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Summary. Consider an o-minimal expansion R of a real closed field R and two definable
sets E and M . We introduce concepts of a locally transitive (abbreviated to l.t.) and a
strongly locally transitive (abbreviated to s.l.t.) action of E on M . In the former case, M
is supposed to be of pure dimension m; in the latter, both M and E are supposed to be of
pure dimension. We treat the elements of E as perturbations of the set M . We prove that
if E acts l.t. on M , and A and B are two non-empty definable subsets of M of dimension
dimA ≤ dimB < dimM , then

dim(σ(A) ∩B) < dimA

for a generic σ in E; here dim ∅ = −1. And if E acts s.l.t. on M and A and B are two
definable subsets of M , then

dim(σ(A) ∩B) ≤ max{dimA+ dimB −m,−1}

for a generic σ in E. We give an example of a l.t. action E on M for which the latter
conclusion of the intersection theorem fails. We also prove a theorem on the intersections
of generic perturbations in terms of the exceptional set T ⊂M of points at which E is not
l.t. Finally, we provide some natural conditions which imply that T is a nowhere dense
subset of M .

1. Introduction and main results. Consider an o-minimal expan-
sion R of a real closed field R and two definable (with parameters) subsets E
and M of Rn. Let dimE = e and assume that M is of pure dimension m,
i.e. the dimension of M at each point x ∈ M is m. Examples of such sets
are, for instance, definable topological manifolds (possibly with boundary).
In this paper we set dim ∅ = −1. We shall investigate continuous definable
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maps
α : E ×M →M, α(σ, x) = σ · x = σ(x),

which we call actions of E onM . We treat the elements of E as perturbations
of the set M . For subsets X ⊂ E and Y ⊂M , write

X · Y := {x · y ∈M : x ∈ X, y ∈ Y }.
It will be often convenient to think of the points x ∈ M as maps from E
into M . Thus we set

αx : E 3 σ 7→ σ · x ∈M.

We say that α or E is locally transitive (abbreviated to l.t.) at a point x ∈M
if Ω ·x = αx(Ω) is a subset of M of dimension m for every non-empty, open
subset Ω of E. Of course, if E is l.t. at x, then e ≥ m.

Remark 1.1. It is not difficult to prove that E is l.t. at x ∈ M iff the
map αx is generically a submersion, i.e. there exists a nowhere dense subset
F of E such that the restriction of αx to E \ F is a submersion of class C1.
Indeed, this follows directly from the fact that there exists a finite definable
stratification of E of class C1 such that αx is a C1 map on each stratum.

The set E is called l.t. on a subset A of M if it is l.t. at every point
x ∈ A. Locally transitive actions can be characterized in terms of the rank
of definable maps defined below.

Let f : V →W be a definable map between definable subsets of Rn. For
any x ∈ Rn and r > 0, denote by B(x, r) the ball with center x and radius r.
The function

V × (0,∞) 3 (x, r) 7→ dim f(V ∩B(x, r)) ∈ N
is definable, because the dimension of fibers from a definable family depends
definably on the parameters (cf. [1, Chap. 4]). Consequently, for a fixed
x ∈ V , the function dim f(V ∩ B(x, r)) is constant for r > 0 small enough.
Its common value rxf near zero will be called the rank of f at x; rxf is
a definable function of the variable x. It is clear that E is l.t. at x iff the
map αx is of constant rank m.

Suppose now that the definable set E is also of pure dimension e. We say
that E is strongly locally transitive (abbreviated to s.l.t.) at a point x ∈ M
if the fibers of the map αx are of dimension ≤ e − m. An easy dimension
calculus, based on the following proposition (see e.g. [1, Chap. 4, Prop. 1.5]),
shows that E is l.t. at x if E is s.l.t. at x.

Proposition 1.2. Let f : V →W be a definable map between non-empty
definable sets. Then

dim f−1f(v) ≤ k for all v ∈ V ⇒ dimV ≤ k + dim f(V ),

dim f−1f(v) ≥ k for all v ∈ V ⇒ dimV ≥ k + dim f(V ).
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The set E is called s.l.t. on a subset A of M if it is s.l.t. at every point
x ∈ A.

The main purpose of this paper is to prove the following two theorems
on intersections of generic perturbations.

Theorem 1.3. Suppose M is a definable set of pure dimension m. Let A
and B be non-empty, definable subsets of M . If E is l.t. on A and dimA ≤
dimB < m, then there exists a definable, nowhere dense subset Z of E such
that

dim(σ(A) ∩B) < dimA

for all σ ∈ E \ Z.

Theorem 1.4. Suppose E and M are definable sets of pure dimension
e and m, respectively. Let A and B be definable subsets of M . If E is s.l.t.
on A, then there exists a definable subset Z of E such that dimZ < e and

dim(σ(A) ∩B) ≤ d := max{dimA+ dimB −m,−1}
for all σ ∈ E \ Z.

The above results generalize the theorem on generic intersections from [6],
which treated only the case where E is a definable group. Their proofs will be
given in the next two sections. Section 4 gives an example of a l.t. action E
for which Theorem 1.4 fails. In Section 5, we define an exceptional set T ⊂M
of points at which E is not l.t. and prove a theorem on intersections of generic
perturbations in terms of T (Corollary 5.1). Finally, we provide some natural
conditions which imply that T is a nowhere dense subset ofM (Theorem 5.2).

Some natural examples of manifolds which act l.t. (but not s.l.t.) are the
following: the set of all reflections of Rm in affine hyperplanes, the set of
all rotations in Rm around affine subspaces of dimension m − 2, the set of
such rotations by a fixed non-zero angle, the counterparts of these sets in
the sphere Sm and in the hyperbolic space Hm, as well as non-empty open
subsets of the above-mentioned sets. The paper [8] provides a study of the
l.t. action of the set of rotations in Rm, Sm and Hm, and its results are
applied in [4], devoted to a concept of a small set which refines the concept
of a Tarski nullset.

Remark 1.5. If R is a polynomially bounded, o-minimal expansion of
the field R, then smooth (i.e. of class C∞) definable functions constitute a
quasianalytic class, i.e. the identity principle holds: two quasianalytic func-
tions on a connected open subset U ⊂ Rm coincide if so do their germs
at a point a ∈ U . Hence the following characterization of local transitiv-
ity. Suppose E and M are connected, smooth manifolds definable in R and
α : E×M →M is a smooth, definable map. Then α is l.t. at a point x ∈M
iff the set E · x is a subset of M of dimension m. For example, R may be an
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analytic structure Ran (i.e. the expansion of the field R by restricted analytic
functions) or, more generally, a quasianalytic structure (i.e. the expansion of
the field R by restricted quasianalytic functions; see e.g. [9, 5, 7]).

Remark 1.6. Strong local transitivity can be expressed in terms of Rem-
mert rank. Denote by dimAx the dimension of a definable set A at a point x.
By the Remmert rank of a definable map f : V →W at a point x ∈ V (cf. [3,
Chap. V]) we mean the number

%xf := dimVx − dim f−1(f(x))x.

Clearly, E is s.l.t. at x iff the map αx is of Remmert rank ≥ m everywhere
on E.

2. Proof of Theorem 1.3. We first prove that the definable set

Z := {σ ∈ E : ∃a ∈ A ∃r > 0 [σ · (A ∩B(a, r)) ⊂ B]}
is a nowhere dense subset of E. Otherwise it would contain an open definable
subset U of E. By definable choice, there exist definable functions

a : U → A and r : U → (0, 1)

such that
σ · (A ∩B(a(σ), r(σ))) ⊂ B.

After shrinking the open subset U , we may assume that the maps a(σ) and
r(σ) are continuous. Take any point σ0 ∈ U , ε := r(σ0)/3 and a neighbour-
hood U0 ⊂ U of σ0 such that

d(a(σ), a(σ0)) < ε and r(σ) > 2ε for all σ ∈ U0;

here d stands for the Euclidean distance in Rn. Then

B(a(σ0), ε) ⊂ B(a(σ), 2ε) ⊂ B(a(σ), r(σ))

for all σ ∈ U0, and thus

σ · (A ∩B(a(σ0), ε)) ⊂ B for all σ ∈ U0.

In particular, we get
dim(U0 · a(σ0)) < m,

which contradicts the fact that E is l.t. on the set A. Therefore the definable
set Z is a nowhere dense subset of E, as asserted.

Consequently, we get

σ · (A ∩B(a, r)) 6⊂ B
for all a ∈ A, r > 0 and σ ∈ E \ Z. Hence

dim(σ(A) ∩B) < dimA

for all σ ∈ E \ Z. Indeed, this is an immediate consequence of
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Lemma 2.1. Given definable subsets C and D, if dim(C ∩D) = dimC,
then C ∩B(a, r) ⊂ D for some a ∈ C and r > 0.

This, in turn, follows directly from the existence of a finite definable
cell decomposition compatible with the sets C and D. Thus the proof of
Theorem 1.3 is complete.

3. Proof of Theorem 1.4. The proof relies on dimension calculus sim-
ilar to that applied in the proof of the theorem on generic intersections in [6].
We adopt the notation from that paper with the definable group G replaced
by the definable topological manifold E. Let

∆ = ∆M := {(x, x) : x ∈M} and π : ∆→M

be the diagonal and the projection onto the first factor. Then

σ(A) ∩B = π((σ(A)×B) ∩∆)

= π ◦ (σ × IdM )((A×B) ∩ {(x, σ(x)) : x ∈M}).

Hence the sets σ(A) ∩ B and (A × B) ∩ {(x, σ(x)) : x ∈ M} are definably
homeomorphic, and thus we have to find a definable, nowhere dense subset Z
of E such that

dim(A×B) ∩ {(x, σ(x)) : x ∈M} ≤ d for all σ ∈ G \ Z.

Therefore Theorem 1.4 follows immediately from the lemma below (cf. [6,
p. 23]).

Lemma 3.1. The subset Z of all σ ∈ E such that

dim(A×B) ∩ {(x, σ(x)) : x ∈M} > d

is definable and nowhere dense in E.

Its proof can be repeated verbatim because it requires only that the fibers

{σ ∈ E : σ(x) = y} = (αx)−1(y), x ∈ A, y ∈ B,

be of dimension ≤ e − m (in the present setting). But this is just the as-
sumption that E is s.l.t. on A. 2

4. Examples. We will show that Theorem 1.3 is asymmetric in the sense
that the assumption dimA ≤ dimB is essential, even in the case where E
is a submanifold of a definable Lie group G which acts transitively on a
definable manifold M . In particular, in this example the action of E on M
will be l.t. but the action of

E−1 := {σ−1 ∈ G : σ ∈ E}

will not be l.t. on M .
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Let M := R2 \ {(0, 0)} and

E :=

{
1

1− xy

[
1 −x
−y 1

]
∈ GL(2, R) : x, y ∈ R

}
;

of course, the general linear group GL(2, R) acts transitively on M and E
is an algebraic submanifold of GL(2, R). Then, by an easy calculation, for
every (a, b) ∈ M the set E · (a, b) contains all points (c, d) with c 6= 0 and
d 6= 0. Hence E is l.t. on M . Clearly,

E−1 :=

{[
1 x

y 1

]
∈ GL(2, R) : x, y ∈ R

}
.

Further,
E−1 · (u, 0) = {(u, v) : v ∈ R}

for all u 6= 0. Since the above set is of dimension 1, E−1 is not l.t. at (u, 0).
Now let us show that the assumption dimA ≤ dimB is needed. Keep the

notation of the above example. Let A be the line {(1, t) : t ∈ R} and B :=
{(1, v)}. Thus E is l.t. but dimA > dimB. For all σ ∈ E, we have B ⊂ σ(A)
(the equivalent relation σ−1(B) ⊂ A is obvious). Hence dim(σ(A) ∩B) = 0,
while the conclusion of Theorem 1.3 would require it to be −1, i.e. the
intersection to be empty.

Remark 4.1. Suppose that a definable group G acts transitively on a
definable manifoldM and that E is a definable subset ofG of pure dimension.
It is not difficult to check that if E is s.l.t. on M , then E−1 is l.t. on M .

When α : E × M → M is a definable map of class C1 between two
definable manifolds of class C1, we call α a submersive action at a point
x ∈M if the map αx is a submersion. E is called submersive on a subset A
of M if it is submersive at every point x ∈ A. Obviously, every submersive
action is s.l.t. We immediately obtain the following corollary to Theorem 1.4.

Corollary 4.2. Let A and B be definable subsets of M . If E is submer-
sive on A, then there exists a definable subset Z of E such that dimZ < e
and

dim(σ(A) ∩B) ≤ d := max{dimA+ dimB −m,−1}
for all σ ∈ E \ Z. 2

Remark 4.3. This corollary follows also from an o-minimal version of
the Thom transversality theorem (see e.g. [2, Chap. 3, Theorem 2.7] for the
classical version) and the existence of a definable stratification.

Proposition 4.4. The weaker assumptions of Theorem 1.1 do not imply
the inequality dim(σ(A) ∩B) ≤ d of Theorem 2.2.
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Proof. Let M := (R2 \ {(0, 0)})×R and

E :=

 1

x21 − x22

 x1 −x2 0

−x2 x1 0

x2x3 −x1x3 x21 − x22

 ∈ GL(3, R)

 ;

of course, E is an algebraic submanifold of GL(3, R). Then, by an easy
calculation, for every a = (a1, a2, a3) ∈ M the set E · a contains all points
b = (b1, b2, b3) with b1 6= 0, b2 6= 0, b21 − b22 6= 0 and a2b1 − a1b2 6= 0. Hence
E is l.t. on M . Clearly,

E−1 :=


x1 x2 0

x2 x1 0

0 x3 1

 ∈ GL(3, R)

 ,

E−1 is not l.t. on M and thus E is not s.l.t. on M .
Let A be the circle

A := {a ∈M : a21 + a22 = 1, a3 = 1}
and let B be the line

B := {b ∈M : b2 = 0, b3 = 1}.
Then d = max{dimA+ dimB −m,−1} = −1.

Observe now that if b = (b1, 0, 1) ∈ B and

σ−1 :=

x1 x2 0

x2 x1 0

0 x3 1

 ∈ E−1,
then σ−1(b) = (b1x1, b1x2, 1). Hence σ−1(B) is the line through the points
(0, 0, 1) and (x1, x2, 1). Therefore A ∩ σ−1(B) is a two-point set. Hence
dim(σ(A) ∩ B) = 0 > d for every σ ∈ E, contrary to the inequality of
Theorem 1.2.

5. Exceptional set of the action. Consider further an action of a
definable set E on a definable setM of pure dimensionm. By the exceptional
subset T of M with respect to the action E we mean the definable set of
all points x ∈ M at which E is not l.t., i.e. of those x ∈ M for which U · x
is of dimension < m for some non-empty, open subset U of E. Thus the
assumption of Theorem 1.3 says that A ∩ T = ∅. But this can be replaced
by the weaker assumption dim(A ∩ T ) < dimA:

Corollary 5.1. If A and B are non-empty, definable subsets ofM such
that

dimA ≤ dimB < m and dim(A ∩ T ) < dimA,
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then there exists a definable, nowhere dense subset Z of E such that

dim(σ(A) ∩B) < dimA for all σ ∈ E \ Z.
Proof. Subtract T from A and apply Theorem 1.3.

The smaller the dimension of T , the larger the class of pairs A,B for
which Theorem 1.3 and Corollary 5.1 apply. Now we are going to provide
some conditions under which T is of dimension < m. For a subset F of E
set

M(F ) := {x ∈M : dim(F · x) < m}.
Then

(5.1) F1 ⊂ F2 ⇒M(F1) ⊃M(F2)

and

(5.2) M(F1 ∪ F2) =M(F1) ∩M(F2).

Obviously, if F is a definable set, so is M(F ). Further, we get

T =
⋃

U⊂E open

M(U) =
⋃

σ∈E, r>0

M(E ∩B(σ, r)).

This gives rise to the following definition. We call an element σ ∈ E a singular
perturbation with respect to E if

dimM(E ∩B(σ, r)) = m for some r > 0.

The set of all singular perturbations with respect to E is an open definable
subset of E. We call its closure Es the singular locus of E. The complement
Et := E \ Es is an open definable subset of E, called the tame locus of E.
It is not difficult to check that Et has no singular perturbation with respect
to Et.

Theorem 5.2. If E has no singular perturbation with respect to E, then
the exceptional set T is a subset of M of dimension < m.

Proof. Towards a contradiction, suppose that T is of dimension m and
thus contains an open definable subset Ω of M . By definable choice, there
are definable functions

c : Ω → E and r : Ω → (0,∞) ⊂ R
such that x ∈ M(E ∩ B(c(x), r(x)) for all x ∈ Ω. We may assume, after
shrinking Ω, that the functions c and r are continuous. Take a point x0 ∈ Ω
and a neighbourhood Ω0 of x0 such that

d(c(x), c(x0) < r0/3 and r(x) > 2r0/3 for all x ∈ Ω0,

where r0 := r(x0). Then

B(c(x), r(x)) ⊃ B(c(x0), r0/3) for all x ∈ Ω0,
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and
x ∈M(E ∩B(c(x), r(x))) ⊂M(E ∩B(c(x0), r0/3)) for all x ∈ Ω0.

Hence
Ω0 ⊂M(E ∩B(c(x0), r0/3)),

and thus c(x0) ∈ E is a singular perturbation with respect to E, contrary to
the assumption. This finishes the proof.

Remark 5.3. Assume that R is a polynomially bounded, o-minimal ex-
pansion of the field R, and that E and M are connected, smooth, definable
manifolds. It follows from the identity principle for quasianalytic functions
(cf. Remark 1.5) that M(U) = M(E) for any non-empty, open subset U
of E. Further, M(E) is a definable quasianalytic subset of M , and hence so
is the exceptional set T = M(E). Thus, unlike in the general settings, T is
either a closed, nowhere dense subset of M or the whole manifold M .
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