ANNALES
POLONICI MATHEMATICI
118.1 (2016)

On delta m-subharmonic functions

VAN THIEN NGUYEN (Krakow)

Abstract. Let p > 0, and let &, ,, be the cone of negative m-subharmonic functions
with finite m-pluricomplex p-energy. We will define a quasi-norm on the vector space
0Ep.m = Ep,m — Ep,m and prove that this vector space with this quasi-norm is a quasi-
Banach space. Furthermore, we characterize its topological dual.

Introduction. The §-plurisubharmonic functions were studied by Ce-
grell [Cel] and Kiselman [Ki]. Cegrell and Wiklund [CW] investigated the
vector space 0.F = F — F equipped with a suitable norm. They proved that
it is a nonseparable Banach space and provided the characterization of its
dual space. Hai and Hiep [HH]| introduced a metric which defines a locally
convex topology on the space d€ of §-plurisubharmonic functions from the
Cegrell class £ (see [Ce3| for the definition of this class). They proved that
with this topology, € is a nonseparable and nonreflexive Fréchet space.

The cone &, of negative plurisubharmonic functions with finite pluricom-
plex p-energy was introduced by Cegrell [Ce2| for p > 1, and for 0 < p < 1
in [ACH] (see also [CKZ], [K2]). Ahag and Czyz [AC] proved that the vector
space 0&, with the vector ordering induced by the cone &, is o-Dedekind
complete, and with a suitable quasi-norm this space is a nonseparable quasi-
Banach space. They also characterized its topological dual. Recently, Ahag,
Cegrell and Czyz [ACC| generalized these results to cones K of negative
plurisubharmonic functions with & C K C £.

The complex Hessian operator for m-subharmonic functions has been
studied by Blocki, Dinew, Kotodziej, Nguyen, Lu, and others (see [B]|, [DK],
[Ng], [Lu| for more details). In his Ph.D thesis, Lu extended the results from
[Ce2], [Ce3|, [ACH| to m-subharmonic functions.
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In this article, we extend the results of [AC| to m-subharmonic functions.
We give some background on m-subharmonic functions in Section [I] We
consider the vector space 0&p, ,, = Epm —Epm generated by the cone &, p,. By
straightforward calculations, d&, ,, is a vector space under pointwise addition
and usual scalar multiplication, with the convention —oo—(—o00) = —oo. We
shall consider 0&,, ,,, with two vector orders: the order induced by the positive
cone >, and the classical pointwise ordering >. The two order relations on
0&pm are related as follows: if u = v, then u < v, but there are functions
u,v in 0&p , with u > v such that u and v are not comparable with respect
to = (see Example [2.10)).

In Section [3] for u € 6&, ,, we define

1
01 Jullpn = _inf L (§ (o  w) P+ 02)) "7,
U=ui—uz
u17u2€gp,m
where Hp,(-) = [dd®(-)]™ A B"~™ is the m-complex Hessian operator. Our
aim is to show that (6&,m, | - ||p,m) is a quasi-Banach space, and for p =1

a Banach space (see Theorem [3.8). We also prove that there exists a de-
composition of each element in &, ,, with control of the quasi-norm (see
Theorem .

In Section[d] we study the dual space of (6€p,m, || lp,m). The main results
are Theorems [4.6] and

In Section [ we construct an inner product on 6&; 1. We give two ex-
amples. The first shows that the norm defined by this inner product and

the norm || - ||1,1 defined by (0.1]) are not equivalent (see Example [5.2). The

second proves that on 0 ,,,, m > 1, the norm || |1, defined by (0.1)) cannot
come from any inner product (see Example [5.3]).

1. Preliminaries. Let {2 be an open set in C™ and let m be a natural
number with 1 < m < n. As usual let d = 9 + 9, d° = (0 — 9), and let
B = dd°||z||*> be the canonical Kéhler form in C". We denote by C(j 1) the
space of (1, 1)-forms with constant coefficients. One defines the positive cone

In={ne€Cuyn:nAp" ' >0,...,.0" A" ™ >0}
If u € C%(§2) then u is an m-subharmonic function if
ddu A" >0, ..., (ddu)™ A BT >0
at every point in 2.

DEFINITION 1.1. Let u be a subharmonic function in 2. Then w is called
m-subharmonic if

ddUNM N A1 ABTT >0
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in the sense of currents for all ny,...,mm—1 € I,. Denote by SH,,({2) the
set of all m-subharmonic functions in {2, and by SH,,(£2) the set of all
nonpositive m-subharmonic functions in 2.

REMARK 1.2. By the definition, we have
PSH({2) = SH,({2) € SH,,—1(£2) C --- C SHy(£2) = SH(£?).

In [B]] (see also |[DK]), Btocki used the method of Bedford and Taylor
[BT1], [BT2| to define the complex Hessian operators. For wui,...,u, €
SH,,,(£2) N LS (£2), the operator

loc

Hp(u1y. .. Upy) = ddup A+ Addupy, A
= dd(urddug A -+« A\ ddup A BT

is a nonnegative Radon measure. In particular, when v = w1 = -+ = up,,
the measures

Hp,(u) := (ddu)™ A g™
are well-defined for uw € SH,,,(£2) N LS (12).

loc
We list some elementary facts for m-subharmonic functions.

ProprosITION 1.3 ([Ng, Proposition 1.3]). Let £2 C C" be a bounded
domain.

(1) If u,v € SHyp, (92) then A+ pv € SHy,(£2) for all A, > 0.

(2) If w € SH,,(£2) then the standard regularization w * x. is also m-
subharmonic in 2 :={x € 2 : d(x,082) > €}.

(3) If u € SHy(£2) and v : R — R is a conver nondecreasing function
then v ou € SHy,(£2).

(4) If u,v € SH,,(£2) then max{u,v} € SH,,(£2).

(5) Let {ua} C SHp,(£2) be a sequence locally uniformly bounded from
above, and let u = sup uq. Then the upper semicontinuous regular-
ization u* is m-subharmonic and equal to u almost everywhere.

Now we recall some definitions and basic properties related to m-sub-
harmonic functions.

DEFINITION 1.4. A bounded domain {2 C C" is said to be m-hyperconvex
if there exists a continuous m-subharmonic function p : 2 — R~ such that
{p < —c} €N forall c>0.

Let
o (= Eom(92)) = {u € SH,n(2) N L(2) : lim u(z) =0

z—0(2
and S Hp(u) < oo}
Q
The following theorem essentially follows from [Ce3, Lemma 3.1| for n = m,
and can be found in [Lu, Lemma 1.7.13].
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THEOREM 1.5.

C57(82) C Eom(£2) NC(12) = Eom(82) N C(K2).

DEFINITION 1.6. For each p > 0, we define &, ,,, to be the class of all func-
tions u € SH,,,(£2) such that there exists a decreasing sequence {u;} C Eym
such that

(i) limj o0 uj = u,

(ii) sup; §,(—us)? Hp(us) < oo.

From the following theorem we see that the Hessian operator is well-
defined on the class & .

THEOREM 1.7. Let uy,...,um € & m and {ui}j C Eo,m with ufe 3 up be
as in Definition[1.6| k = 1,...,m. Then the sequence of measures
dd°ul A -+ A ddud, A BTT™
weakly converges to a Radon measure and the limit measure does not depend
on the choice of the sequence {u] }. We denote this limit by

Hp(ug, ..o ty) = ddug A+ Addum, A 7™
Integration by parts is valid for &, (see [Lu, Theorem 1.7.19]).
THEOREM 1.8. Let u,v,¢; € Epm for j=1,...,m —1. Then
{uddv AT =\ vddunT,
9] 2
where T' = dd°¢1 N -+ ANdd®¢p,—1 A B,

DEFINITION 1.9. For u € &, ., we define the m-pluricomplex p-energy of
u by
epam (1) = | (—u)P Hyp ().
2
The following theorem (see [Lu, Theorem 1.7.24, Proposition 1.8.9], see
also [CKZl, Lemma 2.1|) states that ey, ,(u) is finite for u € &, .
THEOREM 1.10. If u € &,,, then epm(u) < oo, and there exists a se-
quence {u;} C Eym with uj | u such that ep m(uj) — epm(u).
ProprosITION 1.11.
(1) If u,v € Eom [u,v € Epml, then Au+ pv € Eypm [Au+ pv € Ep ]
for all \, p > 0.
(i) If u € Eom [u € Em] and v € SH, (£2), then max(u,v) € Eym
[max(u,v) € Epm].
(ili) If u,v € Epm, then

epm () + epm(v) < epm(u+v) < oo.
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Proof. See |[Lu, Theorem 1.7.12| and [Ce2, Theorem 3.3, Lemma 3.4]. w

The comparison principle is an important tool in pluripotential theory
(see |[BT2], [Ce2], |Ce3|, etc). For our purposes, we record the following
theorem (see [Lul Theorem 1.7.27]).

THEOREM 1.12. Let u,v € &, with Hy,(u) < Hy,(v). Thenu > v in £2.

The following theorem solves the Dirichlet problem in &, ,,. For its proof
we refer to [Lu, Theorem 0.0.1] (see also |[Ce2, Theorem 6.2|, [ACH| Theo-
rem 3.6]).

THEOREM 1.13. Let p be a Radon measure in (2. Then there exists a
unique u € &y such that Hy,(u) = p if and only if there exists a constant
C > 0 satisfying

S(—v)p du < C'ep,m(v)p/(erp), Vo € Eym.
2

2. Riesz spaces. Let us start by giving some background on ordered
vector spaces. For further information and duality we refer the readers to [AT].

DEFINITION 2.1. A binary relation % on a set X is said to be an order
relation if it has the following three properties:

(1) reflexivity: = = x,
(2) antisymmetry: z > y and y = x imply = = y,
(3) transitivity: z = y and y = z imply z = 2.

DEFINITION 2.2. A nonempty subset K of a vector space X is a cone if:

(1) K+ K CK,
(2) K C K for all » > 0, and
(3) £n{-K} = {0}.

DEFINITION 2.3. An order relation »=x on a vector space X is said to
be a vector ordering if = x is compatible with the algebraic structure of X:

(i) f z =x y, then z + 2z =x y+ 2z for all z € X,
(ii) if = =x vy, then rz =x ry for all r > 0.

An order vector space (X, >=x) is a vector space X with a vector ordering
FX-

We denote by X+ = {x € X : z =x 0} the positive cone of X. Let K
be any cone in X then it generates a vector ordering =x on X defined by
letting x =k y whenever x — y € K. To simplify the notation we shall write
> instead of =f.
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DEFINITION 2.4. An ordered vector space (X, =) is a Riesz space (or a
vector lattice) if every pair of vectors z,y of X have a supremum z V. y and
an infimum x A, y in X.

REMARK 2.5. Since z Ay y = —((—z) Vi (—y)), to show that an ordered
vector space is a Riesz space it is enough to prove that any two vectors have
a supremunm.

DEFINITION 2.6. An ordered vector space (X, =) is Dedekind o-complete
if every increasing sequence bounded from above has a supremum.

Let 6&pm = Epm—Ep.m- We make the convention that —oo—(—o00) =—00.
Then &, ,, is a vector space over R equipped with pointwise addition of
functions and real scalar multiplication. We consider §&,,, with the vector
ordering induced by the positive cone, i.e. for u,v € d&,,,, we write u = v if
u—v € Epm. Note that u = 0 for all u € &, ,, although u(z) < 0forall z € 2.
One of the major advantages of this construction is that (6&,m)" = Epm.

The usual pointwise vector ordering > is defined as u > v if and only if
u(x) > v(z) for all z € 2. The two vector orderings on 0&, ,, are related as
follows: if u > v then v > u, but not conversely. Example below (see
also JAC, Example 3.1]) shows there are functions u, v in 6&, , with u > v,
but u,v are not comparable with respect to »=. In particular, 6&,,, is not a
totally ordered vector space.

Along with &, ,,, we are interested in the set of measures

Hpm = {1 : p = Hp(u) for some u € &, ,,}.
By Theorem m Hpm is a cone. The ordered vector space (dH,m, =) is
defined similarly, i.e. for p,v € H,m, p = v if p—v € Hpm.

REMARK 2.7. Theorem implies that H, ,, is a cone, and if u € H,
and v is any positive Radon measure such that 4 > v then v € H, .

The usual ordering > on dH,,, is defined as follows: if u,v € dHpm,
then p > v if u(A) > v(A) for every measurable subset A C (2.

THEOREM 2.8.

(a) The classical order and the order induced by the cone Hy, coincide.
(b) (0&pm,>) and (6Hpm,>) are Riesz spaces.
(c) (6&pm, =) is Dedekind o-complete.

Proof. We use an idea from [AC].

(a) Let p,v € Hppm. If i = v, then p—v € Hyppm, so > v. Now suppose
that > v. As p > p — v > 0, Remark 2.7 implies 1 — v € Hpm, 50 p1 3= v.

(b) Let u,v € (0Epm,>). We have u = w3 — ug, v = v — v for some
uj,vj € Epm, j = 1,2. Then
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uV>v = max(u, v) = max(uj; —ug, v1 —vz) = max(u; +ve, uz+v1)— (u2+v2).
Since &y, is a cone, by Proposition we get u V> v € 0E, ;.

Similarly, let p,v € (6Hpm,>). Then there exist ui,p2,v1,v2 € Hpm
such that = p1 — po and v = v1 — vo. We have

p V> v =sup(p — po,v1 — v2) = sup(uy + ve, g2 +v1) — (p2 + o),

where sup(«, §)(A4) = supp4{a(B) + B(A\B)} for positive measures o, (.
We can see that sup(a, ) is the smallest measure majorant of a and S.
Remark [2.7] implies that p V> v € 0Hp m.

(c) Assume that {u;} is an increasing sequence in (6&p m, =) which is
bounded from above by ¢, i.e. ¢ = u; for all j € N. By the definition, for
each j € N, we have ujy1 —uj, ¢ —uj € &y . For k > 2,

k—1 k—1
D (ujrn —uy) = (¢ —ur) + > (ujp1 —uj) = ¢ — 1 € Epm.
i=1 =1

Letting k — oo, we get Z;L(“jﬂ — uj) > ¢ — uy. The function v =
> 521(uj+1 — uy) is the limit of a decreasing sequence of m-subharmonic
functions, so it is a negative m-subharmonic function and v > ¢ —uq € &p -
By Proposition we get v € Epm. We set u =uy +v € 6&p m.

Now we prove that u = sup; {u;}. First observe that by arguing much as
above we get > 72 (ujt1 — uj) € Ep for all k > 2, so

k—1 )
u—up =5+ u; — Z(Uj+1 —uj) —up = Z(ujH —uj) € Epm, Yk >2.
j=1 j=k

Thus u = wuy for all k. Now suppose that v € 6&,,, is any upper bound
of {u;}, so v = uj, or v —uj; € &, for all j € N. For all k& we have
(v —ugs1) — (v —ug) = up — ugy1 > 0, which means that {v — ug} is an
increasing sequence of m-subharmonic functions with respect to the usual

pointwise order >. Furthermore, the following limit exists:
o0

a= lim(v—ug) =(v—uy)— Ujry —uj) = (v —1uy) — 7.
Jim (v —up) = (v —w) ;( jr1 —uj) = (v —u1) =7
Therefore o = (v —uy) — v > v — uy, where a* denotes the upper semicon-
tinuous regularization of a. Then Proposition yields o* € &, . Thus,
v —u=a*, ie v = u, which proves (c). =

REMARK 2.9. Example 3.3 in [ACC| shows that (0&y,(B), =) is not a
Riesz space.

EXAMPLE 2.10. Let p € &, be an m-subharmonic function defining 2,
and let wg € £2. Select a, b such that infp p < a < b < p(wy) < 0. Then the
functions v = max(p, a) and v = max(p,b) are in &y, (12), and v > u. But
u and v are not comparable with respect to the order =.
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3. Normality. We want to show that the formula in defines a
quasi-norm on 0&,,, for p # 1, and a norm for p = 1. First, we prove a
Holder type inequality for functions in &, ,,. For m = n and p > 1, Theorem
below was proved in [Pe], and for m = n and 0 < p < 1 in [ACH]|. The
case p > 1 was handled in [Lu, Lemma 1.7.8]. By using the idea of [ACH,
Lemma 2.1] we will prove it for 0 < p < 1.

THEOREM 3.1. Let ug,u1,...,Unm € Em. Then there exists a constant
D(p,m) depending only on p and m such that

V(—uo)Pddeuy A -+ A ddug, A BT

Q
p 1 1
< D(p, m)ep,m(UO)p+m ep,m(ul)p+m tot ep,m(um) ptm,
where
_alpm)
p v gf0<p<l,
D(p,m) =41 ifp=1,
pa(p,m) .
p Pl if p>1,
-1
and a(p,m) = (p+ 2)(7’%1)7” —(p+1).

Proof. By standard approximation, without loss of generality we can
assume that ug, u1,...,Un € Eym. If 0 < p <1, then —(—up)? € Em (see
[Ngl Proposition 1.3]). Now let w = —(—u1)? € & and T' = ddug A - - - A
dd Uy, A B"~™. We have

(3.1) | (—uo)Pddus AT = — | (—ug)Pdd*(—w)"/P AT

2 2
= — (o) () P (—w) AT
p 9]
= L P g (—w) VP Rd(—w) A d(—w) AT
p 2
< 1 S(_uo)l’(—w)l/p‘lddcw ANT = ! S(—uo)p(—ul)l_pddcw NT.
P} P o

Applying the Hélder inequality and integration by parts in & ,, we obtain

(32) | (cuolddou AT < - [ (cuo)daow AT]"[ [(-um)ddow A T] o
(% p (% P4

_ ;{ (—w)dd“ug A T}p[ | (—w)ddus A T} o
9]
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From and we get

S(—uo)pddcul AT <= [ [ (—ur)Pddeug A T] [ [ (—ur)Pddeur A T} e
2 p 2 (0]

< p11+p [(gz( wo)Pddeuy /\T]p [(S)( wp)PddCuq /\T} par)
« [ §(—u)rddou A T| o
This implies that ’
(3.3) [ (—uopddous AT < p~ T ( | (—uo)Pddug A T) B
o "

1
X ( S (—ul)pddcul VAN T) e .
Q
The function F : (£p.m)™ " — RT defined by
F(ug,ut, ... uy) = S(—uo)pddcul A ANdd Uy, A BT
Q
is symmetric in the last m variables. By (3.3)),

1

_1 p
F(ug,uty ... um) <p =7 F(ug, uo, g, . .., Up) H° F(up, ug, ug, ..., Upy) 7.

The rest of the proof goes verbatim as the proof of [Pe, Theorem 4.1] (see
also [ACH|, Theorem 2.2|). =

LEMMA 3.2. For u,v € &, ,, we have
1 1 1
(B4)  epmlut v)FH < Cp,m)(epm(W) 77 + epn(v)77),

where C'(p,m) > 1 is a constant depending only on m and p # 1, and
C(1,m)=1.

Proof. By Theorem [3.1] we have
epm(u+v) = S(—u —0)Pldd(u 4 v)]" AT

I
()= ©

m —u—-0 cuk oy m—k n—m
(3) o= ortarat @ as

B
Il

0

m
m _p k m—k
< D) Y- (Ym0 ()75 (1) 55
k=0

1

= D(p, m)epm(t + 0) 77 [ ()7 + € (v)757]

m
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Hence
+m _1 _1
epm(u+v) < D(pym) " [epm ()77 + ey (v)eem | TF.

Thus we get 1} with C(p,m) = D(pam)l/m- u

REMARK 3.3. In general, if uq,...,ur € &) m, then

1
epm(ut + -+ up) rEm
1

j —L k—1 p+m
< Z C(p,m) epm(uj)vtm + Clp,m)* ™ (epm(ur—1) + epm(ug))r+m

1

< ZCP’ ) epm (ug) 7.
LEMMA 3.4. Let u,v € &, with v <u. Then

+
epm(u) < D(p,m) 7 epm(v),
where D(p,m) is the constant defined in Theorem (3.1] - In addition if p < 1,
then epm(u) < epm(v).

Proof. By Theorem [3.1] we have

epm(u) = | (—u)P(ddu)™ A """ < | (—v)P(ddeu)™ A B
(0]
< D(p, M) ep,m (v) 77 € (W) 77,
which implies that

3 D=

ptm
epm(u) < D(p,m) 7 epm(v).
If p <1, then by Theorem there exist decreasing sequences {u;}, {v;}
C &o,m such that u; > v; and

uj = U, Vj =0, epm(u;) = epm(u) and epm(vj) = epm(v) as j — oo.

We have —(—u;)P € &,m (see [Ng, Proposition 1.3|). Integrating by parts
we obtain

epam (1) = | (—u)P(dduy) ™ AB™™ < | (—uy)P(ddv;)™ AB" ™™ < epm(v;).
2 2

By letting j — oo we get epm(u) < epm(v). w
For u € 6&, n, the formula in (0.1)) can be rewritten as follows:

1
(3.5) |lwllpm = inf{epm(ur + u2)Ptm u = ug — ug, ur,uz € Epm}.

1
LEMMA 3.5. Ifu € &, then ||ullpm = epm(u)rtm.
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such that v = u; — ug. Then u > w1 — ug + 2uy. We have
epm(u) = | (—w)P(ddu)™ A "™ < | (—w)P[dd®(u + 2us)]™ A B
2
(—u1 — u)P[dd®(ur + u2)]™ A "™ = epm(u1 + ug).

1
Proof. Since u = u — 0, then [Jul[pm < epm(u)p+m. Let uy, ug € Epm be

<

SEaaS

Hence . )
epm (Ut + u2) Pt > eppp (w)Pm.

Taking the infimum over uq,us € &, with w1 — us = u, we get

1
[ullpm = epm(u)rsr. m
Now we recall the definition of a quasi-Banach space.
DEFINITION 3.6. A function |- | : X — [0,00) is called a quasi-norm on
a vector space X if it has the following properties:
(i) ||z|| = 0 if and only if z = 0;
(ii) ||rz|| = |r|||z| for all x € X, r € R;
(iii) there exists a constant C' > 1 such that
[ +yll < (el +yl),  Va,y e X.
Aoki [Ao| and Rolewicz [Ro| characterized quasi-norms as follows:

THEOREM 3.7. Let ||-|| be a quasi-norm on X . Then there exist 0 < g < 1
and an equivalent quasi-norm ||| - ||| on X such that, for all z,y € X,

[l +ylll* < /Il =+ Myl
Hence for a given quasi-norm ||-|| on X, we can define the metric d(z,y) =

[l — y|[|¢ on X. The vector space X is called a quasi-Banach space if it is
complete with respect to the metric induced by the quasi-norm || - ||.

THEOREM 3.8. (0&pm, || - llpm) s a quasi-Banach space for p # 1 and
(0&1 ms || - l1,m) is a Banach space.

Proof. (i) If u =0 € &y, then Lemma implies ||u||p,m = 0. Assume
that u € 0, with ||u||pm = 0. Let € > 0. Then by the definition of ||u||p m,
there exist ui,us € & m such that u = u; —ug and ey (u1 + uz) < e. Since
uy + uz € Epm, by Theorem there exists a sequence {v;} C &y, with
v; | (u1+ug) and sup; ey (vy) < €. Let ¢ € &, be such that Hy,(¢) = dA,
(see |[Lu, Theorem 1.8.18]), where A, is the Lebesgue measure on C". It
follows from Theorem [B.1] that

vl = §(=v;)P A = {(—v)" Hin(9)
(9} 2
< D(p, m)epm (v;) 77 ey (@) 7om < Certm
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where C' is a constant that does not depend on j. Hence
_p
HUHZ[)/p < Hul + Ug”ip < Ceptm .

Letting € — 0T yields |Jul|z» = 0, thus u = 0 almost everywhere. This means
that u; = uo almost everywhere in 2. Moreover, u; and uy are subharmonic
on {2 (see Remark [1.2), so u; = ug in {2, i.e. u =0 in £2.
(ii) Let w € 6&p . For t € R, t > 0, we have
1
ltw||pm = Inf{ep m (w1 + u2) P+m : tu = uy — ug, ur,ug € Epm}
1
= inf{ep m(tvr + tvg) Pt u = vy — v, v1,v2 € Epm} = t|ullpm-

The case t < 0 is similar, and the case ¢t = 0 is clear.

(iii) Let w,v € 6&pm and € > 0. Then there exist uy,uz,v1,v2 € Epm
such that v = w1 — ug, v = v1 — v9 and

1 1
epm(ur + u2) ¥ <lullpm + € epm(vr +v2)PFm < vllpm + €
By Lemma |3.2
_1
lu+v|pm < epm(ur + ug + v1 + vg)PFm

_1 _1
< Clepm(ur +ug) 7 + ey m(v1 + v2)7m ) < C(||ul

pon + [[0llpm) + 2Ck,
where C'= C(p, m) is given in Lemma Letting € — 0T, we obtain

lw 4 vllpm < C(llu

p,m + ||va7m)'

If p=1 then C' = C(1,m) = 1. This implies that || - |1, is a norm.
(iv) Now we shall prove that the space (6&p m, ||-||p,m) is complete. Assume

that {u;} is a Cauchy sequence in (6&p m, || - ||p,m). For each integer i, there
is an integer j; such that
(3.6) [jir = wjillpm < (2C)7".

We can choose the j; to form an increasing sequence. Moreover, for each 1,
there exist v;, w; € &, such that

1 »
(3.7) wj oy —uj, = vi—wi,  epm(vi+wy) Pt < lug,, — g llpm +(2C) 7

7

Note that

k k
(3.8) Ujpyy = Ujy + Z(ujiJrl —uj,) = uj, + Z(Ul — wj)
=1 =1

k k
=uj; + E v; — E w; .
i=1 i=1
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By combining Proposition |1.11| Remark . and ( . we get
k 1
p+m +m +m
max{ep,m<zvi>p 7ep,m<zwz)p } < ep,m(Z('Ui +wi))p
: ‘1 ‘1

= 1= 1=

k
< E C'epm(vi +w;)rm < E C*20) " + llwjisr — wsillp,ml]
= 1 =1

<ZCl [(20)~ <222—

The sequences {Zizl v; 1 and {Zizl wj b, are decreasmg sequences in &,
with bounded m- pluricomplex p-energy. Thus there exist ¢,9 € &,,, such

that 5, v — 0, Y5y wi = in (0pm - [pun). By (B9,
Uj, —> Ujy + O —Pi=u€ 58p7m.
Since {u;} is Cauchy sequence, it follows that u; — u. =

The following theorem says that there exists a decomposition of each
element in 0&, ,, with explicit control of quasi-norms.

THEOREM 3.9. For each u € 6&,, there exist unique ut,u™ € & m
such that v = u™ —u~ and

ullpm < [1u™ + 4 [lpm < D(p,m)" " u]|pm
Furthermore, if p <1, then ||ullpm = [u™ +u [|pm
Proof. Let uw = u1 —ug € 0&p,, and define
ut = sup{a € &, : there exists B € &,,, such that us + o = uy + S},
u” =sup{f € & : there exists a € &, such that us + o = uy + B}.

Then (u)*, (u™)* € Epm. By Choquet’s lemma, there exist sequences {«;},
{8} C &o,m such that (sup; a;)* = (u™)* and (sup; 8;)* = (u~)*. Further-
more, we can assume up + o; = u1 + ;. By passing to limits we obtain
U2+U+ =u;+u .

Since ut = (u™)* and u~ = (u™)* almost everywhere, we obtain ug+(u™)* =
u1 + (u™)*. Hence

ut = (u
If a,8 € &, are such that w = a — B, then @ < u* and 8 < u™, so
a+ B <ut +u". By Lemmas [3.5] and [3.4]

1 _
[ullpm < epm(u® +u™)rrm = [lu’ +u”[pm < D(p,m)l/pepm(a + B).
Taking the infimum over all decompositions ©u = a — 3, we get
[ullpm < [l + u” |[pm < D(p, m)l/pH“Hp,m

If p <1, then by Lemma ullpm = lu™ +u™|lpm. =

Y and u = (u)*
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REMARK 3.10. In general, let v = u; — ug be in 6SH,,(£2), where {2 is a
bounded domain in C". Then

ul = sup{a € SH,,,(£2) : there exists 8 € SH,,(£2) with ugs + o = u1 + 8},
u~ =sup{f € SH,,({2) : there exists a € SH,,(£2) with us + o = u; + 8}.
By reasoning as above, we can show that u™, u~ € SH, () and u = v —u".

For pu € 6Hpm, we define
|telpm = IE{||lwp, o + Nwusllpim = 10 = 1 — B2, 1, p2 € Hpm},

where uy,; € &y, j = 1,2, are the unique solutions to Hp,(u,,) = p15, as in
Theorem I3l

LEMMA 3.11. Let u = put — pu~ be the Jordan decomposition of u, where
pt=5(ul+p) and pm = 5(lul - p).
Then
[lp.m = Ml [[pim =+ 1wl

Proof. Suppose p = p1 — po is any representation of 1 € 6Hy . Then
pt < pp and p~ < po. This implies that ut, u~ € Hp,m by Theorem m
and Hy,(uy+) < Hy, . By Theorem we have u,+ > uy,. Now

et Iy = (§ (=) Ho(15) ) ™
2

< (S o)) =

g HU/Q ||Z:Lm Thus

m

p?m.
Similarly, [[w,- [},
Z?m + ||Uu_ ||Z,lm u

THEOREM 3.12. (0Hpm, | |pm) is a quasi-Banach space for p # 1, and
it is a Banach space if p = 1.

Proof. (i) Suppose that u € 6Hp m and |p|pm = 0. From Lemma

|N|p,m = ||u#+

Hu;ﬁHp,m = Hu/r Hp,m =0.
By Theorem (1) , we have u,+ = u,~ = 0. Thus p* =y~ = 0,0 p =0.
(i) For t > 0, we have

(t:u)+ = tu—i_v (tp)” =tu, U+ = tl/muu+> Upy— = tl/muu— .

Hence

e A T e

[ttalpm = llwpy+ lpim + -

Similarly, if t < 0 then [tu|pm = (—t)|1]pm.-
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(iii) Let p,v € 6Hpm. We have
ptv=pt—p vt v = (ut ) = (7).
Thus (u+v)" < pt+vT and (u+v)” < p~ +v~. By Theorem there
exist U(yqp)+, U(ugr)— € Epm such that
Hm(u(u+u)+) = (ﬂ + V)+ and Hm(u(u+l/)—) = (:“ =+ V)_'
Applying Theorem we obtain

ep,m (U(ugr)t) = S(—u(u+u)+)pHm(U(u+u)+) = S(—“(u+u)+)p(/i +v)"

2 Q
= S(_u(“+”)+>p(u+ +vh) = S(_u(u+u)+)p(Hm(uu+) + Hyp (uy+))
§2 Q
< D(pa m)€p7m(u(“+y)+)jﬂ+% (6p7m(uu+> P:"rnm + ep,m(uyﬂL)erLm) )

Thus
epvm(u(#'i'V)J’ yrim < D(p,m) (ep,m (U#Jr )yrtm 4 6p7m(uy+ )pim ) .
Similarly,

m

pm (W) )7 < DDy ) (e (1) 7+ e ()7

We have
4Vl = Nty [ + B [

= ep,m(u(u—l-l/)*)m + epm(“(u—&-z/)*)m

< D(p, m) (€pam (Ut ) 757 4 € (- ) 757 A€ (1) 757 4 € (- ) 757

= D(p,m)(lupes lpim + = llpim + w5 + lluw-l50m)

= D(p,m)(|ulpm + [V]pm);
where D(p,m) is the constant given in Theorem Because D(1,m) = 1,
| - |1,m is a norm.

(iv) Now we prove that (0H, m., |- |p,m) is complete. Assume that {yu;} is

a Cauchy sequence in (6Hp m, | - |p,m). For each integer 4, there is an integer
7i such that

’Mji-&-l = HKjilpm = ”u(ujl._‘_l —uji)+”2?m + ‘|u(uji+1—uji)* Z?m < (20)7;#77”7
where C' = C(p, m) is the constant of Lemma [3.2l We can choose {j;} to be
an increasing sequence. In particular,

(3.9) ., -l < (2C) 5.
Define
oo
=+ D (i = 3,)-
i=1
Then

o
(3.10) pt < N;_l + Z(Mji+1 - :uji)Jr'
=1
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Now, for any k we have
k k '
Epm ( Z u(ﬂji+1 7/»‘ji)+> < Z Czep’m (u(ﬂj¢+1 7“]’2‘)+) (by Remark
i=1 j
= Z C'|u LIPI—, +Hp+m (by Lemma [3.5))

< Zci(zc)*i <1 (by B9)).

Thus {Zle u(ﬂji+1_ﬂji)+} is a decreasing sequence in &, ,, with bounded
m-pluricomplex p-energy. Then there is a function u™ € &, ,, such that
Zle Uy, —pg)t w*. From this and (3.10) we obtain

pt < Hp(uy,, +u').

By Theorem |1.13| ™ € Hp . In a similar way one can prove that p~= €
Hpm- Hence pj, = p=pt — = in (0Hpm, | |pm).

COROLLARY 3.13. The cones &, and Hy m are closed in (0Ep m, ||+ |lp.m)
and (0Hpm, | - |p,m) respectively.

THEOREM 3.14. Let p > 0. Then the interior of Epm in (8Epm, || - lpm)
is empty. The corresponding statement for (6Hpm, |- |pm) is also valid.

Proof. (i) First, 0 is not an interior point of &,,,. Assume that 0 #
u € &, m is an interior point of &, ,,. Then there exists € > 0 such that
if [|u — v|[pm < € then v € &, ,,. We can find a subset B in {2 such that
Hp(u)(B) > 0 and 2™ ({5 (—w)P Hy, (u))Y/P+™) < €. Let w € &, be such
that Hp,(w) = 2xpHm(u). Then Hp,(w)(B) > H,,(u)(B), which implies
that v :=u — w ¢ &, . Now we have

Hp(w) < 2Hp, (1) = Hypp (2 ™0).

Using Theorem we obtain 21/ < w. Hence

(311) = tllpm = [llpm = epam(@)77 = (§ (=) Hn(w)) 7"
02

= (2] o)

( g _ol/my) (u))m<e.

This contradicts our assumption that u is an interior point of &, .

b —
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(ii) We argue as above. The point 0 € #,,, is not an interior point of
(0Hpm, | - |pm). Assume that 0 # 1 € Hpm, is an interior point of H, p, in
(Hpm,| - |pm). Then there exists ¢ > 0 such that if |u — v|pm < € then
v € Hpm. Let uy, € E m be such that H,,(u,) = du. As before, we can find
B C 2 such that p(B) > 0 and 2({4(—u,)Pdp)™ ®*™ < e. The measure
v = X\ — XBM is not an element of H,, ,, since v(B) < 0. Theorem
implies that u, < uy,,, where uy,, € &, m is such that Hy,(uy ) = XBU-
Hence,

m

p+m

pm = 2\XBHpm = 2l pullpm = 2( S(—UXBu)pHm(UXBu)>
Q

lu—v
< 2( S(—uu)pdu)m <e€m
B

4. Duality. Let us recall some notions related to duality (see [AT]). The
algebraic dual of a vector space X is the vector space of all linear functions
on X, and denoted by X*. Let (X, =) be an ordered vector space. A linear
functional f: X — R is called:

e positive if f(x) >0 for all z € X
e reqular if f can be written as the difference of two positive operators;
e ordered bounded if f([x,y]) is bounded for all z,y € X, where the order
interval [x,y] is defined by
[z,y] ={z € X :y =z >}

Let X" and X° denote the sets of respectively all regular functionals and all
bounded functionals on (X, =).

REMARK 4.1. X" C Xb C X*.

The topological dual of a topological vector space (X, 7) is denoted by X '
and it is the vector subspace of X* consisting of all 7-continuous functionals.
Let K be a cone in (X, 7). The dual cone K’ of K is

K'={feX*: f(z) >0, Vr €K}
A cone K in a topological vector space (X, 7) is called T-normal if T has a

base at zero consisting of K full sets.

DEFINITION 4.2. Let X be a Banach space, and let A C X’. Then we
say that the set A separates the points of X if for all 0 # x € X there exists
f € A such that f(z) # 0.

REMARK 4.3. A set A C X' separates the points of X if and only if the
o(X', X)-closure of the linear span of A is X', where o(X’, X) is the usual
weak*-topology of X’ (see [Rul).
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In the context of normal cones we need the following result (see [AT)
Theorem 2.23|).

LEMMA 4.4. Let K be a cone in an ordered topological vector space (X,
=, 7). If for any two sequences {x;} and {y;} in (X,=,7) with z; = y; =0
for each j, the condition x; L 0 implies that Yj 50, then K is a normal
cone.

By [AC, Lemma 5.2|, Theorem 3.8 Theorem and Corollary [3.13] we
have

LEMMA 4.5.
0Epms 7 || - ||p,m)b C (0&pm> =5 11 - llpam)s
(5prma =, | : |p,m)b - (5prma =, | : |p,m),-

For each nonpolar set W € {2 we define Dy : &, ,, — RY by Dy (u) =
SW Au. Then Dy is a positive linear functional on &, ,,. Since &,,, =
(6Epm)t, Dw can be extended to a regular linear functional defined on
(0Epms = || - |p,m)- Let D denote the family of all functionals Dy together
with the zero functional.

THEOREM 4.6.

(i) OHpm C (6Epm)" and Hypm separates the points of (0Epm, || - [Ip.m)
ifp>1.
(1) 6&pm C (Hpm) and E,m separates the points of (Hpm., | - |pm) if
p=>1.
(iii) For p > 0 the family D separates the points of (8Epm, || - ||pm)-

Proof. Fix w € &y, NC*°(£2) such that ey, (w) = D(p, m)% Ifp=1,
we take w = —1.
(i) For each p € 6Hp m, let T, : 6&p m — R be defined by

Tu(u) = Tp(ur — uz) = | (ug — ur)(—w)P~ " dp.
(9}
We see that T}, is well-defined and linear on 6, ,,,. Now we will show that
T, is continuous. By Theorem there exist unique v*,v™ € &, such
that Hy,(v") = p* and H,,(v™) = p~. By combining the Holder inequality
and Theorem [3.1] we get

L) = | {2 = u)(—w) " (dut = du”)
n

< S(—ul —u2)(—w)P " (Hyp (v) + Hp(v7))
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p—1 m m

_1 _m_
< D(p’ m)ep’m (ul + uQ) ptm epm (w) p+m (ep,m (’U+) ptm | 6p7m(v_) ptm )

1
= epm(u1 + u2) P |l p,m-
Taking the infimum over all decompositions of u in & ,,, we get

Tu(w)| < |plpm llullpm-
This implies T}, is continuous. We have constructed a continuous linear map-
ping T : 0Hpm — (0Epm)" defined by p — T,.
We now show that T is injective. Assume that T, = T, for some pu,v €
O0Hp,m- This means that for all u € 4&, 1,

§ () (e — ™) = § () (P (ot — ).

2 N
For each ¢ € C§°(£2), we have p/(—w)P~! € C§°(£2). By Theorem [1.5
Ce(92) C 0&pm, thus

Vo(dut —dp™) = | pldv™ —dv7).
Q 0
So u=v.

Now we show that H,,, separates the points of 6&,,,. Take any u =
up — ug with distinct w1, ug € &€,,,. Then at least one of the two sets

Kn{u >uz2} and K N{u; <ug}
has positive Lebesgue measure for some K € (2. Suppose A, (K N{u; > uz})
> 0. By [Lu, Theorem 1.8.18|, there exists ¢ € &, such that H,,(¢) =

XKﬂ{u1>u2}(_w)1_pd>‘n7 where x4 is the characteristic function of A. We
have

Hn(@)(w)] = | {(uz = ) (~w) " Halo)| = | (1 = uz)drg > 0.
2 Kn{ui>uz}
(i) We construct an injective, continuous linear map L : 6Ep m — (0Hpm)’
by identifying u € 0&, ,, with L., where

Lu() = § (—u)(—w)" 1 dp.
19,

As in (i), we have | Ly ()| < ||ullpm|itlpm, thus Ly, € (0Hpm)". Since Hpm
separates the points of 0&, ,,, L is injective. And the fact that 7" is injective
implies that &, ,, separates the points of 6Hy .

(ili) For u € 0&,m, u # 0, there exist distinct uy,ug € &, such that
u = u1 —ug. The facts that ui, us € SH({2) and u; = ug = 0 on the boundary
of 2 imply Au; # Aus. Hence there exists a nonpolar set W & 2 such that
DW(u1 - UQ) 75 0, ie. Dw(u) 75 0. m

THEOREM 4.7. Let p > 0. Then:

(1-1)  Epm is a normal cone in (6Epm, =, || - lpm)-
(1-ii) Hpm is a normal cone in (Hpm, =, | - |pm)-
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(24)  (OHpm, =, | lpm)” = (Hpm, 7, |+ |p.m)” = (Hpm, 7, | - Ipam)"

(2-ii) (ffgp,mv? I+ lpm)” = (0&pm, 75 || - llpm)” = (0&pm, =, || - [lp.m)" =

(3-1) TEiLE spa]cme (0&pms = || - lpm)'s p > 1, is the closure of §Hpm in
o((6Ep,m)’, 0Epm)-

(3-ii) The space (6Epm, = || - llpm)’ is the o((6Epm), 0Epm)-closure of
the linear span of D.

(3-iii) The space (6Hpm, =, |- lpm), p > 1, is the closure of 0Epm in

o((0Hpm)’, 6Hpm)-

Proof. (1-1) Assume that {u;} and {v;} are sequences in (6 1, =, || |lp,m )
with
uj =0 =0 and |uj|pm — 0.
From u; = vj = 0, we have uj,v; € &, and u; < v;. Hence by Lemmas [3.5]

and [3-4]

_1 _ _1 _
4]l = epan (1) 757 > D(p,m) Py (v;) 757 = D(p,m) P ||v;]| p.m.

Thus ||vj||p,m — 0, and Lemma [4.4 implies that & ,, is a normal cone.
(1-ii) We apply the same argument but use Lemma instead of Lem-
ma
(2-1) By Theorem [2.8, ’Hpm, =) is a Riesz space, hence (6Hpm)" =
(6Hpm)P. Thus, by Lemmal4.5|it is enough to prove that (§Hpm)" C (6Hp.m)°.
For € 0Hp m, we have

T < 1T tlpn: where [ T] = sup{T(v) : v € Hyp and V] < 1}.

If v € [0, ) then v < g and v, pp € Hp . By Theorem we have u, < u,,
where Hy,(u,) = p and Hp,(u,) = v. Hence by Lemma

T < TN Wlpm = 1Tl llpim < IT1Hwllpim = 1T lpm-

This means that 7°([0, u]) is bounded, or T' € (6Hpm)"

(2-ii) Let (X, || - ||) be a quasi-Banach space such that X’ separates the
points of X. Then X’ is a Banach space with the norm

l2*]] = sup{|”(z)] - [l=] <1}
We define an associated norm on X by
lz]le = sup{[lz* ()] : l="]| < 1, 2™ € X"}.

It can be shown that ||| is the largest norm on X dominated by the original
quasi-norm. The completion X, of X with this norm is called the Banach
envelope of X. We know that X, and X have the same topological dual
space (see [KPRI). By Theorem [4.6(iii), we have (0&p.m)" = (6Ep,m )L For a
functional T' € (6&p,)’, and fixed u € &y, define ¢ : &, ,m — R by

q(u) = sup{T'(v) : v € [0, u]}.
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Then C' = {(t,u) ER X &y : 0 <t < q(u)} is a cone in R X §&, m. We will
show that (1,0) ¢ C, where C is the closure of C'in R x (6 1)e-
Assume that (1,0) € C. Then there exists a sequence {(¢;,u;)} C C that
converges to (1,0) in the product topology. In particular,
lujlle = sup  [S(uz)[ = 0.

IS]<1
S€(6Ep,m)’

For each j we define
5.(0) { gl ™™ S (—ug)Pddov A Hy, oy (ug) if0 <p <1,
j\V) = —p—m _ .
ljllpt ™™ § (=0 (=) P Hin () ifp > 1.
Then S; € (6&p,m)". Theorem implies that [|S;|| < 1. Thus |Juj|. >

|Sj(us)| = [|wjllpm. Hence ||uj|[pm — 0. Then for any v € [0, u;] we see that
v € Epm and v > u;. By Lemmas and we have

pn = e ()7 < D(p,m) e (1) 77 = D(p,m) ¥ — 0.
Thus g(u;) — 0, which implies ¢; — 0. This contradicts the assumption that
(1,0) € C.

The Hahn-Banach theorem implies that there exists H € (R x (6&p.m)c)’
such that H > 0 on C' and H(1,0) = —1. Since (R X (0&p,m)¢)’ is isomorphic
to R'® (6&pm )l = R'B(0Epm)" (see [SW], Theorem 4.3, p. 137]), we can write
H(t,u) = at+g(u), where g € (6&pm)". Now H(1,0) =a = —1, so H(t, u)
—t + g(u). Since (0,u) € C for all u € &,,, we have g(u) = H(0,u) >
on &, . Moreover (q(u),u) € C, hence H(q(u),u) = —q(u) + g(u) > 0, and
we get g(u) > q(u) > T(u). Thus T =g —(9—T) €&,y —Epmn = (6Epm)"
Moreover, Lemma [4.5 implies (6€,,)° = (6€p.m)’, as desured

(3-1) Theorem shows that #,,, separates the points of (6&.m,),
hence Remark implies that the o((0&pm)’, dEp m)-closed linear span of
Hpm 18 (0Epm). Thus (0Ep m, =, || - lpm)’, p > 1, is the closure of 6%, ,, in
o((6Ep,m)'s 0Ep,m)-

(3-ii) As in (3-i), we use the fact that D separates the points of (§&p .,
I lpm) for p > 0.

(3-iii) As in (3-i), the result follows from Theorem [4.6[ii). =

ExXAMPLE 4.8. We will show that DNH,;,,, = {0} for any p > 1. Suppose
that there exists 0 # Dy € DNHy m, i.e. there exists a nonpolar set W € 2,
wo € Eom (if p > 1, while wg = —1if p=1), and p € Hp, such that

Dy (u) = S Au = S(—wo)p_l(—u)du for any u € &,
w (9}

Take zp and r > 0 such that B(zo,r) € §2. Fix u € &, and let € > 0 be
such that sup{u(z) : z € W U B(2¢,r)} + € < 0. Define

v = (sup{w € Epm :w <u+eon WU B(zo,r)})*.

[[v
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Then v € £, v > uwand v =u+ € on W U B(zg,r). Thus,

0 = Dw (u) — Dy (v) = | (—wo)*' (v — u)dp.
Q
Since p{v > u} = 0 we see that u = 0 on W U B(zp, 7). The point zy was
chosen arbitrarily, and so 4 = 0. Thus Dy = 0, a contradiction.

5. Inner product. In this section we define an inner product on & ;.
We give an example to show that the norm defined by this inner product
and the norm || - ||1,1 defined by are not equivalent.

On 6&1,1 we define a bilinear map

(u,v) = S(—u)ddcv ARV =4t — 1) S(—u)Av.
Q Q
THEOREM 5.1. The form (-,-) defines an inner product on 6&y ;.
Proof. (i) The bilinearity of (-,-) is obvious.
(ii) By Theorem we get the symmetry of (-,-).
(iii) For any w = uy — ug € 6&1.1, by Theorem

(5.1)  (u,u) = S(U2 —up)dd(up —ug) A 571—1

(9}
= S(—ul)ddcul A B 1 + S ’u,2 ddc’u,z A BT T S(—ul)ddch A ,Bnil
(0] 2 2
=ey1(ur) +eq1(ug) — S( up)ddug A 7L

By Theorem [3.1] and the Cauchy Schwarz inequality

(5.2) \(—w)ddus A B < eqq(un)2er(u2)? < S(era(ur) + e (un)).
2

(5.1) and (5.2) yield (u,u) > 0. Now suppose that u = u; —ug € 0&1 1

with (u,u) = 0. Since the smallest harmonic majorants of u; and ug are

identically 0, by the Riesz decomposition theorem we have

1 .
onmax{1,2n — 2} (S}GQ(%?J)Aui(y), 1=1,2,

ui(z) =

where G(z,y) is the Green function of 2. Thus (u,u) is equal to

oz ) G (Bua(2) — 302 Bual) - Bus() =

Applying [Dd, Theorem XIII.7| with the signed measure p = Aug — Aug to
the above identity we get u = 0, i.e. Au; = Aus. This implies that u; = us
almost everywhere. By the subharmonicity of uy,us we get u =0. u

We define the norm ||[u]|| = (u,u)"/? on §&; 1. Then |||ul|| < ||lul1,1, with
equality when u € & 1. The following example shows that these two norms
are not equivalent.




Delta m-subharmonic functions 47

EXAMPLE 5.2. Let E(z) = 1 — ||z[|>72" on the unit ball B. Then AE =
(2n — 2)o, 60, where g is the Dirac measure at 0, and oy, is the surface
measure of B in C". For a < b < 0 define the following functions on B:

ug(2) = max(FE(z),a), up(z) = max(FE(z),b).
Then ug, up € £,1(B). If we take any v, w € & 1(B) such that u, —up = v—w
then
Aug + Av = Auy + Aw
with
supp(Au,) = {E(z) = a},  supp(Auy) = {E(z) = b}.
Hence {E(z) = a} C supp(Aw). Therefore, Aw > Aug, so u, > w. By
Theorem (ug — up) ™ = ug, (ug —up)” = up and
(5.3) [t = upll11 = [t + upll11 = €11 (ua +up) /% > er1(ua)'/?.
Choose any decreasing sequence {b;}, b; < 0, that converges to —1. Then
{uj} = {u—1 —up;} C &1, and by (5.3) we have
Jujllin > era(u_1)? =[(2n — 2)0,]/2,  although (uj,uj) — 0.
The following example shows that the norm ||-||1 ,,, defined on 6&; ,,, with
m > 1 by (3.5 does not come from any inner product.
EXAMPLE 5.3. Let m = n = 2, and {2 = B be the unit ball in C?. For
a < b < 0 define the following functions on 2:
u = max(log|z],b), v =max(log|z|,a) € & 2(B).

We have

(ddu)? = doy =y,  (ddv)* = doy)s—eay,

[dd®(u +v)]? = (dd°u)? + 2dd°u A dd°v + (ddv)?

= 3(dd‘u)? + (dd°v)* = 3doy,|—evy + dO(||=coy,

[ddc(u - ’U)]2 = dO’{|Z‘:ea} - dU{M:eb},
where do 4 is the surface measure on A. It was proved in [AC] that (u—v)*
=wu and (u—wv)” =v. Hence

era(u) = era((u+0)") = | (~u)(ddw)* = (=b)(2m)%,
B
er2(v) = er2((u—v)7) = | (-v)(dd0)* = (=a)(2m)".
B

Now we have

Jut vl = evau+ 0 = ((-u—v)fdatu +-0)?) "
B

= [-(2m)*(a+ TH)]*%,
lu = vlf 5 = (= 0)" + (u=2)7[72 = u+o]i,
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So

lu+0llf o + Il = 0][f 2 = =2(2m)**(a + 75)*”,

2([[ull? 2 + 10]1F 2) = 2(e12(w)*? + e12(0)*) = —2(2m) 2 (> + 7).
This implies that || - |12 does not satisfy the parallelogram law, so it does
not come from any inner product.
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