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Summary. If n ≥ 3 and d ∈ {3, 4} or if n ≥ 1 and d ≥ 5, then any sequence of d-
dimensional cubes of edge lengths not greater than 1 whose total volume does not exceed
(n+ 1) · 2−d can be on-line packed into n unit d-dimensional cubes.

1. Introduction. For i = 1, 2, . . . let Qi = λiI, where λi ∈ (0, 1] and
I = [0, 1]d. We say that the cubes Q1, Q2, . . . can be packed (in parallel
way) into a domain D ⊂ Rd if there are σi ∈ Rd such that

⋃
(σi +Qi) ⊆ D

and σi +Qi have pairwise disjoint interiors. By an on-line packing we mean
a packing in which the members of a sequence of cubes Qi are revealed
one by one. First we only know λ1 but we do not know λ2, λ3, . . . . We
choose the appropriate σ1 and pack Q1. For i > 1, we learn λi+1 only
when σ1, . . . , σi have been defined, i.e., we do not know what Qi+1 is before
we assign a position of Qi, which cannot be changed afterwards. Surveys
of results concerning packings and on-line packings are given in [1], [5]
and [9].

Januszewski [7] proved that any sequence of squares of side lengths not
greater than 1 whose total area does not exceed 1

4(n + 1) can be on-line
packed into n pairwise disjoint squares of sides of length 1 provided n ≥ 3.
Note that it is an open question whether this holds for n = 2 and n = 1. For
n = 1, the following upper bounds of total area of squares of side lengths not
greater than 1 which can be on-line packed into the unit square were found:
5/16 [8], 1/3 [6], 11/32 [4], 3/8 [2] and 2/5 [3].
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We consider the problem of on-line packing of d-dimensional cubes into n
unit d-dimensional cubes. Let Ij = τj+[0, 1]d, where τj ∈ Rd for j = 1, . . . , n
be pairwise disjoint cubes. Moreover, let Jn = I1 ∪ · · · ∪ In.

Observe that n + 1 cubes (1/2 + ε) · I (of total volume greater than
(n + 1) · 2−d) cannot be packed into Jn for any ε > 0. The reason is that
the interior of any cube (1/2+ ε) · I packed into a unit cube Ik contains the
center of Ik.

The aim of this paper is to show that if either n ≥ 3 and d ∈ {3, 4} or if
n ≥ 1 and d ≥ 5, then any sequence of d-dimensional cubes of edge lengths
not greater than 1 whose total volume does not exceed (n+ 1) · 2−d can be
on-line packed into n unit d-dimensional cubes.

2. Containers. In the main packing method some small cubes Qi will
first be packed into special cubes Pi, and then Pi ⊃ Qi will be packed into
Jn by the method described in this section.

Let l ∈ {2, 3}. For each positive integer p, by an (l, p)-cube we mean
the cube 2

l·2p I. Let w be a positive integer and let A be the union of (l, 1)-
cubes A1, . . . , Aw with pairwise disjoint interiors. We call these cubes (l, 1)-
containers. For each positive integer q any (l, q)-container can be dissected
into 2d congruent (l, q + 1)-cubes also called (l, q + 1)-containers. Let us
number all (l, 2)-containers contained in Ak (for k = 1, . . . , w) with integers
from (k−1) ·2d+1 to k ·2d. Furthermore, for each q, all (l, q+1)-containers
contained in an (l, q)-container whose number is m are numbered with the
integers (m− 1) · 2d + 1, . . . ,m · 2d.

We present a method of the on-line packing of sequences of (l, pi)-cubes
into A.

We just pack every (l, pi)-cube of the sequence in the congruent (l, pi)-
container of A with the smallest possible number. By an empty (l, pi)-
container we mean an (l, pi)-container whose interior has an empty inter-
section with all cubes packed before. We stop the packing process if a suc-
cessive (l, pi)-cube in the sequence cannot be packed, i.e., if no empty (l, pi)-
container of A exists. We call this approach the method of the first fitting
container.

The following proposition says that the above method is extremely effi-
cient. The volume of A is denoted by |A|.

Proposition 2.1. Every sequence of (l, pi)-cubes whose total volume is
smaller than or equal to |A| can be on-line packed in A by the method of the
first fitting container.

Proof. Assume that the total volume of the (l, pi)-cubes in the sequence
is not greater than |A| and that the packing procedure stops when we wish
to pack an (l, r)-cube. Clearly the volume of this cube is (2/l)d · 2−dr. Since
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every (l, pi)-cube has been packed in the first fitting container, we conclude
that there is no empty (l, u)-container for any u < r. Moreover, there are
at most 2d − 1 empty containers of every size (l, r + 1), (l, r + 2), . . . at this
time. Since a finite number of (l, pi)-cubes have been packed, the number of
those empty (l, pi)-containers is finite. Thus the sum of the volumes of the
empty (l, pi)-containers is smaller than

(2d − 1)(2/l)d(2−d(r+1) + 2−d(r+2) + · · · ) = (2/l)d · 2−dr.
Consequently, the total volume of the (l, pi)-cubes packed up to now is
greater than |A| − (2/l)d · 2−dr. Since we have just obtained an (l, r)-cube of
volume (2/l)d · 2−dr, the total volume of the (l, pi)-cubes in the sequence is
greater than |A|, which is a contradiction.

3. Packing algorithm. Let d ≥ 3 and let (Qi) be a sequence of cubes
Qi = qiI, where qi ∈ (0, 1]. We consider the following types of cubes:

• Qi is very big if qi > 2/3;
• Qi is big if 1/2 < qi ≤ 2/3;
• other cubes are small ; a small cube Qi is

– 2-small if qi ∈
⋃∞

j=1(2/3 · 2−j , 2−j ];
– 3-small if qi ∈

⋃∞
j=1(2

−1−j , 2/3 · 2−j ].

A unit cube Ik ⊂ Jn is said to be empty if no cube has been packed into
it; a 2-cube if a 2-small cube has been packed into it; a 3-cube if a 3-small
cube has been packed into it; a v-cube if a very big cube has been packed
into it; and a b-cube if a big cube has been packed into it and no other cube
has been packed into it. However, if a 2-small cube has been packed into a
b-cube Ik, then Ik is no longer a b-cube: it becomes a 2-cube. Moreover, if a
3-small cube has been packed into a b-cube Ik, then Ik is no longer a b-cube:
it becomes a 3-cube.

In each of the unit cubes Ik ⊂ Jn we select one of the vertices and denote
it by vk. Let Fk be the cube of edge length 3/4 such that Fk is contained in
a 2-cube Ik and one of the vertices of Fk is a vertex vk of Ik. We partition
any 2-cube Ik into 4d (2, 2)-containers. We order them so that the (2, 2)-
containers contained in Ik \Fk precede those contained in Fk. Let Gk be the
cube of edge length 2/3 such that Gk is contained in a 3-cube Ik and one of
the vertices of Gk is vk. We partition any 3-cube Ik into 3d (3, 1)-containers.
We order them so that the (3, 1)-containers contained in Ik \ Gk precede
those contained in Gk.

Packing very big cubes. If Qi is very big, then we find the greatest
k ∈ {1, . . . , n} such that Ik is empty and pack Qi into Ik. Now Ik is a v-cube.
No other cube will be packed into this v-cube.
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Packing big cubes. A big cube Qi will be packed into Ik ⊂ Jn so that
one vertex of σi + Qi is vk. If Q1 is big, then we pack it into I1. Now I1 is
a b-cube. Assume that i > 1 and Qi is big. If there is a 3-cube into which
Qi can be packed, then we pack Qi into that cube. Now any (3, 1)-container
contained in G is non-empty and Ik is still a 3-cube. Otherwise, if there is
an empty unit cube of Jn, then we find the smallest k ∈ {1, . . . , n} such that
Ik is empty and we pack Qi into it; now Ik is a b-cube. If there is no empty
unit cube Ik and if there is a 2-cube Ik into which Qi can be packed, then
we pack Qi into it. Now any (2, 2)-container contained in Fk is non-empty
and Ik is still a 2-cube.

Packing 2-small cubes. If Q1 is 2-small, then we pack it into I1. If
1/3 < q1 ≤ 1/2, then we pack Q1 so that one vertex of σ1 +Q1 is a vertex
v 6= v1 of I1 and so that σ1 + Q1 has a non-empty intersection with the
empty (2, 2)-container with the smallest possible number (i.e., with number
1 when we pack Q1). If there is no vertex v 6= v1 of I1 at which Q1 can be
packed, then we pack this cube at the vertex v1. The packed cube σ1 + Q1

is contained in the union of 2d (2, 2)-containers. Now these containers are
non-empty. If q1 ∈

⋃∞
j=2(2/3 · 2−j , 2−j ], then we find the smallest (2, p)-

container P1 containing Q1 and we pack P1, and hence also Q1 ⊂ P1, into
I1 by the method of the first fitting container. Clearly, I1 is now a 2-cube.
Assume that i > 1 and Qi is 2-small. If there is a 2-cube into which Qi can
be packed, then we pack Qi in the same way as Q1. Otherwise, if there is an
empty unit cube of Jn, then we find the smallest k ∈ {1, . . . , n} such that
Ik is empty and pack Qi into Ik in the same way as we packed Q1. Now Ik
is a 2-cube. If there is no empty unit cube in Jn and if there is a b-cube Ik
into which Qi can be packed, then we pack Qi into it. Now Ik is a 2-cube
and any (2, 2)-container contained in Fk is non-empty.

Packing 3-small cubes. If Q1 is 3-small, then we find the smallest
(3, p)-container R1 containing Q1 and we pack R1, and hence also Q1 ⊂ R1,
into I1 by the method of the first fitting container. Clearly, I1 is now a
3-cube. Assume that i > 1 and Qi is 3-small. If there is a 3-cube into which
the smallest (3, p)-container Ri containing Qi can be packed, then we pack
Ri (together with Qi) into this 3-cube by the method of the first fitting
container. Otherwise, we find the smallest k ∈ {1, . . . , n} such that Ik is
either empty or a b-cube. We pack Ri together with Qi into Ik by the method
of the first fitting container. Now Ik is a 3-cube.

4. Efficiency of the packing algorithm

Lemma 4.1. Assume that there is no big cube in a sequence. Denote by
n2 the number of 2-cubes in Jn. If a sequence of 2-small cubes cannot be
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on-line packed into 2-cubes by the method described in Section 3, then the
total volume of the cubes exceeds n2 · (2/3)d.

Proof. Let (Qi) be a sequence of 2-small cubes as in the statement. De-
note by Qz the first cube from the sequence which cannot be packed into
2-cubes.

For every Qi we find the smallest (2, pi)-cube Pi containing Qi. Since Qz

cannot be packed into 2-cubes, we deduce by Proposition 2.1 that
z∑

i=1

|Pi| > n2.

Moreover

|Qi| = qdi >

(
2

3 · 2pi

)d

=

(
2

3

)d

·
(

1

2pi

)d

=

(
2

3

)d

|Pi|.

Thus
z∑

i=1

|Qi| >
(
2

3

)d

·
z∑

i=1

|Pi| > n2

(
2

3

)d

.

Lemma 4.2. Denote by n2 the number of 2-cubes in Jn. If a sequence
of 2-small cubes and big cubes cannot be on-line packed into 2-cubes by the
method described in Section 3, then the total volume of the cubes exceeds
(n2 + 1) · 2−d.

Proof. Let (Qi) be a sequence of 2-small cubes and big cubes as in the
statement. Denote by Qz the first cube from the sequence which cannot be
packed into 2-cubes.

If a big cube is packed into a 2-cube, then the total volume of the cubes
packed into this 2-cube is greater than (1/2)d. Denote by mb the number of
big cubes packed into 2-cubes.

Case 1: Qz is big. Obviously, qdz > (1/2)d.

Subcase 1a: mb = 0. By Lemma 4.1 the total volume of the cubes
packed into 2-cubes is greater than (n2 − 1)(2/3)d. It is easy to verify that
(2/3)d > 2(1/2)d for d ≥ 3. If n2 > 1, then

z∑
i=1

|Qi| > (n2 − 1)

(
2

3

)d

+ qdz > n2

(
1

2

)d

+

(
1

2

)d

= (n2 + 1)

(
1

2

)d

.

If n2 = 1 and if there is a 2-small cube Qw such that qw + qz > 1, then
qdw + qdz > (1 − qz)d + qdz . Set ϕ(q) = (1 − q)d + qd. The function ϕ(q) has
a global minimum at q0 = 1/2. Thus the total volume of the cubes packed
into a 2-cube is greater than

ϕ(qz)− qdz > ϕ(q0)− qdz = 2

(
1

2

)d

− qdz .
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If n2 = 1 and if there is no 2-small cube Qw such that qw + qz > 1, then
the total volume of the cubes packed into the 2-cube is greater than (1 −
(2/3)d)(2/3)d. For d ≥ 3 we have (1 − (2/3)d)(2/3)d > (1/2)d. Moreover
(1/2)d > 2(1/2)d − qdz . Consequently, if n2 = 1, then

z∑
i=1

|Qi| > 2

(
1

2

)d

− qdz + qdz = (n2 + 1)

(
1

2

)d

.

Subcase 1b: mb ≥ 1. Denote by l the smallest number such that a big
cube is packed into a 2-cube Il. Denote by Qw the first 2-small cube packed
into Il. Note that Qw could not be packed into n2 −mb 2-cubes into which
no big cube is packed. By Lemma 4.1 the total volume of the cubes packed
into those 2-cubes into which no big cube is packed plus the volume of Qw

is greater than (n2 −mb)(2/3)
d. Consequently,

z∑
i=1

|Qi| ≥ (n2 −mb)

(
2

3

)d

+mb

(
1

2

)d

+ qdz

> (n2 −mb)

(
1

2

)d

+mb

(
1

2

)d

+

(
1

2

)d

= (n2 + 1)

(
1

2

)d

.

Case 2: Qz is 2-small. Obviously, qdz ≤ (1/2)d.

Subcase 2a: mb = 0. By Lemma 4.1 we get
z∑

i=1

|Qi| > n2

(
2

3

)d

> (n2 + 1)

(
1

2

)d

.

Subcase 2b: mb ≥ 1. Denote by l the greatest number such that a
big cube is packed into Il. Furthermore, denote by Qw the big cube packed
into Il. If qw + qz > 1, then qdw + qdz > (1− qz)d + qdz ≥ 2(1/2)d. This implies
that the total volume of the cubes packed into Il is greater than 2(1/2)d−qdz .
If qw + qz < 1, then the total volume of the cubes packed into Il is greater
than (

1−
(
3

4

)d)(2

3

)d

+

(
1

2

)d

− qdz > 2

(
1

2

)d

− qdz .

The total volume of the cubes packed into mb − 1 other 2-cubes into which
big cubes are packed is greater than or equal to (mb − 1)(1/2)d. The total
volume of the cubes packed into those 2-cubes into which no big cube is
packed is greater than or equal to

(n2 −mb)

((
2

3

)d

− qdz
)
≥ (n2 −mb)

((
2

3

)d

−
(
1

2

)d)
≥ (n2 −mb)

(
1

2

)d

.
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Consequently,
z∑

i=1

|Qi| > (n2 −mb)

(
1

2

)d

+ (mb − 1)

(
1

2

)d

+ 2

(
1

2

)d

− qdz + qdz

= (n2 + 1)

(
1

2

)d

.

Lemma 4.3. Denote by n3 the number of 3-cubes in Jn. If a sequence
(Qi) of cubes containing both 3-small cubes and big cubes cannot be on-
line packed into 3-cubes by the method described in Section 3, then the total
volume of the cubes exceeds n3 · (3/4)d.

Proof. Let (Qi) be a sequence of cubes qiI, where qi ∈
⋃∞

j=1(2
−1−j ,

2/3 · 2−j ]. Assume that they cannot be packed into 3-cubes by the method
presented in Section 3. Denote by Qz the first cube from the sequence which
cannot be packed into 3-cubes. Furthermore, denote by lb the number of big
cubes packed into 3-cubes.

Case 1: lb = 0 and Qz is 3-small. For every Qi we find the smallest
(3, pi)-container Ri containing Qi. Since Qz cannot be packed into 3-cubes,
we deduce by Proposition 2.1 that

∑z
i=1 |Ri| > n3. Moreover

|Qi| = qdi >

(
1

2 · 2pi

)d

=

(
3

4

)d

·
(

2

3 · 2pi

)d

=

(
3

4

)d

|Ri|.

Thus
z∑

i=1

|Qi| >
(
3

4

)d

·
z∑

i=1

|Ri| > n3

(
3

4

)d

.

Case 2: lb = 0 and Qz is big. The total volume of the cubes packed into
3-cubes is greater than

(n3 − 1)

(
3

4

)d

+

(
1−

(
2

3

)d)(3

4

)d

= n3

(
3

4

)d

−
(
1

2

)d

.

Consequently,
z∑

i=1

|Qi| > n3

(
3

4

)d

−
(
1

2

)d

+ qdz > n3

(
3

4

)d

.

Case 3: lb ≥ 1. The total volume of the cubes packed into 3-cubes is
greater than

(n3 − lb)
(
3

4

)d

+ lb

(
1−

(
2

3

)d)(3

4

)d

+ lb

(
1

2

)d

− qdz = n3

(
3

4

)d

− qdz .
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Consequently,
z∑

i=1

|Qi| > n3

(
3

4

)d

− qdz + qdz = n3

(
3

4

)d

.

Theorem 4.4. If n ≥ 3, then any sequence of d-dimensional cubes of
edge lengths not greater than 1 whose total volume does not exceed (n+1)·2−d
can be on-line packed into Jn.

Proof. Let n ≥ 3 and let (Qi) be a sequence of d-dimensional cubes as
in the statement. We pack the cubes by the method described in Section 3.
Contrary to the statement, suppose that it is impossible to pack Q1, Q2, . . .
into Jn by this method. Let Qz be the cube which stops the packing process
and let

ζ =
z∑

i=1

|Qi|.

We show that this leads to the false inequality

ζ > (n+ 1) · 2−d.

Denote by n2, n3, nb, nv the number of 2-, 3-, b- and v-cubes respectively.
Obviously n2 + n3 + nb + nv = n. We consider four cases.

Case 1: Qz is big (1/2 < qz ≤ 2/3).

Subcase 1a: n3 ≥ 1 and n2 = 0. By Lemma 4.3 we get

ζ > n3

(
3

4

)d

+ nb

(
1

2

)d

+ nv

(
2

3

)d

> (n3 + 1)

(
1

2

)d

+ nb

(
1

2

)d

+ nv

(
2

3

)d

≥ (n+ 1)

(
1

2

)d

.

Subcase 1b: n2 ≥ 1 and n3 = 0. By Lemma 4.2 we get

ζ > (n2 + 1)

(
1

2

)d

+ nb

(
1

2

)d

+ nv

(
2

3

)d

≥ (n+ 1)

(
1

2

)d

.

Subcase 1c: n3 ≥ 1 and n2 ≥ 1. The total volume of the cubes packed
into 3-cubes is greater than

n3

(
3

4

)d

− qdz > (n3 + 1)

(
2

3

)d

−
(
2

3

)d

= n3

(
2

3

)d

.

The total volume of the cubes packed into 2-cubes is greater than (n2+1)(1/2)d
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− qdz . Thus

ζ > n3

(
2

3

)d

+ (n2 + 1)

(
1

2

)d

− qdz + nb

(
1

2

)d

+ nv

(
2

3

)d

+ qdz

≥ (n+ 1)

(
1

2

)d

.

Subcase 1d: n3 = 0 and n2 = 0. Obviously qdz > (1/2)d. We get

ζ > nb

(
1

2

)d

+ nv

(
2

3

)d

+ qdz > (nb + nv)

(
1

2

)d

+

(
1

2

)d

= (n+ 1)

(
1

2

)d

.

Case 2: Qz is very big (qz > 2/3). Obviously qdz > (2/3)d > 2(1/2)d.
Note that if a very big cube Qz cannot be packed into Jn, then it is possible
that both one unit 2-cube and one unit 3-cube are almost empty (as in
Fig. 1).

xd−1

x1

xd

1

1

1

v1

2-cube I1

xd−1

x1

xd v2

1

1

3-cube I2

. . .

xd−1
1

x1

xd

1

1

vn

3-cube In

Fig. 1. There is no empty cube into which a very big cube Qz could be packed.

If n3 ≥ 1, then

ζ > [(n2 − 1) + 1]

(
1

2

)d

+ (n3 − 1)

(
3

4

)d

+ nb

(
1

2

)d

+ nv

(
2

3

)d

+ qdz

> (n− 1)

(
1

2

)d

+ 2

(
1

2

)d

= (n+ 1)

(
1

2

)d

.

If n3 = 0, then

ζ > [(n2 − 1) + 1]

(
1

2

)d

+ nb

(
1

2

)d

+ nv

(
2

3

)d

+ qdz > n

(
1

2

)d

+ 2

(
1

2

)d

> (n+ 1)

(
1

2

)d

.

Case 3: Qz is 2-small. Assume that n3 ≥ 1. Denote by l the greatest
number such that a 3-small cube is packed into Il. If a big cube cannot be
packed into Il, then either a big cube is packed into Il and the total volume
of the cubes packed into Il is greater than (1/2)d, or no big cube is packed
into Il and the total volume of the cubes packed into Il is greater than
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(1 − (2/3)d)(3/4)d > (1/2)d. This implies that if nb ≥ 1 or if a big cube is
packed into a 2-cube, then, by the description of packing of big cubes, the
total volume of the cubes packed into 3-cubes is greater than

(n3 − 1)

(
3

4

)d

+

(
1

2

)d

≥ n3
(
1

2

)d

.

Subcase 3a: n2 ≥ 1 and no big cube is packed into 2-cubes. The total
volume of the cubes packed into 2-cubes is greater than n2(2/3)

d − qdz . If
nb = 0, then it is possible that one unit 3-cube is almost empty. Consequently,

ζ > n2

(
2

3

)d

− qdz + (n3 − 1)

(
3

4

)d

+ nv

(
2

3

)d

+ qdz ≥ (n− 1)

(
2

3

)d

> (n+ 1)

(
1

2

)d

.

If nb ≥ 1, then

ζ > n2

(
2

3

)d

− qdz + n3

(
1

2

)d

+ nb

(
1

2

)d

+ nv

(
2

3

)d

+ qdz

> (n2 + 1)

(
1

2

)d

+ (n3 + nb + nv)

(
1

2

)d

= (n+ 1)

(
1

2

)d

.

Subcase 3b: a big cube is packed into a 2-cube. By Lemma 4.2 we get

ζ > (n2 + 1)

(
1

2

)d

+ n3

(
1

2

)d

+ nb

(
1

2

)d

+ nv

(
2

3

)d

≥ (n+ 1)

(
1

2

)d

.

Subcase 3c: n2 = 0. If nb ≥ 1 (see Fig. 2, where nb = n), then the total
volume of the cubes packed into b-cubes is greater then

(nb − 1)

(
1

2

)d

+ 2

(
1

2

)d

− qdz = (nb + 1)

(
1

2

)d

− qdz .

Hence

ζ > (nb + 1)

(
1

2

)d

− qdz + n3

(
1

2

)d

+ nv

(
2

3

)d

+ qdz ≥ (n+ 1)

(
1

2

)d

.

xd−1

Q1

x1

xd

1

1

1

v1

b-cube I1

xd−1

Q2

x1

xd

1

1

1

v2

b-cube I2

. . .

xd−1
1

Qn

Qz

x1

xd

1

1

vn

b-cube In

Fig. 2. Qz is 2-small and nb = n.
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If nb = 0, then

ζ > (n3 − 1)

(
3

4

)d

+ nv

(
2

3

)d

≥ (n− 1)

(
2

3

)d

> (n+ 1)

(
1

2

)d

.

Case 4: Qz is 3-small. This implies that nb = 0.

Subcase 4a: n3 ≥ 1. The total volume of the cubes packed into 3-
cubes is greater than n3(3/4)d − qdz . It is easy to verify that if n3 ≥ 1, then
n3(3/4)

d > (n3 + 2)(1/2)d for d ≥ 3. If n2 ≥ 1, then it is possible that one
unit 2-cube is almost empty. Thus

ζ > (n2 − 1)

(
1

2

)d

+ (n3 + 2)

(
1

2

)d

+ nv

(
2

3

)d

≥ (n+ 1)

(
1

2

)d

.

If n2 = 0, then

ζ > (n3 + 2)

(
1

2

)d

+ nv

(
2

3

)d

> (n+ 1)

(
1

2

)d

.

Subcase 4b: n3 = 0. If no big cube is packed into 2-cubes, then

ζ > (n2 − 1)

(
2

3

)d

+ nv

(
2

3

)d

= (n− 1)

(
2

3

)d

> (n+ 1)

(
1

2

)d

.

If a big cube is packed into 2-cubes and nv ≥ 1, then

ζ > [(n2 − 1) + 1]

(
1

2

)d

+ nv

(
2

3

)d

> (n2 + nv + 1)

(
1

2

)d

= (n+ 1)

(
1

2

)d

.

If a big cube is packed into 2-cubes and nv = 0 (n2 = n), then both a big
cube and a 2-small cube are packed into In. By Lemma 4.2 we get

ζ > [(n2 − 1) + 1]

(
1

2

)d

+

(
1

2

)d

= (n+ 1)

(
1

2

)d

.

5. Packing algorithm for d ≥ 5. Let d ≥ 5 and let (Qi) be a sequence
of cubes qiI, where qi ∈ (0, 1]. We consider the following types of cubes:

• Qi is f -small if qi ≤ 1− 1
4

d
√
2;

• Qi is f -big if qi > 1− 1
4

d
√
2.

A unit cube Ik ⊂ Jn is said to be empty if no cube has been packed into
it. A unit cube Ik ⊂ Jn is said to be an s-cube if an f -small cube has been
packed into it. A unit cube Ik ⊂ Jn is said to be an l-cube if an f -big cube
has been packed into it.

We pack f -small cubes by the method described in [8]. If Q1 is f -small,
then we pack it into I1. Clearly, I1 is now an s-cube. Assume that i > 1 and
Qi is f -small. If there is an s-cube into which Qi can be packed, then we
pack it into this s-cube. Otherwise, we find the smallest k ∈ {1, . . . , n} such
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that Ik is empty. We pack Qi into Ik by the method described in [8]. Now
Ik is an s-cube.

If Qi is f -big, then we find the greatest k ∈ {1, . . . , n} such that Ik is
empty and pack Qi into Ik. Now Ik is an l-cube.

6. Efficiency of the packing algorithm for d ≥ 5

Lemma 6.1 (see [8]). If d ≥ 5, then every sequence of d-dimensional
cubes of total volume at most 2

(
1
2

)d can be on-line packed into the unit cube I.

Lemma 6.2. Denote by ns the number of s-cubes in Jn. If d ≥ 5 and
if a sequence of f -small cubes cannot be on-line packed into s-cubes by the
method described in Section 5, then the total volume of the cubes exceeds
(ns + 1) · 2−d.

Proof. Let (Qi) be a sequence of f -small cubes as in the statement.
Denote by Qz the first cube from the sequence which cannot be packed into
s-cubes.

Case 1: ns = 1. By Lemma 6.1 we get
z∑

i=1

|Qi| > 2

(
1

2

)d

= (ns + 1)

(
1

2

)d

.

Case 2: ns ≥ 2 and qz ≤ 1/2. Obviously qdz ≤
(
1
2

)d. We get
z∑

i=1

|Qi| > ns

(
2

(
1

2

)d

− qdz
)
+ qdz = 2ns

(
1

2

)d

− (ns − 1)qdz

≥ (ns + 1)

(
1

2

)d

.

Case 3: ns ≥ 2 and qz > 1/2. Note that the total volume of the cubes
packed into any two s-cubes is greater than 2(1/2)d.

Subcase 3a: ns is even. We get
z∑

i=1

|Qi| >
ns
2
· 2
(
1

2

)d

+ qdz > ns

(
1

2

)d

+

(
1

2

)d

= (ns + 1)

(
1

2

)d

.

Subcase 3b: ns is odd. The total volume of the cubes packed into an
s-cube Ij with the greatest number j is greater than 2(1/2)d− qdz . The total
volume of the cubes packed into ns − 1 other s-cubes is greater than

ns − 1

2
· 2
(
1

2

)d

= (ns − 1)

(
1

2

)d

.
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Consequently,
z∑

i=1

|Qi| > (ns − 1)

(
1

2

)d

+ 2

(
1

2

)d

− qdz + qdz = (ns + 1)

(
1

2

)d

.

Theorem 6.3. If n ≥ 1 and d ≥ 5, then any sequence of d-dimensional
cubes of edge lengths not greater than 1 whose total volume does not exceed
(n+ 1) · 2−d can be on-line packed into Jn.

Proof. Let n ≥ 1 and let (Qi) be a sequence of d-dimensional cubes as
in the statement. We pack the cubes by the method described in Section 5.
Suppose that, contrary to the statement, it is impossible to pack Q1, Q2, . . .
into Jn by this method. Let Qz be the cube which stops the packing process
and let

ζ =
z∑

i=1

|Qi|.

We show that this leads to the false inequality

ζ > (n+ 1) · 2−d.
Denote by ns, nl the number of s- and l-cubes, respectively. Obviously we
have ns + nl = n. It is easy to verify that(

1− 1

4
d
√
2

)d

> 2

(
1

2

)d

for d ≥ 5. This implies that the total volume of the cubes packed into l-cubes
is greater than nl · 2(1/2)d. We consider two cases.

Case 1: Qz is f -small. By Lemma 6.2 we get

ζ > (ns + 1)

(
1

2

)d

+ nl · 2
(
1

2

)d

≥ (n+ 1)

(
1

2

)d

.

Case 2: Qz is f -big. Obviously qdz > 2(1/2)d. It is possible that one of
the s-cubes is almost empty.

Subcase 2a: n = 1. We get

ζ > qdz > 2

(
1

2

)d

= (n+ 1)

(
1

2

)d

.

Subcase 2b: n ≥ 2. By Lemma 6.2 we get

ζ > (ns − 1) ·
(
1

2

)d

+ nl · 2
(
1

2

)d

+ qdz > (n− 1)

(
1

2

)d

+ 2

(
1

2

)d

= (n+ 1)

(
1

2

)d

.
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