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Sets of bounded remainder for a
continuous irrational rotation on [0, 1]2

by

Sigrid Grepstad and Gerhard Larcher (Linz)

1. Introduction. In this paper we will be concerned with bounded
remainder sets for a two-dimensional irrational rotation on the unit square
I2 = [0, 1)2.

Definition 1.1. Let x = (x1, x2) ∈ I2, and let α ∈ R \Q. We say that
the function X : [0,∞)→ I2 defined by

X(t) = ({x1 + t}, {x2 + αt})

is the two-dimensional continuous irrational rotation with slope α and start-
ing point x.

Definition 1.2. Let S ⊂ I2 be an arbitrary measurable subset of the
unit square with Lebesgue measure λ(S). We say that S is a bounded re-
mainder set for the continuous irrational rotation with slope α > 0 and
starting point x = (x1, x2) ∈ I2 if the distributional error

(1.1) ∆T (S, α,x) =

T�

0

χS({x1 + t}, {x2 + αt}) dt− Tλ(S)

is uniformly bounded for all T > 0. Here, χS denotes the characteristic
function for the set S.

Bounded remainder sets have been extensively studied for the discrete
analogue of continuous irrational rotation, that is, for Kronecker sequences
({nα1}, . . . , {nαs})∞n=1 in [0, 1)s, where α1, . . . , αs are given reals. In this
context, a bounded remainder set S ⊆ [0, 1)s is a measurable set for which
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the difference ∣∣∣ N∑
n=1

χS({x1 + nα1}, . . . , {xs + nαs})−Nλ(S)
∣∣∣

is uniformly bounded for all integers N ≥ 1 and for almost every point
(x1, . . . , xs) ∈ [0, 1)s. In the simplest case when s = 1 and S is just an in-
terval, bounded remainder sets for the Kronecker sequences were explicitly
characterized by Hecke [8], Ostrowski [13, 14] and Kesten [10]. In the gen-
eral multi-dimensional case, a characterization of bounded remainder sets in
terms of equidecomposability to certain parallelepipeds was recently given
in [7].

Without going into further detail on the known results for the Kronecker
sequences, let us simply emphasize that in the discrete case, a given set S ⊂
[0, 1)s is a bounded remainder set for only “very few” choices of (α1, . . . , αs).
Likewise, given a vector (α1, . . . , αs), the class of sets S which are of bounded
remainder with respect to this vector is, in some sense, small. Once we
consider bounded remainder sets for continuous irrational rotations, the
situation turns out to be quite different. In light of recent work by József
Beck, this is not entirely unexpected. Beck studied distributional properties
of continuous irrational rotations in [1, 2, 3], and showed in particular:

Theorem (Beck [3, Theorem 1]). Let S ⊆ I2 be an arbitrary Lebesgue
measurable set in the unit square with positive measure. Then for every
ε > 0, almost all α > 0 and every starting point x = (x1, x2) ∈ I2, we have

T�

0

χS({x1 + t}, {x2 + αt}) dt− Tλ(S) = o((log T )3+ε).

As pointed out by Beck, the polylogarithmic error term is shockingly
small compared to the linear term Tλ(S). Moreover, it is so for all measur-
able sets S. It is thus natural to ask if imposing certain regularity conditions
on S could give an even lower bound on the error term.

The aim of this paper is to show that the estimate of Beck can be sig-
nificantly improved for a large collection of sets S. We show that:

Theorem 1.3. For almost all α > 0 and every x ∈ I2, every polygon
S ⊂ I2 with no edge of slope α is a bounded remainder set for the continuous
irrational rotation with slope α and starting point x.

Theorem 1.4. For almost all α > 0 and every x ∈ I2, every convex
set S ⊂ I2 whose boundary ∂S is a twice continuously differentiable curve
with positive curvature at every point is a bounded remainder set for the
continuous irrational rotation with slope α and starting point x.
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We will see from the proofs that Theorems 1.3 and 1.4 hold for all α
whose continued fraction expansion α = [a0; a1, a2, . . . ] satisfies

s∑
l=0

al+1

q
1/2
l

l+1∑
k=1

ak < C,

where C is a constant independent of s. Here, (ql)l≥0 is the sequence of best
approximation denominators for α.

The following are immediate consequences of Theorems 1.3 and 1.4.

Corollary 1.5. Let S be a polygon in I2. Then S is a bounded re-
mainder set with respect to the continuous irrational rotation for almost
every slope α > 0 and every starting point x ∈ I2.

Corollary 1.6. Let S be a convex set in I2 whose boundary ∂S is a
twice continuously differentiable curve with positive curvature at every point.
Then S is a bounded remainder set with respect to the continuous irrational
rotation for almost every slope α > 0 and every starting point x ∈ I2.

In light of Corollaries 1.5 and 1.6, it is tempting to raise the question of
whether every convex set S ⊂ I2 is a bounded remainder set with respect
to the continuous irrational rotation for almost every slope α > 0 and every
starting point x ∈ I2. We leave this question open.

Theorems 1.3 and 1.4 above are, in a certain sense, optimal. First of all,
the slope condition in Theorem 1.3 on the edges of the polygon S cannot be
omitted. To see this, fix some α > 0, and let S be the parallelogram shown
in Figure 1 with p /∈ Zα (mod 1) and λ(S) = p. It is not difficult to show

1

1

S

p α

Fig. 1. The parallelogram S with two edges of slope α
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that for such a set S, with two edges of slope α, we have∣∣∣T�
0

χS({t}, {αt}) dt−
bT c∑
n=1

χ[0,p)({nα})
∣∣∣ ≤ 1.

We recall from the discrete setting that if p /∈ Zα (mod 1), then the difference∣∣∣ bT c∑
n=1

χ[0,p)({nα})− pbT c
∣∣∣

is unbounded as T →∞ [10], and accordingly so is

|∆T (S, α, 0)| =
∣∣∣T�
0

χS({t}, {αt}) dt− pT
∣∣∣.

Thus, the set S in Figure 1 is not of bounded remainder for the continuous
irrational rotation with slope α starting at the origin. By an equivalent
argument, all sets S′ similar to the examples shown in Figure 2 with p /∈
Zα (mod 1) are not bounded remainder sets.

1

1

S′

S′

p α

Fig. 2. Sets S′ which are not of bounded remainder for the continuous irrational rotation
with slope α (given p /∈ Zα (mod 1))

Secondly, in neither Theorem 1.3 nor 1.4 can we replace “for almost
all α” by “for all irrational α”. This is clarified by the following:

Theorem 1.7.

(i) For uncountably many α > 0 there exist triangles in I2 with no edge
of slope α which are not bounded remainder sets for the continuous
irrational rotation with slope α and an arbitrary starting point.
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(ii) For uncountably many α > 0 there exist discs in I2 which are not
bounded remainder sets for the continuous irrational rotation with
slope α and an arbitrary starting point.

(iii) The triangle with vertices (0, 0), (1, 0) and (0, 1) is a bounded re-
mainder set for every slope α > 0 and every starting point x ∈ I2.

Theorem 1.7(iii) illustrates that for very special polygons S, Theorem
1.3 does actually hold for all irrational α. Other trivial examples of such
special sets are rectangles of the form [0, γ)× [0, 1) (or [0, 1)× [0, γ)), where
0 < γ ≤ 1.

Finally, let us point out that Theorems 1.3 and 1.4, and their proofs,
give information on the behavior of discrepancies of continuous irrational
rotations on the unit square. Let B denote a certain class of measurable

subsets of I2. Then by the discrepancy D
(B)
T of the continuous irrational

rotation with slope α > 0 and starting point x ∈ I2 with respect to B we
mean

D
(B)
T := sup

S∈B
∆T (S, α,x),

with ∆T (S, α,x) defined in (1.1). The most extensively studied case in the
classical theory of irregular distribution is when B is the class of axis-parallel
rectangles. Theorem 1.3 tells us that in this case,

∆T (S, α,x) = O(1)

for all x, almost all α and all S ∈ B. Moreover, by a careful consideration of
the constants involved in the proof of Theorem 1.3, one can verify that the O-
constant will depend only on α, and not on the choice of the rectangle S. As
a consequence, we obtain the following result, previously shown by Drmota
[4] (see also [5]).

Corollary 1.8. The discrepancy D
(B)
T of the continuous irrational ro-

tation with slope α and starting point x with respect to the class B of axis-
parallel rectangles in I2 is

D
(B)
T = O(1) for all x ∈ I2 and almost all α > 0.

As clarified by the example in Figure 1, an analogous result does not hold
if B is the class of all rectangles. It follows that the isotropic discrepancy,
i.e. the discrepancy with respect to the class of all convex sets, cannot be
bounded. However, if we let B be the class D of all discs in I2, then we can
attain a result analogous to Corollary 1.8. Theorem 1.4 tells us that for all
S ∈ D, we have

∆T (S, α,x) = O(1)

for all x and almost all α, and from the proof of Theorem 1.4 it is not
difficult to see that the O-constant can be made independent of the size and
position of the disc S. We thus get:
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Corollary 1.9. The discrepancy D
(D)
T of the continuous irrational rota-

tion with slope α and starting point x with respect to the class D of discs
in I2 is

D
(D)
T = O(1) for all x ∈ I2 and almost all α > 0.

The rest of the paper is organized as follows. In Section 2 we present
necessary preliminary material, and give the proofs of Theorems 1.3 and 1.4.
Section 3 is devoted to the proof of Theorem 1.7.

2. Preliminaries and proofs of Theorems 1.3 and 1.4

2.1. Continued fractions. We begin by briefly reviewing some well-
known facts about continued fractions. For an irrational α ∈ (0, 1), let

[0; a1, a2, a3, . . .]

be its continued fraction expansion, and denote by pn/qn its nth convergent.
The numerators pn and denominators qn are given recursively by

q0 = 1, q1 = a1, qn+1 = an+1qn + qn−1,

p0 = 0, p1 = 1, pn+1 = an+1pn + pn−1.

It follows readily from these recurrences that

(2.1) pnqn+1 − pn+1qn = (−1)n+1.

The nth convergent pn/qn is greater than α for every odd value of n, and
smaller than α for every even value of n. It is easy to see that limn→∞ pn/qn
= α, and moreover we have the error bounds

(2.2)
1

(an+1 + 2)q2n
≤
∣∣∣∣α− pn

qn

∣∣∣∣ ≤ 1

an+1q2n
.

Every non-negative integer N has a unique expansion

N =
s∑

i=0

biqi with bs > 0, 0 ≤ bi ≤ ai+1, 0 ≤ i ≤ s.

We will refer to this as the Ostrowski expansion of N to base α.
Finally, we will need the following result, which follows from well-known

facts in metric theory of continued fractions (see e.g. [11]).

Lemma 2.1. For almost every irrational α ∈ (0, 1) and every m > 0,

s∑
l=0

al+1

q
1/m
l

l+1∑
k=1

ak is uniformly bounded in s.

2.2. Functions of bounded remainder. It is not difficult to show that
the question of whether S ⊂ I2 is a bounded remainder set for a continuous
two-dimensional irrational rotation is essentially a one-dimensional problem.
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By making an appropriate projection, the question can be restated as that
of whether a certain associated function is of bounded remainder.

Definition 2.2. Let f : R → C be a 1-periodic function which is in-
tegrable over [0, 1]. We say that f is a bounded remainder function with
respect to α ∈ R \Q if there is a constant C = C(f, α) such that∣∣∣N−1∑

k=0

f(kα)−N
1�

0

f(x) dx
∣∣∣ ≤ C for all integers N > 0.

Bounded remainder functions have been studied by several authors (see
e.g. [9], or [15] and the references therein).

We will consider two special classes of functions: hat functions and dome
functions.

Definition 2.3. We say that T : R → [0,∞) is a hat function if T is
supported on the interval [0, b], with b > 0, and

(2.3) T (x) =


H

a
x, 0 ≤ x ≤ a,

− H

b− a
(x− b), a < x ≤ b,

for some 0 < a < b and H > 0.

Definition 2.4. We say that a continuous function T : R → [0,∞)
supported on [0, B], withB > 0, is a dome function if it satisfies the following
conditions:

(i) T is concave and twice differentiable on the open interval (0, B).
(ii) There exist ε,m, c > 0 such that

(2.4) |T (x)| ≤ c · x1/m, |T (B − x)| ≤ c · x1/m for all 0 ≤ x < ε.

We will establish and prove the following two results, which will be cru-
cial for the proofs of Theorems 1.3 and 1.4 later on.

Proposition 2.5. Let τ(x) =
∑

m∈Z T (x + m), where T is a hat func-
tion. Then τ is a bounded remainder function for almost every α ∈ R \Q.

Proposition 2.6. Let τ(x) =
∑

m∈Z T (x + m), where T is a dome
function. Then τ is a bounded remainder function for almost every α ∈ R\Q.

Remark 2.7. For sufficiently regular functions, including periodizations
of hat and dome functions, the bounded remainder property is not affected
by shifting the function (see [15, pp. 128–129]). It thus follows from Propo-
sitions 2.5 and 2.6 that for almost every α ∈ R \Q we have∣∣∣N−1∑

k=0

τ(kα+ x0)−N
1�

0

τ(x) dx
∣∣∣ ≤ C
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for all N > 0 and every x0 ∈ R whenever τ is the periodization of a hat or
a dome function. The constant C may depend on τ and α, but not on N
or x0.

Later on we explain how Theorems 1.3 and 1.4 follow from the results
above.

For the proof of Proposition 2.5, we will need the following lemma.

Lemma 2.8. Let f : R→ R be a 1-periodic function, α be irrational and
N be a non-negative integer with Ostrowski expansion

N = bsqs + · · ·+ b0q0

to base α. We then have

(2.5)
N−1∑
k=0

f(kα) =
s∑

l=0

bl−1∑
b=0

ql−1∑
k=0

f

(
k

ql
+
ρk,l
ql

)
for some ρk,l satisfying −1 < ρk,l < 2.

Proof. Let n(0) = 0 and n(l) = bl−1ql−1 + · · ·+ b0q0 for 1 ≤ l ≤ s. It is
straightforward to show that

(2.6)

N−1∑
k=0

f(kα) =

s∑
l=0

bl−1∑
b=0

ql−1∑
k=0

f
(
kα+ (n(l) + bql)α

)
.

We define θl via the equation

θl
al+1q

2
l

= α− pl
ql
,

and observe that by (2.2) we have 1/3 ≤ |θl| ≤ 1. Moreover, we find xl ∈
[0, 1) and ml ∈ {0, 1, . . . , ql − 1}, ml = ml(b, x, α), such that

{(n(l) + bql)α} =
ml

ql
+
xl
ql
.

We can then rewrite the summand on the right hand side in (2.6) as

(2.7) f
(
kα+ (n(l) + bql)α

)
= f

(
kpl +ml

ql
+

kθl
al+1q

2
l

+
xl
ql

)
.

Using the substitution kpl +ml = t (mod ql), which by (2.1) gives

k = (t−ml)ql−1(−1)l−1 (mod ql),

we get

(2.8)

{
kpl +ml

ql
+

kθl
al+1q

2
l

+
xl
ql

}
=

{
t

ql
+
ρt,l
ql

}
,



Sets of bounded remainder 373

where

(2.9) ρt,l :=

{
(t−ml)(−1)l−1

ql−1
ql

}
θl
al+1

+ xl.

With this definition we have

− 1

al+1
< ρt,l <

1

al+1
+ 1,

and hence −1 < ρt,l < 2. Combining (2.6)–(2.8), we thus arrive at (2.5).

Proof of Proposition 2.5. It suffices to handle the case when b ≤ 1 in
Definition 2.3. To see this, observe that any general hat function T can
be written as a sum of shifted hat functions Ti with support [0, b], b ≤ 1.
Since any finite sum of bounded remainder functions is again a bounded
remainder function, the general case follows from the special case τ(x) =∑

m∈Z Ti(x+m).
Our goal is to show that for almost every α ∈ R \ Q, we can find a

constant C = C(α, τ) such that

(2.10)
∣∣∣N−1∑
k=0

τ(kα)−N
1�

0

τ(x) dx
∣∣∣ ≤ C

for every integer N > 0. It will be enough to verify this for α ∈ (0, 1), as
the sum in (2.10) depends only on the fractional part of α. By Lemma 2.8
we may rewrite this sum as

s∑
l=0

bl−1∑
b=0

ql−1∑
k=0

τ

(
k

ql
+
ρk,l
ql

)
,

where N = bsqs + · · ·+ b0q0 is the Ostrowski expansion of N to base α and
−1 < ρk,l < 2. We verify (2.10) in two steps: First we show that

(2.11)

∣∣∣∣ s∑
l=0

bl−1∑
b=0

ql−1∑
k=0

τ

(
k

ql

)
−N

1�

0

τ(x) dx

∣∣∣∣ ≤ C, N = 1, 2, . . . ,

for almost every irrational α ∈ (0, 1). We then show that

(2.12)

∣∣∣∣ s∑
l=0

bl−1∑
b=0

ql−1∑
k=0

(
τ

(
k

ql
+
ρk,l
ql

)
− τ
(
k

ql

))∣∣∣∣ ≤ C, s = 1, 2, . . . ,

for almost every irrational α ∈ (0, 1). Combining (2.11) and (2.12), we im-
mediately obtain (2.10).

Let us verify that (2.11) holds. On the interval I, the function τ is of
the form (2.3) with b ≤ 1, so we can find ul, vl ∈ {0, 1, . . . , ql − 1} and
ξl, ηl ∈ (0, 1] such that

(2.13) a =
ul + ξl
ql

and b =
vl + ηl
ql

.
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For sufficiently large l > l0 (where l0 = l0(τ) depends only on τ), we have
ul < vl, and a straightforward calculation gives

ql−1∑
k=0

τ

(
k

ql

)
=
Hb

2
ql +

Haηl(1− ηl)−Hbξl(1− ξl)
2a(b− a)ql

.

Thus we have ∣∣∣∣ql−1∑
k=0

τ

(
k

ql

)
− ql

1�

0

τ(x) dx

∣∣∣∣ ≤ C 1

ql
,

where C = C(τ) (this is trivially true also when l ≤ l0), and so∣∣∣∣ s∑
l=0

bl−1∑
b=0

ql−1∑
k=0

τ

(
k

ql

)
−N

1�

0

τ(x) dx

∣∣∣∣ ≤ C s∑
l=0

bl
ql
.

Since bl < al+1, it follows from Lemma 2.1 that the right hand side above
is uniformly bounded in s for almost every α ∈ (0, 1). This confirms (2.11).

We go on to verify (2.12). We will assume below that b < 1 in (2.3);
the proof when b = 1 is slightly simpler, but essentially the same. Let Ql =
{0, 1, . . . , ql − 1}, and define ul, vl ∈ Ql as in (2.13). Denote by E a set of
“exceptional” indices

E = {0, ul − 1, ul, ul + 1, vl − 1, vl, vl + 1, ql − 1}

(for sufficiently large l ≥ l0, these are all distinct). We have

(2.14)

ql−1∑
k=0

τ

(
k

ql
+
ρk,l
ql

)
=

∑
k∈Ql\E

τ

(
k

ql
+
ρk,l
ql

)
+
∑
k∈E

τ

(
k

ql
+
ρk,l
ql

)
,

and since τ is everywhere linear (with bounded slope), it is clear that

(2.15)
∑
k∈E

τ

(
k

ql
+
ρk,l
ql

)
=
∑
k∈E

τ

(
k

ql

)
+O

(
1

ql

)
.

The second sum on the right hand side in (2.14) can be rewritten using the
specific form (2.3) of τ on I. We get

(2.16)
∑

k∈Ql\E

τ

(
k

ql
+
ρk,l
ql

)
=

∑
k∈Ql\E

τ

(
k

ql

)
+Σ1,

where

Σ1 :=
1

ql

(
H

a

ul−2∑
k=1

ρk,l −
H

b− a

vl−2∑
k=ul+2

ρk,l

)
,

and ρk,l is defined in (2.9). To verify (2.12), we will need to find an appro-
priate bound on Σ1.
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We now show that Σ1 = O(
∑l

i=1 ai/ql). By defining αl and γl as

(2.17) αl := (−1)l−1
ql−1
ql

, γl := −ml(−1)l−1
ql−1
ql

,

we can rewrite ρk,l of (2.9) as

ρk,l = ωk,l
θl
al+1

+ xl,

where ωk,l := {kαl + γl}. Using (2.13) and the fact that xl ∈ [0, 1), it is an
easy task to show that

H

a

ul−2∑
k=1

xl −
H

b− a

vl−2∑
k=ul+2

xl = O(1).

We thus have

Σ1 =
θl

qlal+1

(
H

a

ul−2∑
k=1

ωk,l −
H

b− a

vl−2∑
k=ul+2

ωk,l

)
+O

(
1

ql

)
(2.18)

=
Hθl
qlal+1

(
1

a

ul−1∑
k=0

ωk,l −
1

b− a

vl−1∑
k=ul

ωk,l

)
+O

(
1

ql

)
,

where the last equality follows from the boundedness of the terms ωk,l.

To further approximate Σ1, we employ Koksma’s inequality for the se-

quence {ωk,l}ql−1k=0 and the linear function f(x) = {x} (see [12, Theorem 5.1]).
For 1 ≤ N ≤ ql, we have∣∣∣N−1∑

k=0

ωk,l −N
1�

0

x dx
∣∣∣ =

∣∣∣∣N−1∑
k=0

ωk,l −
N

2

∣∣∣∣ ≤ ND∗N (ωk,l)VI(f),

where VI(f) = 1 is the total variation of f over I, and D∗N (ωk,l) denotes the

star-discrepancy of the point set {ωk,l}N−1k=0 . The extreme discrepancy DN of

{ωk,l}N−1k=0 equals that of {kαl}N−1k=0 . Note that |αl| = ql−1/ql has continued
fraction expansion

|αl| = [0; al, al−1, . . . , a1].

It follows that

(2.19) ND∗N (ωk,l) ≤ NDN (ωk,l) = NDN (kαl) ≤ 1 + 2

l∑
i=1

ai

for 1 ≤ N ≤ ql (see [12, p. 126] for the last inequality). Hence, we have∣∣∣∣N−1∑
k=0

ωk,l −
N

2

∣∣∣∣ ≤ 1 + 2
l∑

i=1

ai,
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and from this and (2.18) it follows that

Σ1 =
Hθl
qlal+1

((
1

a
+

1

b− a

) ul−1∑
k=0

ωk,l −
1

b− a

vl−1∑
k=0

ωk,l

)
+O

(
1

ql

)

=
Hθl
qlal+1

(
b

a(b− a)
· ul

2
− 1

b− a
· vl

2

)
+O

(∑l
i=1 ai
ql

)
=

Hθl
2qlal+1

(
b

a(b− a)
(qla− ξl)−

1

b− a
(qlb− ηl)

)
+O

(∑l
i=1 ai
ql

)
= O

(∑l
i=1 ai
ql

)
.

Let us finally see that this bound on Σ1 implies (2.12). Inserting (2.15)
and (2.16) in (2.14), we get∣∣∣∣ql−1∑

k=0

τ

(
k

ql
+
ρk,l
ql

)
−

ql−1∑
k=0

τ

(
k

ql

)∣∣∣∣ ≤ C

ql

l∑
i=1

ai

for l ≥ l0 = l0(τ) and some constant C which depends only on τ and α (this
bound holds trivially also when l < l0). We thus have∣∣∣∣ s∑

l=0

bl−1∑
b=0

ql−1∑
k=0

(
τ

(
k

ql
+
ρk,l
ql

)
− τ
(
k

ql

))∣∣∣∣ ≤ C ′a1 + C
s∑

l=1

bl
ql

l∑
i=1

ai

≤ C
s∑

l=0

al+1

ql

l+1∑
i=1

ai.

By Lemma 2.1, the sum on the right hand side above is bounded uniformly
in s for almost every irrational α ∈ (0, 1). This verifies (2.12), and completes
the proof of Proposition 2.5.

Before we embark on the proof of Proposition 2.6, we establish the fol-
lowing preliminary result.

Lemma 2.9. Suppose f : R→ R is a dome function as in Definition 2.4,
and let q > 2/B. Denote by f ′q the function

(2.20) f ′q(x) =

{
f ′(x) if 1/q ≤ x ≤ B − 1/q,

0 otherwise.

Then for q > 1/ε, with ε as in (2.4), the total variation VI(f ′q) of f ′q over I
satisfies

VI(f ′q) ≤ Cq1−1/m,

where C = C(c) with c as in (2.4).
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Proof. The function f is concave and twice differentiable on (0, B), so
f ′ is non-increasing and

VI(f ′q) = 2

(
f ′
(

1

q

)
− f ′

(
B − 1

q

))
.

Moreover, we have

f ′
(

1

q

)
≤ f(1/q)− f(0)

1/q
= qf

(
1

q

)
,

and likewise

f ′
(
B − 1

q

)
≥ −qf

(
B − 1

q

)
.

By the conditions (2.4) on f it thus follows that

VI(f ′q) ≤ 4cq1−1/m for all q > 1/ε.

Proof of Proposition 2.6. It suffices to handle the case when B ≤ 1 in
Definition 2.4. To see this, observe that any general dome function T can be
written as a sum of shifted hat functions, and shifted dome functions with
support in I. For 1 < B ≤ 2 this is illustrated in Figure 3; we may write

T = T1 + T2 + T3,

where T1 is the hat function in (2.3) with a = 1, b = B and H = T (1), and T2
and T3 are the dome functions T2 = χ[0,1] ·(T −T1) and T3 = χ[1,B] ·(T −T1).
As the sum of finitely many bounded remainder functions is again a bounded
remainder function, the general case follows from the special case T = T3 and
Proposition 2.5. In other words, it is sufficient to consider the case when,
restricted to the unit interval, τ is simply a dome function with support
[0, B], B ≤ 1.

1 2

T
T1

T2 T3

Fig. 3. The dome function T decomposed as the sum of a hat function T1, and two dome
functions T2 and T3 supported on intervals of length at most one
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Let τ be such a function. We want to show that for almost every α ∈
R \Q, we can find a constant C = C(c,m, α) such that

(2.21)
∣∣∣N−1∑
k=0

τ(kα)−N
1�

0

τ(x) dx
∣∣∣ ≤ C

for every integer N > 0. Again, it will be enough to verify this for α ∈ (0, 1),
as the sum in (2.21) depends only on the fractional part of α. By Lemma
2.8, we may rewrite this sum as

s∑
l=0

bl−1∑
b=0

ql−1∑
k=0

τ

(
k

ql
+
ρk,l
ql

)
,

where N = bsqs + · · ·+ b0q0 is the Ostrowski expansion of N to base α and
−1 < ρk,l < 2. We verify (2.21) in two steps: First we prove that

(2.22)

∣∣∣∣ s∑
l=0

bl−1∑
b=0

ql−1∑
k=0

τ

(
k

ql

)
−N

1�

0

τ(x) dx

∣∣∣∣ ≤ C, N = 1, 2, . . . ,

for almost every irrational α ∈ (0, 1). Then we show that

(2.23)

∣∣∣∣ s∑
l=0

bl−1∑
b=0

ql−1∑
k=0

(
τ

(
k

ql
+
ρk,l
ql

)
− τ
(
k

ql

))∣∣∣∣ ≤ C, s = 1, 2, . . . ,

for almost every irrational α ∈ (0, 1). Combining (2.22) and (2.23), we im-
mediately obtain (2.21).

Let us see that (2.22) holds. On I, the function τ is supported on [0, B]
with 0 < B ≤ 1, so we can find ul ∈ {0, 1, . . . , ql − 1} and ξl ∈ (0, 1] such
that

(2.24) B =
ul + ξl
ql

.

Consider the inner sum

ql−1∑
k=0

τ

(
k

ql

)
=

ul−1∑
k=1

τ

(
k

ql

)
+ τ

(
ul
ql

)
.

It is not difficult to show, for instance using integration by parts, that

ul−1∑
k=1

τ

(
k

ql

)
= ql

(ul−1)/ql�

1/ql

τ(x) dx+
1

2

(
τ

(
1

ql

)
+ τ

(
ul − 1

ql

))

+

(ul−1)/ql�

1/ql

(
{qlx} −

1

2

)
τ ′(x) dx,
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and hence
ql−1∑
k=0

τ

(
k

ql

)
− ql

1�

0

τ(x) dx = τ

(
ul
ql

)
+

1

2

(
τ

(
1

ql

)
+ τ

(
ul − 1

ql

))

− ql
(1/ql�

0

τ(x) dx+

B�

(ul−1)/ql

τ(x) dx
)

+

(ul−1)/ql�

1/ql

(
{qlx} −

1

2

)
τ ′(x) dx.

Now let l > l0 = l0(τ) be sufficiently large for ql > 2/ε. It is then clear from
the conditions (2.4) on τ that all but the last term on the right hand side

above are bounded by Cq
−1/m
l in absolute value (where C = C(c,m)). In

fact, the same bound also holds for the last term, as∣∣∣∣(ul−1)/ql�

1/ql

(
{qlx} −

1

2

)
τ ′(x) dx

∣∣∣∣
≤

ul−2∑
i=1

∣∣∣∣(i+1)/ql�

i/ql

(
{qlx} −

1

2

)
τ ′(x) dx

∣∣∣∣
≤

ul−2∑
i=1

∣∣∣ max
x∈[i/ql,(i+1)/ql]

τ ′(x)− min
x∈[i/ql,(i+1)/ql]

τ ′(x)
∣∣∣ (i+1)/ql�

(2i+1)/2ql

(
{qlx} −

1

2

)
dx

≤ 1

8ql
VI(τ ′ql),

with τ ′ql defined as in (2.20). Since ql > 2/ε, it follows from Lemma 2.9 that

1

8ql
VI(τ ′ql) ≤ Cq

−1/m
l ,

where C = C(c), and hence∣∣∣∣ql−1∑
k=0

τ

(
k

ql

)
− ql

1�

0

τ(x) dx

∣∣∣∣ ≤ Cq−1/ml

for some constant C(c,m) and l > l0 (and this bound holds trivially also
when l ≤ l0). It follows that∣∣∣∣ s∑

l=0

bl−1∑
b=0

ql−1∑
k=0

τ

(
k

ql

)
−N

1�

0

τ(x) dx

∣∣∣∣ ≤ C s∑
l=0

bl

q
1/m
l

,

and by Lemma 2.1 the last sum is uniformly bounded in s for almost every
irrational α ∈ (0, 1). This confirms (2.22).
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We now show that (2.23) holds. We assume below that B < 1; the proof
when B = 1 is slightly simpler, but essentially the same. Again we begin by
treating the inner sum

(2.25)

ql−1∑
k=0

(
τ

(
k

ql
+
ρk,l
ql

)
− τ
(
k

ql

))
,

which we will show is bounded in absolute value by

(2.26)
l∑

i=1

ai(C1q
−1
l + C2q

−1/m
l )

for constants C1 = C1(m, c, α) and C2 = C2(m, c, α).
Let ul be defined as in (2.24), and denote by E a set of “exceptional”

indices
E = {0, 1, ul − 2, ul − 1, ul, ul + 1, ql − 1}

(for sufficiently large l, these are all distinct). We split the sum (2.25) into

Σ1 :=
∑
k∈E

(
τ

(
k

ql
+
ρk,l
ql

)
− τ
(
k

ql

))
,

Σ2 :=

ul−3∑
k=2

(
τ

(
k

ql
+
ρk,l
ql

)
− τ
(
k

ql

))
.

Now let l > l1 be sufficiently large for ql > 4/ε. Since −1 < ρk,l < 2, it
follows from the conditions (2.4) on τ that

(2.27) |Σ1| ≤ Cq−1/ml ,

where C = C(c). To find a bound on Σ2, we first rewrite the sum using the
mean value theorem. We have

Σ2 =

ul−3∑
k=2

τ ′(rk)
ρk,l
ql
,

where rk ∈ (k/ql, (k + ρk,l)/ql) if ρk,l > 0 and rk ∈ ((k + ρk,l)/ql, k/ql) if
ρk,l < 0. It follows that∣∣∣∣Σ2 −

ul−3∑
k=2

τ ′
(
k

ql

)
ρk,l
ql

∣∣∣∣ =

∣∣∣∣ul−3∑
k=2

(
τ ′(rk)− τ ′

(
k

ql

))
ρk,l
ql

∣∣∣∣(2.28)

≤ 2

ql

ul−3∑
k=2

max
x,y∈[(k−1)/ql,(k+2)/ql]

|τ ′(x)− τ ′(y)|

≤ 6

ql
VI(τ ′ql) ≤ Cq

−1/m
l ,

where C = C(c), and for the latter inequality we have used Lemma 2.9.
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Finally, we need to find a bound on

ul−3∑
k=2

τ ′
(
k

ql

)
ρk,l
ql
.

Recall from the proof of Proposition 2.5 that we may write ρk,l as

ρk,l = ωk,l
θl
al+1

+ xl,

where ωk,l = {kαl + γl}, and αl and γl are given in (2.17). Let us define the

two-dimensional sequence ω := (ω1(k), ω2(k))ql−1k=0 , where

ω1(k) = k/ql, ω2(k) = ωk,l.

Moreover, let G : I2 → R be given by

G(x, y) := χ[2/ql,(ul−3)/ql](x)τ ′(x) · h(y),

where h : I → R is the linear function

h(y) :=
θl
al+1

y + xl.

We then have

(2.29)

ul−3∑
k=2

τ ′
(
k

ql

)
ρk,l
ql

=
1

ql

ql−1∑
k=0

G(ω1(k), ω2(k)).

The two-dimensional Koksma–Hlawka inequality [12, pp. 151, 100] yields

(2.30)

∣∣∣∣ 1

ql

ql−1∑
k=0

G(w1(k), w2(k))−
1�

0

1�

0

G(x, y) dx dy

∣∣∣∣
≤ D∗ql(ω1)VI(χ[2/ql,(ul−3)/ql]τ

′) +D∗ql(ω2)VI(h) +D∗ql(ω)VI2(G)

≤ D∗ql(ω)(VI(χ[2/ql,(ul−3)/ql]τ
′) + VI(h) + VI2(G)).

We now use this inequality to find a bound on the sum (2.29). It is not
difficult (see e.g. [12, p. 106]) to show that

(2.31) qlD
∗
ql

(ω) ≤ 2qlD
∗
ql

(ω2) ≤ 2
(

1 + 2

l∑
i=1

ai

)
,

where for the second inequality we have used (2.19). Moreover, we have

(2.32) VI(h) =
|θl|
al+1

≤ 1,

and using monotonicity of τ ′ and Lemma 2.9 we get

(2.33) VI(χ[2/ql,(ul−3)/ql]τ
′) ≤ VI(τ ′ql) ≤ Cq

1−1/m
l ,
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where C = C(c) with c as in (2.4). It follows that

(2.34) VI2(G) ≤ VI(χ[2/ql,(ul−3)/ql]τ
′) · VI(h) ≤ Cq1−1/ml .

Lastly, we have∣∣∣1�
0

1�

0

G(x, y) dx dy
∣∣∣ =

∣∣∣∣(τ(ul − 3

ql

)
− τ
(

2

ql

))(
θl

2al+1
+ xl

)∣∣∣∣,
which by (2.4) is bounded by Cq

−1/m
l , C = C(c,m), when l > l1. Inserting

(2.31)–(2.34) and this integral estimate in (2.30), we get∣∣∣∣ 1

ql

ql−1∑
k=0

G(ω1(k), ω2(k))

∣∣∣∣ ≤ Cq−1/ml +
2

ql

(
1 + 2

l∑
i=1

ai

)
(1 + 2Cq

1−1/m
l )

≤
l∑

i=1

ai(C1q
−1
l + C2q

−1/m
l ),

where the constants C1 and C2 depend only on c and m in (2.4).
It thus follows from (2.29) and (2.28) that |Σ2| satisfies the bound (2.26)

for l > l1. The same is true for |Σ1| by (2.27), and hence Σ1 +Σ2 in (2.25)
obeys the bound (2.26) as well. We get∣∣∣∣ s∑

l=0

bl−1∑
b=0

ql−1∑
k=0

(
τ

(
k

ql
+
ρk,l
ql

)
− τ
(
k

ql

))∣∣∣∣
≤ C ′a1 + C1

s∑
l=1

bl
ql

l∑
i=1

ai + C2

s∑
l=1

bl

q
1/m
l

l∑
i=1

ai

≤ C1

s∑
l=0

al+1

ql

l+1∑
i=1

ai + C2

s∑
l=0

al+1

q
1/m
l

l+1∑
i=1

ai,

and Lemma 2.1 implies that the latter expression is bounded uniformly in s
for almost every irrational α ∈ (0, 1). This verifies (2.23), and completes the
proof of Proposition 2.6.

2.3. Proof of Theorems 1.3 and 1.4. We will begin by proving a
lemma showing that the question of whether S ⊂ I2 is a bounded remainder
set can be restated as a question of whether an associated function is of
bounded remainder.

Let S ⊂ I2 be either a polygon or a set satisfying the conditions in
Theorem 1.4. We can then associate to S a function τS : [0, 1) → [0,∞)
defined as

(2.35) τS(x) :=

1�

0

χS(t, {tα+ x}) dt.
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1

1

S

y

τS(y)

α

Fig. 4. Geometric interpretation of the function τS associated to the set S

A geometric interpretation of τS is illustrated in Figure 4. It is easy to show
that

1�

0

τS(x) dx = λ(S).

Moreover, we have the following:

Lemma 2.10. The set S ⊂ I2 is a bounded remainder set for the irra-
tional rotation with slope α > 0 and starting point x = (x1, x2) ∈ I2 if and
only if τS is a bounded remainder function with respect to α.

Proof. By Remark 2.7, it will be sufficient to show that S ⊂ I2 is a
bounded remainder set if and only if τS(x + x0) is a bounded remainder
function for some shift x0 ∈ I. We will verify this for x0 = {x2 − x1α}.

Recall from Definition 1.2 that S is a bounded remainder set if the
difference

∆T (S, α,x) =

T�

0

χS({x1 + t}, {x2 + tα}) dt− Tλ(S)

is uniformly bounded in T . For a given T > 0 we let N = bT c and

SN (α, x0) =
N−1∑
k=0

τS({kα+ x0})−Nλ(S).

Definition 2.2 says that the function τS(x + x0) is of bounded remainder
if SN (α, x0) is bounded uniformly in N . Thus, to prove Lemma 2.10 it is
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sufficient to show that

(2.36) |SN (α, x0)−∆T (S, α,x)| ≤ C,

where C is a constant independent of T (or equivalently, of N).

To verify (2.36), we observe that

SN (α, x0) =

N−1∑
k=0

1�

0

χS(t, {(t+ k)α+ x0}) dt−Nλ(S)

=

N�

0

χS({t}, {tα+ x0}) dt−Nλ(S)

=

bT c−x1�

−x1

χS({x1 + t}, {x2 + tα}) dt− bT cλ(S).

It is now easy to see that the difference in (2.36) must be bounded by∣∣∣ 0�

−x1

χS({x1 + t}, {x2 + tα}) dt
∣∣∣

+
∣∣∣ T�

bT c−x1

χS({x1 + t}, {x2 + tα}) dt
∣∣∣+ {T}λ(S) ≤ 4,

thus verifying (2.36) and completing the proof of Lemma 2.10.

Proof of Theorem 1.3. It will be sufficient to consider the special case
when S is a triangle. This is easy to see when S is a convex polygon; S can
then be partitioned into finitely many triangles which are disjoint (up to
boundaries), and which all have the property that no edge has slope α.
Finally, since any union of finitely many disjoint bounded remainder sets is
again a bounded remainder set for the irrational rotation with slope α, the
result follows. A similar, but slightly more involved argument can be given
to show that also the case when S is non-convex follows from the triangle
case. We thus aim to prove that for almost all α > 0 and every x ∈ I2,
every triangle S with no edge of slope α is a bounded remainder set for the
continuous irrational rotation with slope α and starting point x.

Fix some α, and let S be a triangle with no edge of slope α. Denote
by l(y) the intersection of S and the straight line with slope α through the
point (0, y), and let TS : R→ [0,∞) be the function

TS(y) =
|l(y)|√
1 + α2

.

Then TS is a (possibly shifted) hat function as defined in (2.3), and τS in
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(2.35) is given by

τS(x) =
∑
m∈Z

TS(x+m).

Let x ∈ I2 be any given starting point for the irrational rotation. By
Lemma 2.10, the triangle S is a bounded remainder set if and only if τS
is a bounded remainder function with respect to α. By Proposition 2.5,
this is indeed the case for every irrational α > 0 whose continued fraction
expansion satisfies

(2.37)

s∑
l=0

al+1

q
1/2
l

l+1∑
k=1

ak ≤ C

for some constant C independent of s, i.e. a set of full measure. This com-
pletes the proof of Theorem 1.3.

We conclude this section with the proof of Theorem 1.4. Recall that this
result says that for every x ∈ I2 and almost all α > 0, every convex set
S whose boundary is a twice differentiable curve with positive curvature at
every point is a bounded remainder set for the continuous irrational rotation
with slope α and starting point x.

Proof of Theorem 1.4. We have seen in Lemma 2.10 that the set S is
of bounded remainder for the irrational rotation with slope α and starting
point x ∈ I2 if and only if the associated function τS in (2.35) is of bounded
remainder with respect to α. Suppose that τS is of the form

(2.38) τS(x) =
∑
m∈Z

TS(x+m),

where TS is the shift of a dome function as given in Definition 2.4. Then
this property would be an immediate consequence of Proposition 2.6 and
Remark 2.7 for every x ∈ I2 and every irrational α > 0 satisfying (2.37).
Our proof is thus complete if we can show that τS is of the form (2.38) for
some shifted dome function TS .

As in the proof of Theorem 1.3, we let l(y) be the intersection of the set S
and the straight line with slope α through (0, y), and we let TS : R→ [0,∞)
be the function

TS(y) =
|l(y)|√
1 + α2

.

Then τS is as in (2.38). It is clear that TS is a continuous function supported
on some interval [B1, B2], and that an appropriate shift of TS satisfies con-
dition (i) in Definition 2.4. We will show that also condition (ii) is satisfied
for this shift of TS ; that is, we can find c,m, ε > 0 such that

TS(B1 + x) ≤ cx1/m and TS(B2 − x) ≤ cx1/m



386 S. Grepstad and G. Larcher

p

B2

x

y

C

Fig. 5. The curve C and the new coordinate axes x and y

whenever 0 ≤ x < ε. We only verify the latter inequality (the argument for
the former is analogous).

Let C = (C1(s), C2(s)) denote the boundary of S parametrized by arc
length, and denote by L its total length. We then have |C ′(s)| = 1 and
C ′(s) ⊥ C ′′(s) for all s ∈ [0, L]. The curvature κ(s) at the point C(s) is
given by κ(s) = |C ′′(s)|, and assumed positive for all s ∈ [0, L]. We let

(2.39) k := min
s∈[0,L]

κ(s).

The line with slope α through the point (0, B2) in the plane will intersect
the curve C at a single point p. We let this line be the x-axis in a new
coordinate system (x, y) where p is the origin (see Figure 5), and view C
as a curve in these coordinates with C(0) = (C1(0), C2(0)) = (0, 0). We
may then think of a section of C around p as the graph of the function
H : (−δ, δ)→ [0,∞) given by

H(x) = C2(C
−1
1 (x)).

We have C ′2(0) = 0 and C ′1(0) = 1, and since C1 and C2 are both twice
continuously differentiable it follows that

H ′(x) =
C ′2(C

−1
1 (x))

C ′1(C
−1
1 (x))

and

H ′′(x) =
C ′′2 (s)C ′1(s)− C ′2(s)C ′′1 (s)

(C ′1(s))
3

, s = C−11 (x),

are both well-defined and continuous on some interval (−δ, δ). By choosing
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p

B2

B2 − z

l

y

Fig. 6. The intersection l of S and the line of slope α through (0, B2 − z)

δ sufficiently small we can ensure that

|C ′1(C−11 (x))| ≥ 1/2, x ∈ (−δ, δ),
which (for s = C−11 (x) and recalling that C ′(s) ⊥ C ′′(s)) in turn implies

(2.40) |H ′′(x)| = |C
′′(s)| · |C ′(s)|
|C ′1(s)|3

≥ k

8
, x ∈ (−δ, δ),

with k given in (2.39).
We now use this lower bound on |H ′′(x)| to find an upper bound on

TS(B2 − z) for sufficiently small z > 0. We have

(2.41) TS(B2 − z) =
|l|√

1 + α2
,

where l is the intersection of S with the line of slope α through (0, B2 − z),
illustrated in Figure 6. The line segment l is at height y = z/

√
1 + α2 above p

(see Figure 6). If y < min{H(δ), H(−δ)}, then we denote by x1, x2 the two
values of x ∈ (−δ, δ) satisfying H(x) = y, and

(2.42) |l| ≤ 2 max{|x1|, |x2|}.
By Taylor’s theorem we have

y = H(xi) = H(0) +
H ′(0)

1!
xi +

H ′′(ri)

2!
x2i =

H ′′(ri)

2!
x2i

for i = 1, 2 and some ri ∈ (−δ, δ), and from (2.40) it thus follows that

|xi| =
(

2y

H ′′(ri)

)1/2

≤ 4√
k
· y1/2, i = 1, 2.

Hence, from (2.42) we get

(2.43) |l| ≤ 8√
k
· y1/2 ≤ 8√

k
· z1/2,
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and by (2.41) and (2.43) we have

TS(B2 − z) ≤
8√

k(1 + α2)
· z1/2.

This verifies that a shift of the function TS satisfies the growth condition
(ii) in Definition 2.4 with c = 8/

√
k(1 + α2), m = 2 and some ε > 0 (for

instance, ε = min{H(δ), H(−δ)} will suffice). The function τS is thus of the
form (2.38), where TS is the shift of a dome function, and this completes
the proof of Theorem 1.4.

3. Proof of Theorem 1.7. For the proof of (i) we just give an out-
line, as this proof largely follows the proof given above for Proposition 2.5.
Part (ii), on the other hand, is proven in full detail. Lastly, we present the
proof of (iii).

Proof of Theorem 1.7(i). Fix an irrational α > 0 with continued fraction
expansion α = [0; a1, a2, . . . ] satisfying a1 = 1 and al+1 ≥ q7l . One can show
that there are uncountably many such irrationals.

Let S be the triangle with vertices (0, 0), (0, 1) and (K, 1) for some
0 < K < 1 to be determined. We will assume that 1 −Kα > 0. Denote by
τS the function in (2.35) associated to S; this is a hat function as defined
in (2.3), with a = 1 − Kα and b = 1. By Lemma 2.10, the triangle S is
a bounded remainder set for the continuous irrational rotation with slope
α and some arbitrary starting point x ∈ I2 if and only if τS is a bounded
remainder function with respect to α. In what follows, we show that the
latter is not the case, and so S is not a bounded remainder set.

For N =
∑s

l=0 blql, one can show by calculations analogous to those in
the proof of Proposition 2.5 that

(3.1)

∣∣∣∣N−1∑
k=0

τS({kα})− NK

2

∣∣∣∣ = C

s∑
l=0

ξl(1− ξl)
bl
ql

+O(1),

where C depends only on K and α, and ξl = {qla} = {ql(1 − Kα)}. For
x ∈ R, let ‖x‖ denote the minimal distance from x to an integer, and note
that

ξl(1− ξl) ≥ 1
2‖qla‖.

It is a well-known fact (see e.g. [11, p. 69]) that for almost all a ∈ (0, 1) one
can find a positive constant c such that

‖n · a‖ ≥ c/n2

for all n ≥ 2. Thus, one can indeed find K ∈ (0, 1) such that a = 1−Kα > 0,
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and moreover

C
s∑

l=0

ξl(1− ξl)
bl
ql
≥ C

s∑
l=0

‖qla‖
bl
ql
> C

s∑
l=0

bl
q3l
.

Now let bl := q4l . Then the sum on the right hand side of (3.1) is bounded
from below by C

∑s
l=0 ql, which tends to infinity as s→∞. For the sequence

of integers Ns =
∑s

l=0 q
5
l , we thus have∣∣∣Ns−1∑
k=0

τS({kα})−Nsλ(S)
∣∣∣→∞

as s → ∞. This shows that τS is not a bounded remainder function with
respect to α, and completes the proof of Theorem 1.7(i).

Proof of Theorem 1.7(ii). Fix an irrational α ∈ (1/4, 1/2) with continued
fraction expansion α = [0; a1, a2, . . .] satisfying al+1 > q100l and pl even for
an infinite number of odd indices l, say for the sequence l1 < l2 < · · · . One
can show that there are uncountably many such irrationals.

Let S be the disc with diameter d := α/
√

1 + α2 illustrated in Fig-
ure 7. By Lemma 2.10, the set S is of bounded remainder for the continuous
irrational rotation with slope α and arbitrary starting point x ∈ I2 if and
only if the associated function τS in (2.35) is a bounded remainder function
with respect to α. In what follows, we will show that there exists an x ∈ I
and a sequence of integers N1 < N2 < · · · such that∣∣∣Ni−1∑

k=0

τS({kα+ x})−Niλ(S)
∣∣∣→∞

1

1

S

α α

Fig. 7. The disc S with diameter d = α/
√

1 + α2
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as i → ∞. By Remark 2.7, this proves that τS is not a bounded remainder
function, and so S is not a bounded remainder set.

The function τS associated to S is given explicitly by

τS(y) =

{ α

1 + α2

√
1− (1− 2y/α)2, 0 ≤ y ≤ α,

0, α < y ≤ 1,

and we note that

(3.2) λ(S) =

1�

0

τS(y) dy =
π

4
· α2

1 + α2
.

We set

SN (x) :=
N−1∑
k=0

τS({kα+ x}).

Let us now fix some i (and thereby an odd index li), set

p := pli = 2m (m ∈ N), q := qli ,

and evaluate SN (x) for N := q11 and some x ∈ [0, 1/q]. We then have

(3.3) SN (x) =

q10−1∑
j=0

q−1∑
k=0

τS({(jq + k)α+ x}).

Recall from (2.2) that ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2ali+1
≤ 1

q102
.

Using this fact, we get

‖jqα‖ < j‖qα‖ ≤ j

q101
<

1

q91
.

It follows that∥∥∥∥{(jq + k)α+ x} −
{
k · p

q
+ x

}∥∥∥∥ ≤ ‖jqα‖+ k

∥∥∥∥α− p

q

∥∥∥∥
<

1

q91
+

q

q102
<

1

q90
,

and hence∣∣∣∣τS({(jq + k)α+ x})− τS
({

k · p
q

+ x

})∣∣∣∣ ≤ ∣∣∣∣τS( 1

q90

)∣∣∣∣ < 1

q44
.

Combining this bound with (3.3), we get

(3.4)

∣∣∣∣SN (x)− q10
q−1∑
k=0

τS

({
k · p

q
+ x

})∣∣∣∣ < q11 · 1

q44
=

1

q33
.
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In light of (3.4), we introduce the function

σ(y) :=

{ α

1 + α2

√
1− (1− 2qy/p)2, 0 ≤ y ≤ p/q,

0, p/q < y ≤ 1.

Since the index li is odd, we have α < p/q and σ(y) = τS(αqy/p) for all
y ∈ [0, 1). From ∣∣∣∣αqp − 1

∣∣∣∣ =
q

p

∣∣∣∣α− p

q

∣∣∣∣ < 1

α
· 1

q102
<

1

q101

it thus follows that

|σ(y)− τS(y)| =
∣∣∣∣τS(αpq y

)
− τS(y)

∣∣∣∣ < ∣∣∣∣τS( 1

q101

)∣∣∣∣ < 1

q50
.

Combining this bound with (3.4), we get

(3.5)

∣∣∣∣SN (x)− q10
q−1∑
k=0

σ

({
k · p

q
+ x

})∣∣∣∣ < 1

q33
+
q11

q50
<

1

q32
.

Note that some of the above estimates hold only for q greater than some
lower threshold q > q0.

Let us now have a closer look at the sum of σ in (3.5). We have

q−1∑
k=0

σ

({
k · p

q
+ x

})
=

p−1∑
k=0

σ

(
k

q
+ x

)
(3.6)

=
α

1 + α2

p−1∑
k=0

√
1−

(
1− 2k

p
− 2q

p
x

)2

=
α

1 + α2

2m−1∑
k=0

√
1−

(
1− k

m
− q

m
x

)2

=
α

1 + α2
· 2mGm

(
q

m
x

)
,

where

Gm(x) :=
1

2m

2m−1∑
k=0

√
1−

(
1− k

m
− x
)2

, x ∈ [0, 1/m).

The function Gm is illustrated in Figure 8. It is clear that Gm(x) =
Gm(1/m− x), and by elementary analysis one can show that Gm increases
on [0, 1/(2m)) in such a way that

Gm

(
1

3m

)
> Gm

(
1

6m

)
+

2c

m3/2
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x

Gm(x)

1/(2m) 1/m

Fig. 8. The function Gm(x)

for some c > 0. From this one can deduce that there exists a subinterval
Λ ⊂ [0, 1/(2m)] of length at least 1/(6m) such that either

(3.7) Gm(x) >
1

2

2�

0

√
1− (1− y)2 dy +

c

m3/2
=
π

4
+

c

m3/2

for all x ∈ Λ, or

(3.8) Gm(x) <
1

2

2�

0

√
1− (1− y)2 dy − c

m3/2
=
π

4
− c

m3/2

for all x ∈ Λ. We assume in what follows that (3.7) holds for all x ∈ Λ (the
case when (3.8) holds is treated similarly). Then for x̃ ∈ Λ̃, where

Λ̃ := (m/q)Λ ⊂ [0, 1/(2q)),

we have qx̃/m ∈ Λ, and from (3.6) and (3.7) we deduce that

(3.9)

q−1∑
k=0

σ

({
k · p

q
+ x̃

})
>

α

1 + α2
· 2m

(
π

4
+

c

m3/2

)
.

In the following we let c1, c2, . . . denote positive absolute constants. From
(3.9) and (3.5) we get

SN (x̃) > q10
q−1∑
k=0

σ

({
k · p

q
+ x̃

})
− 1

q32

> q10 · 2m · α

1 + α2

(
π

4
+

c

m3/2

)
− 1

q32
> N · p

q
· πα

4(1 + α2)
+ c1q

9

> N · πα2

4(1 + α2)
+ c1q

9 = Nλ(S) + c1q
9,

where we recall from (3.2) that λ(S) is the integral of τS and the measure
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of the disc S in Figure 7. Thus, we have shown that

(3.10) SN (x̃)−Nλ(S) > c1q
9, x̃ ∈ Λ̃.

Finally, we define the set Λ̄ ⊂ I by

Λ̃(j) := Λ̃+ j/q, Λ̄ :=

q−1⋃
j=0

Λ̃(j).

Since λ(Λ̃) ≥ 1/(6q), we have λ(Λ̄) ≥ 1/6. Choose some x ∈ Λ̄, and find
j ∈ {0, 1, . . . , q − 1} such that

x = x̃+ j/q, x̃ ∈ Λ̃.
Furthermore, choose kj ∈ {0, 1, . . . , q − 1} such that kjp ≡ q − j (mod q),
and note that∥∥∥∥kjα+

j

q

∥∥∥∥ =

∥∥∥∥kjα− kjp

q

∥∥∥∥ ≤ kj∥∥∥∥α− p

q

∥∥∥∥ < 1

q101
.

From this and the fact that |τS | ≤ 1, it follows that

SN (x) >

kj∑
k=0

τS({kα+ x}) +

N−1∑
k=0

τS({kα+ kjα+ x})− q

>
N−1∑
k=0

τS

({
kα+ x− j

q

})
− c2q =

N−1∑
k=0

τS({kα+ x̃})− c2q

= SN (x̃)− c2q,
and from (3.10) we thus get

(3.11) SN (x)−Nλ(S) > c3q
9

for all x ∈ Λ̄.
The above analysis can be carried out for each li (given that qli is above

the threshold, qli > q0). That is, for each i, we find Λ̄i ⊂ I of measure
λ(Λ̄i) ≥ 1/6 such that (3.11) holds for all x ∈ Λ̄i with q = qli and N = q11.
Now fix x ∈ I such that x ∈ Λ̄i for infinitely many i, and for each such i let
qi = qli and Ni = q11i . Then for these Ni, we have

|SNi(x)−Niλ(S)| =
∣∣∣Ni−1∑
k=0

τS({kα+ x})−Niλ(S)
∣∣∣→∞

as i → ∞. This verifies that τS is not a bounded remainder function with
respect to α, and completes the proof of Theorem 1.7(ii).

Proof of Theorem 1.7(iii). Let S be the triangle with vertices (0, 0), (0, 1)
and (1, 0). Fix some slope α > 0 and starting point x ∈ I2. For simplicity
we assume that α < 1 (the proof is similar when α ≥ 1). By Lemma 2.10,
the set S is of bounded remainder for the continuous irrational rotation
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with slope α and starting point x if and only if the associated function τS in
(2.35) is of bounded remainder with respect to α. For the specific triangle S,
we have

(3.12) τS(x) =


1− x
1 + α

, 0 ≤ x ≤ 1− α,

1− x
1 + α

+
2− x
1 + α

− 1− x
α

, 1− α < x ≤ 1.

It is a well-known fact that a 1-periodic function f which is integrable
over the unit interval I is a bounded remainder function with respect to α
if and only if there exists a bounded and measurable 1-periodic function g
satisfying the equation

f(x)−
1�

0

f(t) dt = g(x)− g(x+ α)

for almost every x. This is known as the cohomological equation for f . By a
classical result of Gottschalk and Hedlund [6, Theorem 14.11], the function g
can be chosen to be continuous whenever f is continuous. Thus, our proof
is complete if we can find a continuous 1-periodic function g such that

(3.13) τS(x)−
1�

0

τS(t) dt = g(x)− g(x+ α),

where τS is given in (3.12).
Let g be the continuous 1-periodic function defined on I by

g(x) =
x(x− 1)

2α(1 + α)
.

It is straightforward to check that this function satisfies (3.13). This confirms
that τS is a bounded remainder function with respect to α, and completes
the proof of Theorem 1.7(iii).
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