
+

7

4
+

3π

2Λ

)
,

∗∗` :=
C2R`
ρ`v0

dL`/Ce∑
m=1

W (m)

R`−1∑
r=0

min

(
πdmBL`
CD

,
1

‖yr,m,`‖

)
,

where for brevity we write

W (m) = 1− m

dL`/Ce
.

We consider the easier term ∗` first. Since (ρ− 1)2v0/|t|1/3 ≥ C, we obtain

(38)
(ρ− 1)ρ`v0

|t|1/3
≤ L` ≤

(ρ− 1)ρ`+1v0

|t|1/3
.

And the upper bound in (38) gives (ρ− 1)2v0/L` ≥ 1. Hence,

(39)
(ρ− 1)ρ`v0

L`
≤ R` ≤

(ρ− 1)ρ`+1v0
L`

.

As can be seen from (39) and the definition of L`, we have

(40) R` ≤ ρ|t|1/3 (0 ≤ ` < `0).
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Using this bound together with (39) and the inequality Λ ≥ 2 (valid since
q > 2 by assumption), we arrive at∑

0≤`<`0

∗` ≤ (`0 + 1)ρ2(ρ− 1)C|t|1/3
(

log
D

2
+

7

4
+

3π

4

)
.

Furthermore, by our choice of v0, we have

(41) `0 + 1 ≤ log(ρ(ρ− 1)2D|t|1/3)
log ρ

.

Therefore, the inequality log(D|t|1/3/2) ≤ log q1/3, the formula C/q1/3 =
cbf(q), and incorporating the additional factor `0 + 1 from (37) into our
estimate, give

(42) (`0 + 1)
∑

0≤`<`0

∗` ≤ v1 cbf(q)q1/3Z1(log q), v1 :=
ρ2(ρ− 1)

27 log2 ρ
,

where

Z1(X) := (X − log t0 + 21/4 + 9π/4)
(
X + 3 log(2ρ(ρ− 1)2)

)2
.

The term ∗∗` in (37) is more complicated to handle. First, we apply
Lemma 3.1 to estimate the sum over r there. To this end, note that

(Nr+1,` + 1)2 − (Nr,` + 1)2 ≥ 2dρ`v0eL` (0 ≤ r < R` − 1).

Moreover, by construction, NR`−1,` + 1 ≤ bρ`+1v0c and N0,` + 1 ≥ dρ`v0e.
Hence,

|yr+1,m,` − yr,m,`| ≥
m

dm

C2D|t|
2πB

2dρ`v0eL`
bρ`+1v0c4

(0 ≤ r < R` − 1),

|yR`−1,m,` − y0,m,`| ≤
m

dm

C2D|t|
2πB

ρ2 − 1

bρ`+1v0c2
.

(43)

We apply Lemma 3.1 to the sequence {yr,m,`}r with y = yR`−1,m,`, x =
y0,m,`, P = πdmBL`/CD, and (since yr,m,` is monotonic in r) with δ equal to
the lower bound for |yr+1,m,`−yr,m,`| in (43). With these parameter choices,
Lemma 3.1 gives

R`−1∑
r=0

min

(
πdmBL`
CD

,
1

‖yr,m,`‖

)
≤ 2(y− x+ 1)

(
2P + δ−1 log(emax(P, 2)/2)

)
.

Multiplying out the brackets, we obtain four terms: 2(y − x)δ−1

log(emax(P, 2)/2)), 2δ−1 log(emax(P, 2)/2)), 4(y − x)P , and 4P . We es-
timate the sum of each term over m with the aid of the following inequali-
ties, which are either straightforward to prove (the left two inequalities) or
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a consequence of Lemma 3.4:

(44)

dL`/Ce∑
m=1

W (m) ≤ L`
2C

,

dL`/Ce∑
m=1

W (m)
dm
m
≤ τ(D/B) logdL`/Ce,

dL`/Ce∑
m=1

W (m)m ≤
L2
`

2C2
,

dL`/Ce∑
m=1

W (m)dm ≤ τ(D/B)dL`/Ce.

Combining (38), (40), (43), and (44), together with the bound (here we use
L` ≥ C)

log
(
emax(P, 2)/2

)
≤ log

eπL`
2C

,

we routinely deduce the estimates

C2R`
ρ`v0

dL`/Ce∑
m=1

W (m)
(ρ2 − 1)bρ`+1v0c2

dρ`v0eL`
log

eπL`
2C

≤ B1(`),

C2R`
ρ`v0

dL`/Ce∑
m=1

W (m)
dm
m

2πB

C2D|t|
bρ`+1v0c4

dρ`v0eL`
log

eπL`
2C

≤ B2(`),

C2R`
ρ`v0

dL`/Ce∑
m=1

W (m)
4πdmBL`
CD

m

dm

C2D|t|
2πB

ρ2 − 1

bρ`+1v0c2
≤ B3(`),

C2R`
ρ`v0

dL`/Ce∑
m=1

W (m)dm
4πBL`
CD

≤ B4(`),

where

B1(`) :=
ρ3(ρ2 − 1)

2
C|t|1/3 log

eπL`
2C

,

B2(`) :=
2πρ5

(ρ− 1)

ρ`v0

D|t|1/3
Bτ(D/B)

(
log

eL`
C

)
log

eπL`
2C

,

B3(`) := ρ3(ρ− 1)3(ρ2 − 1)C|t|1/3,

B4(`) := 4πρ2(ρ− 1)2
ρ`v0

D|t|1/3
Bτ(D/B).

Incorporating the additional factor `0 + 1 from (34) into our estimate, we
therefore conclude that

(45) (`0 + 1)
∑

0≤`<`0

∗∗` ≤
4∑
j=1

(`0 + 1)
∑

0≤`<`0

Bj(`).

We estimate the sum over ` in (45) as a geometric progression. To this end,
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we use the bound on `0 in (41), the bound

L` ≤ ρ(ρ− 1)CD|t|1/3 (0 ≤ ` < `0),

which follows directly from the definitions of L` and `0, and consequently
the bound

log
eπL`
2C

≤ log
eπρ(ρ− 1)D|t|1/3

2
(0 ≤ ` < `0).

After some rearrangements, this yields

(`0 + 1)
∑

0≤`<`0

B1(`) ≤ v2 cbf(q)q1/3Z2(log q), v2 :=
ρ3(ρ2 − 1)

54 log2 ρ
,

(`0 + 1)
∑

0≤`<`0

B2(`) ≤ v3 cbf(q)Bτ(D/B)q1/3Z3(log q),

v3 :=
2πρ6

27(ρ− 1)2 log ρ
,

(`0 + 1)
∑

0≤`<`0

B3(`) ≤ v4 cbf(q)q1/3Z4(log q), v4 :=
ρ3(ρ− 1)3(ρ2 − 1)

9 log2 ρ
,

(`0 + 1)
∑

0≤`<`0

B4(`) ≤ v5 cbf(q)Bτ(D/B)q1/3Z5(log q),

v5 :=
4πρ3(ρ− 1)

3 log ρ
,

where

Z2(X) :=
(
X + 3 log(eπρ(ρ− 1))

)(
X + 3 log(2ρ(ρ− 1)2)

)2
,

Z3(X) :=
(
X + 3 log(2eρ(ρ− 1))

)(
X + 3 log(eπρ(ρ− 1))

)
×
(
X + 3 log(2ρ(ρ− 1)2)

)
,

Z4(X) :=
(
X + 3 log(2ρ(ρ− 1)2)

)2
,

Z5(X) := X + 3 log(2ρ(ρ− 1)2).

Therefore,

(46) (`0 + 1)
∑

0≤`<`0

∗∗`

≤ v2 cbf(q)q1/3Z2(log q) + v3Bτ(D/B) cbf(q)q1/3Z3(log q)

+ v4 cbf(q)q1/3Z4(log q) + v5Bτ(D/B) cbf(q)q1/3Z5(log q).

We combine (46) and (42), and use the inequality
√
x+ y ≤

√
x +
√
y

with x, y ≥ 0. This gives√
(`0+1)

∑
0≤`<`0

(∗`+∗∗`)≤
√

cbf(q)
(√

Z6(log q)+
√
Bτ(D/B)Z7(log q)

)
q1/6
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where

Z6(X) := v1Z1(X) + v2Z2(X) + v4Z4(X),

Z7(X) := v3Z3(X) + v5Z5(X).

Finally, we substitute this back into (34) to conclude that

(47)

∣∣∣∣ ∑
0≤`<`0

∑
ρ`v0≤n<ρ`+1v0

χ(n)

n1/2+it

∣∣∣∣ ≤ 2ν2√
π

√
Λ cbf(q)Z6(log q) q1/6

+
2ν2√
π

√
Λ cbf(q)Bτ(D/B)Z7(log q) q1/6.

5.3. Sum over `0 ≤ ` < `1. Applying the triangle inequality and partial
summation gives

(48)
∑

`0≤`<`1

∣∣∣∣ ∑
ρ`v0≤n<ρ`+1v0

χ(n)

n1/2+it

∣∣∣∣
≤

∑
`0≤`<`1

1

(ρ`v0)1/2

R`−1∑
r=0

max
0≤∆≤L`

∣∣∣∣ Nr,`+∆∑
n=Nr,`+1

χ(n)

nit

∣∣∣∣.
We bound the inner sum in (48) via Lemma 4.1. Using a similar analysis to
the beginning of Section 5.2, one verifies that the required analyticity con-
ditions on f(x) = − t

2π log x in Lemma 4.1 hold with J = 1, λ = 1/
√
ρ− 1,

and η = 1/(4π). Therefore, if we let ν1 = ν1(1/
√
ρ− 1, 1/(4π)) and

xr,` :=
qf ′(N`,r + 1)

B1
= − qt

2πB1

1

Nr,` + 1
,

then by Lemma 4.1 the inner double sum in (48) is bounded by

(49)
2ν1
π

C1R`
(ρ`v0)1/2

(
log

D1

2B1
+

7

4
+
π

2

)
+
ν1
π

C1

(ρ`v0)1/2

R`−1∑
r=0

min

(
πB1L`
q

,
1

‖xr,`‖

)
.

We bound the sum over r in (49) using Lemma 3.1. To this end, note that

(50) |xr+1,` − xr,`| ≥
q|t|

2πB1

L`
bρ`+1v0c2

, |xR`−1,` − x0,`| ≤
q|t|

2πB1

ρ− 1

bρ`+1v0c
.

Furthermore, since the sequence xr,` is monotonic in r, we may set δ in
Lemma 3.1 to be the lower bound for |xr+1,` − xr,`| in (50), set y− x as the
upper bound for |xR`−1,` − x0,`| in (50), and set P = πB1L`/q. (Note that
P ≥ 2.) Therefore, applying the lemma, and multiplying out the brackets
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in the resulting bound 2(y − x+ 1)(2P + δ−1 log(eP/2)), gives

R`−1∑
r=0

min

(
πB1L`
q

,
1

‖xr,`‖

)
≤
(

2(ρ− 1)bρ`+1v0c
L`

+
4πB1

q|t|
bρ`+1v0c2

L`

)
log

eπB1L`
2q

+
2(ρ− 1)|t|L`
bρ`+1v0c

+
4πB1L`

q
.

Using similar inequalities to those in Section 5.2, we deduce that

(ρ− 1)ρ`v0

|t|1/2
≤ L` ≤

(ρ− 1)ρ`+1v0

|t|1/2
≤ 1

5
ρ(ρ− 1)q|t|1/2 (`0 ≤ ` < `1).

Consequently, since B1 ≤ D1, we have

log
eπB1L`

2q
≤ log

eπρ(ρ− 1)D1|t|1/2

10
(`0 ≤ ` < `1).

Using these inequalities, the formulas
√
q/D1 = sqf(q), C1/(

√
CD q1/6) =

spf(q), and executing the geometric sum over `, we therefore conclude that

(51)
∑

`0≤`<`1

C1

(ρ`v0)1/2

R`−1∑
r=0

min

(
πB1L`
q

,
1

‖xr,`‖

)
≤ v8 spf(q)q1/6Z8(log q)

+ v9 sqf(q)B1Z8(log q) + v10 spf(q)q1/6 + v11 sqf(q)B1,

where

Z8(X) := X + 2 log(eπρ(ρ− 1)/10)

and

v8 :=
ρ3/2
√
ρ− 1

, v9 :=
2πρ5/2√

5 (ρ− 1)(
√
ρ− 1)

,

v10 :=
2ρ3/2(ρ− 1)2
√
ρ− 1

, v11 :=
4πρ3/2(ρ− 1)√

5 (
√
ρ− 1)

.

Furthermore, using the bound

R` ≤ ρ|t|1/2 (`0 ≤ ` < `1),

we obtain

(52)
∑

`0≤`<`1

C1R`
(ρ`v0)1/2

(
log

D1

2B1
+

7

4
+
π

2

)
≤ v12 spf(q)q1/6Z9(log q),

where

Z9(X) = X − 2 log(2
√
t0) +

7

2
+ π, v12 :=

ρ3/2

2(
√
ρ− 1)

.
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We substitute (52) and (51) into (49) and (48), which gives (after some
simplification)

(53)
∑

`0≤`<`1

∣∣∣∣ ∑
ρ`v0≤n<ρ`+1v0

χ(n)

n1/2+it

∣∣∣∣ ≤ ν1
π

(v8 spf(q)q1/6Z8(log q)

+ v9 sqf(q)B1Z8(log q) + v10 spf(q)q1/6 + v11 sqf(q)B1)

+
2ν1
π

v12 spf(q)q1/6Z9(log q).

5.4. Sum over `1 ≤ `. As before, we apply the triangle inequality,
partial summation, and Lemma 3.2 with J = 0, to obtain

(54)
∑
`1≤`

∣∣∣∣ ∑
ρ`v0≤n<ρ`+1v0

χ(n)

n1/2+it

∣∣∣∣ ≤∑
`1≤`

ν0

(ρ`v0)1/2

R`−1∑
r=0

max
0≤∆≤L`

∣∣∣ Nr,`+∆∑
n=Nr,`+1

χ(n)
∣∣∣.

Here, ν0 := ν0(1/
√
ρ− 1, 1/(2π)). We use the bound for nonprincipal char-

acters at the bottom of p. 139 of [7]. Specifically, if χ (mod q) is nonprincipal,
then |

∑
n χ(n)| ≤ 2

√
q log q. Using this, we deduce that the r.h.s. of (54) is

(55) ≤ 2ν0
√
q log q

∑
`1≤`

1

(ρ`v0)1/2
≤

2
√

5 ν0
√
ρ

√
ρ− 1

log q√
|t|
≤ ν0v13Z10(log q),

where

Z10(X) := X − log t0, v13 :=
2
√

5
√
ρ

(
√
ρ− 1)

√
t0
.

5.5. Summary. We combine (33), (47), (53), and (55), then evaluate
the resulting numerical constants with ρ = 1.3. This yields the theorem.

6. Proof of Corollary 1.1. We may assume that q > 1, otherwise
the corollary follows from the bound (31) for principal characters. By Lem-
ma 3.3, if χ is primitive, then B = B1 = 1. Also, since q is a sixth power,
sqf(q) = cbf(q) = 1 and spf(q) ≤ 1. Therefore, the functions Z(X) and
W (X) in Theorem 1.2 satisfy

Z(X) ≤ −9.416 + 15.6004X + 1.4327
√
Λ(D)X3/2

+ 12.1673
√
Λ(D)τ(D)X3/2,

W (X) ≤ −296.84 + 114.07X,

where we have used the fact that for X ≥ log(2t0) we have

65.5619− 17.1704X − 2.4781X2 + 0.6807X3 ≤ 0.6807X3,

−1732− 817.82X + 71.68X2 + 47.57X3 ≤ 49.1X3.

These inequalities are verified using Mathematica.
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It is easy to see that Λ(pa) ≤ τ(pa), which, by multiplicativity, implies
that

√
Λ(D)τ(D) ≤ τ(D). Furthermore, since q is a sixth power and q > 1,

it follows that τ(D) ≤ 0.572τ(q) (as can be seen by considering the case
q = 26a), τ(q) ≥ 7, and q ≥ 26. Substituting these bounds into the expres-
sions for Z(X) and W (X), we verify via Mathematica that

Z(X) ≤ τ(q)(−1.3451 + 2.2287X + 7.2695X3/2) ≤ 7.95τ(q)X3/2,

W (X) ≤ τ(q)(−42.4056 + 16.2958X) ≤ 16.30τ(q)X

for X ≥ log(26t0). Therefore,

|L(1/2 + it, χ)| ≤ 7.95τ(q)q1/6 log3/2 q + 16.30τ(q) log q.

Finally, using the bound q ≥ 26t0, we deduce that

|L(1/2 + it, χ)| ≤ 9.05τ(q)q1/6 log3/2 q,

proving the corollary.

7. Proofs of bounds (3) and (2)

Proof of bound (3). Since χ is nonprincipal, we have

L(1/2 + it, χ) =
∑
n≤M

χ(n)

n1/2+it
+RM (t, χ),

where the remainder RM (t, χ) :=
∑∞

n>M χ(n)n−1/2−it is just the tail of the
Dirichlet series. (We do not require that M > 0 be an integer.) To estimate
the tail, we use partial summation [12, formula (1)]:∣∣∣∣ ∑

M<n≤M2

χ(n)

n1/2+it

∣∣∣∣ ≤ 1√
M2

∣∣∣ ∑
n≤M2

χ(n)
∣∣∣+

1√
M

∣∣∣∑
n≤M

χ(n)
∣∣∣(56)

+ (1/2 + |t|)
M2�

M

∣∣∣ ∑
1≤n≤u

χ(n)
∣∣∣u−3/2 du.

We bound the character sums on the r.h.s. of (56) using the Pólya–Vinogra-
dov inequality in [3, §23]. This asserts that if χ is a primitive character
modulo q > 1 then |

∑
N1≤n<N2

χ(n)| ≤ √q log q. Substituting this in (56),
taking the limit as M2 →∞, and executing the integral gives

|L(1/2 + it, χ)| ≤ 2
√
M +

2
√
q log q
√
M

(|t|+ 1).

The claimed bound follows on choosing M = (|t|+ 1)
√
q log q.

Remark. If χ is merely assumed to be nonprincipal, then the bound
(3) still holds but with an extra factor of

√
2 in front. One simply uses the

Pólya–Vinogradov inequality stated in [7, p. 139] in the proof.
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Proof of bound (2). Since |L(1/2+ it, χ)| = |L(1/2− it, χ)| and the proof
will apply symmetrically to L(1/2+it, χ) and L(1/2+it, χ), we may assume
that t ≥ 0. Let n1 = b

√
qt/(2π)c. Since qt ≥ 2π, [4, Theorem 5.3] implies

that

(57) |L(1/2 + it, χ)| ≤ (2 + δt)

∣∣∣∣ n1∑
n=1

χ(n)

n1/2+it

∣∣∣∣+ |R(t, χ)|,

where (3) δt := exp
(
π
24t + 1

12t2

)
− 1 and

(58) |R(t, χ)| ≤ 264.72q1/4 log q

t1/4
+

11.39q3/4

t3/4
e−0.78

√
t/q.

To prove this, we specialize [4, Theorem 5.3] to the critical line, taking
X = Y with 2πX2 = qt, then appeal to well-known properties of Gauss
sums. Put together, this yields

(59) L(1/2 + it, χ) =
∑
n≤X

χ(n)

n1/2+it
+ F (t, χ)

∑
n≤X

χ(n)

n1/2−it
+R(t, χ),

where G(χ,−1) is a Gauss sum and

(60) F (t, χ) :=
(2πi)1/2+itq−1/2−itG(χ,−1)

Γ (1/2 + it)
.

(Here, (2πi)1/2+it is defined using the principal branch of the logarithm.)
We estimate R(t, χ) in (59) using the case “X ≤ Y ” in [4, Theorem 5.3].
Since we specialized X =

√
qt/(2π), we obtain

|R(t, χ)| ≤
(

167.2(2π)1/4 log q +
2.87(2π)3/4

√
q

√
t

e−
√
π3/50

√
t/q

)
q1/4

t1/4
.

The claimed estimate (58) for R(t, χ) follows on noting that 167.2(2π)1/4 <
264.72, 2.87(2π)3/4 < 11.39, and π3/2/

√
50 > 0.78.

To bound the factor 1/Γ (1/2 + it) appearing in the definition (60) of
F (t, χ), we mimic the proof of [4, Lemma 2.1] with minor adjustments. This
gives

(61)
1

|Γ (1/2 + it)|
≤

exp
(
πt
2 + π

24t + 1
12t2

)
√

2π
(t > 0).

Combining (61) with the facts that |G(χ,−1)| =
√
q and |(2πi)1/2+it| =√

2π e−πt/2 gives |F (t, χ)| ≤ exp
(
π
24t + 1

12t2

)
= 1 + δt. Since the second sum

in the approximate functional equation (59) is just the complex conjugate
of the first sum there, this proves (57).

(3) The appearance of δt in (57) is due to a slight imperfection in the form of the
approximate functional equation proved in [4], and is not significant otherwise.
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Last, we trivially estimate the sum in (57), then use the assumption
t ≥ √q ≥

√
2 and monotonicity to bound R(t, χ) and δt. This gives (on

noting that log q ≤ log q2/3)

|L(1/2 + it, χ)|

≤
(

2(1 + δ√2)

(2π)1/4
+ 11.39 exp

(
−0.78

21/4

))
q1/4 + 264.72q1/12 log q2/3.

Denote the r.h.s. above by (∗). Using Mathematica we verify that the equa-
tion (∗) = 124.46q1/4 has no real solution if q ≥ 109. Furthermore, (∗) is
smaller than 124.46q1/4 when q = 109. Hence, (∗) ≤ 124.46q1/4 for all
q ≥ 109, as claimed.
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