CONVEX AND DISCRETE GEOMETRY

On-line Packing Cubes into n Unit Cubes

by

Łukasz ZIELONKA

Presented by Czesław BESSAGA

Summary. If $n \ge 3$ and $d \in \{3,4\}$ or if $n \ge 1$ and $d \ge 5$, then any sequence of *d*-dimensional cubes of edge lengths not greater than 1 whose total volume does not exceed $(n+1) \cdot 2^{-d}$ can be on-line packed into *n* unit *d*-dimensional cubes.

1. Introduction. For i = 1, 2, ... let $Q_i = \lambda_i I$, where $\lambda_i \in (0, 1]$ and $I = [0, 1]^d$. We say that the cubes $Q_1, Q_2, ...$ can be packed (in parallel way) into a domain $D \subset \mathbb{R}^d$ if there are $\sigma_i \in \mathbb{R}^d$ such that $\bigcup (\sigma_i + Q_i) \subseteq D$ and $\sigma_i + Q_i$ have pairwise disjoint interiors. By an on-line packing we mean a packing in which the members of a sequence of cubes Q_i are revealed one by one. First we only know λ_1 but we do not know $\lambda_2, \lambda_3, ...$ We choose the appropriate σ_1 and pack Q_1 . For i > 1, we learn λ_{i+1} only when $\sigma_1, \ldots, \sigma_i$ have been defined, i.e., we do not know what Q_{i+1} is before we assign a position of Q_i , which cannot be changed afterwards. Surveys of results concerning packings and on-line packings are given in [1], [5] and [9].

Januszewski [7] proved that any sequence of squares of side lengths not greater than 1 whose total area does not exceed $\frac{1}{4}(n+1)$ can be on-line packed into n pairwise disjoint squares of sides of length 1 provided $n \ge 3$. Note that it is an open question whether this holds for n = 2 and n = 1. For n = 1, the following upper bounds of total area of squares of side lengths not greater than 1 which can be on-line packed into the unit square were found: 5/16 [8], 1/3 [6], 11/32 [4], 3/8 [2] and 2/5 [3].

Key words and phrases: on-line packing, cubes.

Published online 24 November 2016.

²⁰¹⁰ Mathematics Subject Classification: Primary 52C17; Secondary 05B40.

Received 29 April 2016; revised 19 October 2016.

We consider the problem of on-line packing of *d*-dimensional cubes into *n* unit *d*-dimensional cubes. Let $I_j = \tau_j + [0, 1]^d$, where $\tau_j \in \mathbb{R}^d$ for $j = 1, \ldots, n$ be pairwise disjoint cubes. Moreover, let $J_n = I_1 \cup \cdots \cup I_n$.

Observe that n + 1 cubes $(1/2 + \epsilon) \cdot I$ (of total volume greater than $(n + 1) \cdot 2^{-d}$) cannot be packed into J_n for any $\epsilon > 0$. The reason is that the interior of any cube $(1/2 + \epsilon) \cdot I$ packed into a unit cube I_k contains the center of I_k .

The aim of this paper is to show that if either $n \ge 3$ and $d \in \{3, 4\}$ or if $n \ge 1$ and $d \ge 5$, then any sequence of d-dimensional cubes of edge lengths not greater than 1 whose total volume does not exceed $(n + 1) \cdot 2^{-d}$ can be on-line packed into n unit d-dimensional cubes.

2. Containers. In the main packing method some small cubes Q_i will first be packed into special cubes P_i , and then $P_i \supset Q_i$ will be packed into J_n by the method described in this section.

Let $l \in \{2,3\}$. For each positive integer p, by an (l,p)-cube we mean the cube $\frac{2}{l\cdot 2^p}I$. Let w be a positive integer and let A be the union of (l, 1)cubes A_1, \ldots, A_w with pairwise disjoint interiors. We call these cubes (l, 1)containers. For each positive integer q any (l,q)-container can be dissected into 2^d congruent (l, q + 1)-cubes also called (l, q + 1)-containers. Let us number all (l, 2)-containers contained in A_k (for $k = 1, \ldots, w$) with integers from $(k-1)\cdot 2^d + 1$ to $k\cdot 2^d$. Furthermore, for each q, all (l, q+1)-containers contained in an (l,q)-container whose number is m are numbered with the integers $(m-1)\cdot 2^d + 1, \ldots, m\cdot 2^d$.

We present a method of the on-line packing of sequences of (l, p_i) -cubes into A.

We just pack every (l, p_i) -cube of the sequence in the congruent (l, p_i) container of A with the smallest possible number. By an *empty* (l, p_i) *container* we mean an (l, p_i) -container whose interior has an empty intersection with all cubes packed before. We stop the packing process if a successive (l, p_i) -cube in the sequence cannot be packed, i.e., if no empty (l, p_i) container of A exists. We call this approach the *method of the first fitting container*.

The following proposition says that the above method is extremely efficient. The volume of A is denoted by |A|.

PROPOSITION 2.1. Every sequence of (l, p_i) -cubes whose total volume is smaller than or equal to |A| can be on-line packed in A by the method of the first fitting container.

Proof. Assume that the total volume of the (l, p_i) -cubes in the sequence is not greater than |A| and that the packing procedure stops when we wish to pack an (l, r)-cube. Clearly the volume of this cube is $(2/l)^d \cdot 2^{-dr}$. Since

every (l, p_i) -cube has been packed in the first fitting container, we conclude that there is no empty (l, u)-container for any u < r. Moreover, there are at most $2^d - 1$ empty containers of every size $(l, r+1), (l, r+2), \ldots$ at this time. Since a finite number of (l, p_i) -cubes have been packed, the number of those empty (l, p_i) -containers is finite. Thus the sum of the volumes of the empty (l, p_i) -containers is smaller than

$$(2^{d}-1)(2/l)^{d}(2^{-d(r+1)}+2^{-d(r+2)}+\cdots) = (2/l)^{d}\cdot 2^{-dr}$$

Consequently, the total volume of the (l, p_i) -cubes packed up to now is greater than $|A| - (2/l)^d \cdot 2^{-dr}$. Since we have just obtained an (l, r)-cube of volume $(2/l)^d \cdot 2^{-dr}$, the total volume of the (l, p_i) -cubes in the sequence is greater than |A|, which is a contradiction.

3. Packing algorithm. Let $d \geq 3$ and let (Q_i) be a sequence of cubes $Q_i = q_i I$, where $q_i \in (0, 1]$. We consider the following types of cubes:

- Q_i is very big if $q_i > 2/3$;
- Q_i is big if $1/2 < q_i \le 2/3$;
- other cubes are *small*; a small cube Q_i is

 - 2-small if $q_i \in \bigcup_{j=1}^{\infty} (2/3 \cdot 2^{-j}, 2^{-j}];$ 3-small if $q_i \in \bigcup_{j=1}^{\infty} (2^{-1-j}, 2/3 \cdot 2^{-j}].$

A unit cube $I_k \subset J_n$ is said to be *empty* if no cube has been packed into it; a 2-cube if a 2-small cube has been packed into it; a 3-cube if a 3-small cube has been packed into it; a *v*-cube if a very big cube has been packed into it; and a *b*-cube if a big cube has been packed into it and no other cube has been packed into it. However, if a 2-small cube has been packed into a b-cube I_k , then I_k is no longer a b-cube: it becomes a 2-cube. Moreover, if a 3-small cube has been packed into a *b*-cube I_k , then I_k is no longer a *b*-cube: it becomes a 3-cube.

In each of the unit cubes $I_k \subset J_n$ we select one of the vertices and denote it by v_k . Let F_k be the cube of edge length 3/4 such that F_k is contained in a 2-cube I_k and one of the vertices of F_k is a vertex v_k of I_k . We partition any 2-cube I_k into 4^d (2,2)-containers. We order them so that the (2,2)containers contained in $I_k \setminus F_k$ precede those contained in F_k . Let G_k be the cube of edge length 2/3 such that G_k is contained in a 3-cube I_k and one of the vertices of G_k is v_k . We partition any 3-cube I_k into 3^d (3, 1)-containers. We order them so that the (3,1)-containers contained in $I_k \setminus G_k$ precede those contained in G_k .

Packing very big cubes. If Q_i is very big, then we find the greatest $k \in \{1, \ldots, n\}$ such that I_k is empty and pack Q_i into I_k . Now I_k is a v-cube. No other cube will be packed into this v-cube.

Packing big cubes. A big cube Q_i will be packed into $I_k \subset J_n$ so that one vertex of $\sigma_i + Q_i$ is v_k . If Q_1 is big, then we pack it into I_1 . Now I_1 is a *b*-cube. Assume that i > 1 and Q_i is big. If there is a 3-cube into which Q_i can be packed, then we pack Q_i into that cube. Now any (3, 1)-container contained in G is non-empty and I_k is still a 3-cube. Otherwise, if there is an empty unit cube of J_n , then we find the smallest $k \in \{1, \ldots, n\}$ such that I_k is empty and we pack Q_i into it; now I_k is a *b*-cube. If there is no empty unit cube I_k and if there is a 2-cube I_k into which Q_i can be packed, then we pack Q_i into it. Now any (2, 2)-container contained in F_k is non-empty and I_k is still a 2-cube.

Packing 2-small cubes. If Q_1 is 2-small, then we pack it into I_1 . If $1/3 < q_1 \leq 1/2$, then we pack Q_1 so that one vertex of $\sigma_1 + Q_1$ is a vertex $v \neq v_1$ of I_1 and so that $\sigma_1 + Q_1$ has a non-empty intersection with the empty (2,2)-container with the smallest possible number (i.e., with number 1 when we pack Q_1). If there is no vertex $v \neq v_1$ of I_1 at which Q_1 can be packed, then we pack this cube at the vertex v_1 . The packed cube $\sigma_1 + Q_1$ is contained in the union of 2^d (2,2)-containers. Now these containers are non-empty. If $q_1 \in \bigcup_{i=2}^{\infty} (2/3 \cdot 2^{-j}, 2^{-j}]$, then we find the smallest (2, p)container P_1 containing Q_1 and we pack P_1 , and hence also $Q_1 \subset P_1$, into I_1 by the method of the first fitting container. Clearly, I_1 is now a 2-cube. Assume that i > 1 and Q_i is 2-small. If there is a 2-cube into which Q_i can be packed, then we pack Q_i in the same way as Q_1 . Otherwise, if there is an empty unit cube of J_n , then we find the smallest $k \in \{1, \ldots, n\}$ such that I_k is empty and pack Q_i into I_k in the same way as we packed Q_1 . Now I_k is a 2-cube. If there is no empty unit cube in J_n and if there is a b-cube I_k into which Q_i can be packed, then we pack Q_i into it. Now I_k is a 2-cube and any (2,2)-container contained in F_k is non-empty.

Packing 3-small cubes. If Q_1 is 3-small, then we find the smallest (3, p)-container R_1 containing Q_1 and we pack R_1 , and hence also $Q_1 \subset R_1$, into I_1 by the method of the first fitting container. Clearly, I_1 is now a 3-cube. Assume that i > 1 and Q_i is 3-small. If there is a 3-cube into which the smallest (3, p)-container R_i containing Q_i can be packed, then we pack R_i (together with Q_i) into this 3-cube by the method of the first fitting container. Otherwise, we find the smallest $k \in \{1, \ldots, n\}$ such that I_k is either empty or a *b*-cube. We pack R_i together with Q_i into I_k by the method of the first fitting container. Now I_k is a 3-cube.

4. Efficiency of the packing algorithm

LEMMA 4.1. Assume that there is no big cube in a sequence. Denote by n_2 the number of 2-cubes in J_n . If a sequence of 2-small cubes cannot be

on-line packed into 2-cubes by the method described in Section 3, then the total volume of the cubes exceeds $n_2 \cdot (2/3)^d$.

Proof. Let (Q_i) be a sequence of 2-small cubes as in the statement. Denote by Q_z the first cube from the sequence which cannot be packed into 2-cubes.

For every Q_i we find the smallest $(2, p_i)$ -cube P_i containing Q_i . Since Q_z cannot be packed into 2-cubes, we deduce by Proposition 2.1 that

$$\sum_{i=1}^{z} |P_i| > n_2.$$

Moreover

$$|Q_i| = q_i^d > \left(\frac{2}{3 \cdot 2^{p_i}}\right)^d = \left(\frac{2}{3}\right)^d \cdot \left(\frac{1}{2^{p_i}}\right)^d = \left(\frac{2}{3}\right)^d |P_i|.$$

Thus

$$\sum_{i=1}^{z} |Q_i| > \left(\frac{2}{3}\right)^d \cdot \sum_{i=1}^{z} |P_i| > n_2 \left(\frac{2}{3}\right)^d. \bullet$$

LEMMA 4.2. Denote by n_2 the number of 2-cubes in J_n . If a sequence of 2-small cubes and big cubes cannot be on-line packed into 2-cubes by the method described in Section 3, then the total volume of the cubes exceeds $(n_2 + 1) \cdot 2^{-d}$.

Proof. Let (Q_i) be a sequence of 2-small cubes and big cubes as in the statement. Denote by Q_z the first cube from the sequence which cannot be packed into 2-cubes.

If a big cube is packed into a 2-cube, then the total volume of the cubes packed into this 2-cube is greater than $(1/2)^d$. Denote by m_b the number of big cubes packed into 2-cubes.

CASE 1: Q_z is big. Obviously, $q_z^d > (1/2)^d$.

SUBCASE 1a: $m_b = 0$. By Lemma 4.1 the total volume of the cubes packed into 2-cubes is greater than $(n_2 - 1)(2/3)^d$. It is easy to verify that $(2/3)^d > 2(1/2)^d$ for $d \ge 3$. If $n_2 > 1$, then

$$\sum_{i=1}^{z} |Q_i| > (n_2 - 1) \left(\frac{2}{3}\right)^d + q_z^d > n_2 \left(\frac{1}{2}\right)^d + \left(\frac{1}{2}\right)^d = (n_2 + 1) \left(\frac{1}{2}\right)^d.$$

If $n_2 = 1$ and if there is a 2-small cube Q_w such that $q_w + q_z > 1$, then $q_w^d + q_z^d > (1 - q_z)^d + q_z^d$. Set $\varphi(q) = (1 - q)^d + q^d$. The function $\varphi(q)$ has a global minimum at $q_0 = 1/2$. Thus the total volume of the cubes packed into a 2-cube is greater than

$$\varphi(q_z) - q_z^d > \varphi(q_0) - q_z^d = 2\left(\frac{1}{2}\right)^d - q_z^d$$

If $n_2 = 1$ and if there is no 2-small cube Q_w such that $q_w + q_z > 1$, then the total volume of the cubes packed into the 2-cube is greater than $(1 - (2/3)^d)(2/3)^d$. For $d \ge 3$ we have $(1 - (2/3)^d)(2/3)^d > (1/2)^d$. Moreover $(1/2)^d > 2(1/2)^d - q_z^d$. Consequently, if $n_2 = 1$, then

$$\sum_{i=1}^{z} |Q_i| > 2\left(\frac{1}{2}\right)^d - q_z^d + q_z^d = (n_2 + 1)\left(\frac{1}{2}\right)^d.$$

SUBCASE 1b: $m_b \geq 1$. Denote by l the smallest number such that a big cube is packed into a 2-cube I_l . Denote by Q_w the first 2-small cube packed into I_l . Note that Q_w could not be packed into $n_2 - m_b$ 2-cubes into which no big cube is packed. By Lemma 4.1 the total volume of the cubes packed into those 2-cubes into which no big cube is packed plus the volume of Q_w is greater than $(n_2 - m_b)(2/3)^d$. Consequently,

$$\sum_{i=1}^{z} |Q_i| \ge (n_2 - m_b) \left(\frac{2}{3}\right)^d + m_b \left(\frac{1}{2}\right)^d + q_z^d$$

> $(n_2 - m_b) \left(\frac{1}{2}\right)^d + m_b \left(\frac{1}{2}\right)^d + \left(\frac{1}{2}\right)^d = (n_2 + 1) \left(\frac{1}{2}\right)^d.$

CASE 2: Q_z is 2-small. Obviously, $q_z^d \leq (1/2)^d$.

SUBCASE 2a: $m_b = 0$. By Lemma 4.1 we get

$$\sum_{i=1}^{z} |Q_i| > n_2 \left(\frac{2}{3}\right)^d > (n_2 + 1) \left(\frac{1}{2}\right)^d.$$

SUBCASE 2b: $m_b \geq 1$. Denote by l the greatest number such that a big cube is packed into I_l . Furthermore, denote by Q_w the big cube packed into I_l . If $q_w + q_z > 1$, then $q_w^d + q_z^d > (1 - q_z)^d + q_z^d \geq 2(1/2)^d$. This implies that the total volume of the cubes packed into I_l is greater than $2(1/2)^d - q_z^d$. If $q_w + q_z < 1$, then the total volume of the cubes packed into I_l is greater than

$$\left(1 - \left(\frac{3}{4}\right)^d\right) \left(\frac{2}{3}\right)^d + \left(\frac{1}{2}\right)^d - q_z^d > 2\left(\frac{1}{2}\right)^d - q_z^d.$$

The total volume of the cubes packed into $m_b - 1$ other 2-cubes into which big cubes are packed is greater than or equal to $(m_b - 1)(1/2)^d$. The total volume of the cubes packed into those 2-cubes into which no big cube is packed is greater than or equal to

$$(n_2 - m_b)\left(\left(\frac{2}{3}\right)^d - q_z^d\right) \ge (n_2 - m_b)\left(\left(\frac{2}{3}\right)^d - \left(\frac{1}{2}\right)^d\right) \ge (n_2 - m_b)\left(\frac{1}{2}\right)^d.$$

Consequently,

$$\sum_{i=1}^{z} |Q_i| > (n_2 - m_b) \left(\frac{1}{2}\right)^d + (m_b - 1) \left(\frac{1}{2}\right)^d + 2\left(\frac{1}{2}\right)^d - q_z^d + q_z^d$$
$$= (n_2 + 1) \left(\frac{1}{2}\right)^d. \bullet$$

LEMMA 4.3. Denote by n_3 the number of 3-cubes in J_n . If a sequence (Q_i) of cubes containing both 3-small cubes and big cubes cannot be online packed into 3-cubes by the method described in Section 3, then the total volume of the cubes exceeds $n_3 \cdot (3/4)^d$.

Proof. Let (Q_i) be a sequence of cubes $q_i I$, where $q_i \in \bigcup_{j=1}^{\infty} (2^{-1-j}, 2/3 \cdot 2^{-j}]$. Assume that they cannot be packed into 3-cubes by the method presented in Section 3. Denote by Q_z the first cube from the sequence which cannot be packed into 3-cubes. Furthermore, denote by l_b the number of big cubes packed into 3-cubes.

CASE 1: $l_b = 0$ and Q_z is 3-small. For every Q_i we find the smallest $(3, p_i)$ -container R_i containing Q_i . Since Q_z cannot be packed into 3-cubes, we deduce by Proposition 2.1 that $\sum_{i=1}^{z} |R_i| > n_3$. Moreover

$$Q_i| = q_i^d > \left(\frac{1}{2 \cdot 2^{p_i}}\right)^d = \left(\frac{3}{4}\right)^d \cdot \left(\frac{2}{3 \cdot 2^{p_i}}\right)^d = \left(\frac{3}{4}\right)^d |R_i|$$

Thus

$$\sum_{i=1}^{z} |Q_i| > \left(\frac{3}{4}\right)^d \cdot \sum_{i=1}^{z} |R_i| > n_3 \left(\frac{3}{4}\right)^d.$$

CASE 2: $l_b = 0$ and Q_z is big. The total volume of the cubes packed into 3-cubes is greater than

$$(n_3 - 1)\left(\frac{3}{4}\right)^d + \left(1 - \left(\frac{2}{3}\right)^d\right)\left(\frac{3}{4}\right)^d = n_3\left(\frac{3}{4}\right)^d - \left(\frac{1}{2}\right)^d.$$

Consequently,

$$\sum_{i=1}^{z} |Q_i| > n_3 \left(\frac{3}{4}\right)^d - \left(\frac{1}{2}\right)^d + q_z^d > n_3 \left(\frac{3}{4}\right)^d.$$

CASE 3: $l_b \geq 1$. The total volume of the cubes packed into 3-cubes is greater than

$$(n_3 - l_b) \left(\frac{3}{4}\right)^d + l_b \left(1 - \left(\frac{2}{3}\right)^d\right) \left(\frac{3}{4}\right)^d + l_b \left(\frac{1}{2}\right)^d - q_z^d = n_3 \left(\frac{3}{4}\right)^d - q_z^d.$$

Consequently,

$$\sum_{i=1}^{z} |Q_i| > n_3 \left(\frac{3}{4}\right)^d - q_z^d + q_z^d = n_3 \left(\frac{3}{4}\right)^d. \blacksquare$$

THEOREM 4.4. If $n \geq 3$, then any sequence of d-dimensional cubes of edge lengths not greater than 1 whose total volume does not exceed $(n+1)\cdot 2^{-d}$ can be on-line packed into J_n .

Proof. Let $n \geq 3$ and let (Q_i) be a sequence of *d*-dimensional cubes as in the statement. We pack the cubes by the method described in Section 3. Contrary to the statement, suppose that it is impossible to pack Q_1, Q_2, \ldots into J_n by this method. Let Q_z be the cube which stops the packing process and let

$$\zeta = \sum_{i=1}^{z} |Q_i|.$$

We show that this leads to the false inequality

$$\zeta > (n+1) \cdot 2^{-d}$$

Denote by n_2, n_3, n_b, n_v the number of 2-, 3-, b- and v-cubes respectively. Obviously $n_2 + n_3 + n_b + n_v = n$. We consider four cases.

CASE 1: Q_z is big $(1/2 < q_z \le 2/3)$.

SUBCASE 1a: $n_3 \ge 1$ and $n_2 = 0$. By Lemma 4.3 we get

$$\begin{aligned} \zeta &> n_3 \left(\frac{3}{4}\right)^d + n_b \left(\frac{1}{2}\right)^d + n_v \left(\frac{2}{3}\right)^d > (n_3 + 1) \left(\frac{1}{2}\right)^d + n_b \left(\frac{1}{2}\right)^d + n_v \left(\frac{2}{3}\right)^d \\ &\ge (n+1) \left(\frac{1}{2}\right)^d. \end{aligned}$$

SUBCASE 1b: $n_2 \ge 1$ and $n_3 = 0$. By Lemma 4.2 we get

$$\zeta > (n_2 + 1) \left(\frac{1}{2}\right)^d + n_b \left(\frac{1}{2}\right)^d + n_v \left(\frac{2}{3}\right)^d \ge (n+1) \left(\frac{1}{2}\right)^d.$$

SUBCASE 1c: $n_3 \ge 1$ and $n_2 \ge 1$. The total volume of the cubes packed into 3-cubes is greater than

$$n_3\left(\frac{3}{4}\right)^d - q_z^d > (n_3+1)\left(\frac{2}{3}\right)^d - \left(\frac{2}{3}\right)^d = n_3\left(\frac{2}{3}\right)^d.$$

The total volume of the cubes packed into 2-cubes is greater than $(n_2+1)(1/2)^d$

 $-q_z^d$. Thus

$$\begin{aligned} \zeta &> n_3 \left(\frac{2}{3}\right)^d + (n_2 + 1) \left(\frac{1}{2}\right)^d - q_z^d + n_b \left(\frac{1}{2}\right)^d + n_v \left(\frac{2}{3}\right)^d + q_z^d \\ &\ge (n+1) \left(\frac{1}{2}\right)^d. \end{aligned}$$

SUBCASE 1d: $n_3 = 0$ and $n_2 = 0$. Obviously $q_z^d > (1/2)^d$. We get

$$\zeta > n_b \left(\frac{1}{2}\right)^d + n_v \left(\frac{2}{3}\right)^d + q_z^d > (n_b + n_v) \left(\frac{1}{2}\right)^d + \left(\frac{1}{2}\right)^d = (n+1) \left(\frac{1}{2}\right)^d.$$

CASE 2: Q_z is very big $(q_z > 2/3)$. Obviously $q_z^d > (2/3)^d > 2(1/2)^d$. Note that if a very big cube Q_z cannot be packed into J_n , then it is possible that both one unit 2-cube and one unit 3-cube are almost empty (as in Fig. 1).

Fig. 1. There is no empty cube into which a very big cube Q_z could be packed.

If $n_3 \geq 1$, then

$$\zeta > [(n_2 - 1) + 1] \left(\frac{1}{2}\right)^d + (n_3 - 1) \left(\frac{3}{4}\right)^d + n_b \left(\frac{1}{2}\right)^d + n_v \left(\frac{2}{3}\right)^d + q_z^d$$
$$> (n - 1) \left(\frac{1}{2}\right)^d + 2 \left(\frac{1}{2}\right)^d = (n + 1) \left(\frac{1}{2}\right)^d.$$

If $n_3 = 0$, then

$$\begin{aligned} \zeta > [(n_2 - 1) + 1] \left(\frac{1}{2}\right)^d + n_b \left(\frac{1}{2}\right)^d + n_v \left(\frac{2}{3}\right)^d + q_z^d > n \left(\frac{1}{2}\right)^d + 2 \left(\frac{1}{2}\right)^d \\ > (n+1) \left(\frac{1}{2}\right)^d. \end{aligned}$$

CASE 3: Q_z is 2-small. Assume that $n_3 \ge 1$. Denote by l the greatest number such that a 3-small cube is packed into I_l . If a big cube cannot be packed into I_l , then either a big cube is packed into I_l and the total volume of the cubes packed into I_l is greater than $(1/2)^d$, or no big cube is packed into I_l and the total volume of the cubes packed into I_l is greater than $(1 - (2/3)^d)(3/4)^d > (1/2)^d$. This implies that if $n_b \ge 1$ or if a big cube is packed into a 2-cube, then, by the description of packing of big cubes, the total volume of the cubes packed into 3-cubes is greater than

$$(n_3 - 1)\left(\frac{3}{4}\right)^d + \left(\frac{1}{2}\right)^d \ge n_3\left(\frac{1}{2}\right)^d.$$

SUBCASE 3a: $n_2 \ge 1$ and no big cube is packed into 2-cubes. The total volume of the cubes packed into 2-cubes is greater than $n_2(2/3)^d - q_z^d$. If $n_b = 0$, then it is possible that one unit 3-cube is almost empty. Consequently,

$$\zeta > n_2 \left(\frac{2}{3}\right)^d - q_z^d + (n_3 - 1) \left(\frac{3}{4}\right)^d + n_v \left(\frac{2}{3}\right)^d + q_z^d \ge (n - 1) \left(\frac{2}{3}\right)^d$$
$$> (n + 1) \left(\frac{1}{2}\right)^d.$$

If $n_b \geq 1$, then

$$\zeta > n_2 \left(\frac{2}{3}\right)^d - q_z^d + n_3 \left(\frac{1}{2}\right)^d + n_b \left(\frac{1}{2}\right)^d + n_v \left(\frac{2}{3}\right)^d + q_z^d$$
$$> (n_2 + 1) \left(\frac{1}{2}\right)^d + (n_3 + n_b + n_v) \left(\frac{1}{2}\right)^d = (n+1) \left(\frac{1}{2}\right)^d.$$

SUBCASE 3b: a big cube is packed into a 2-cube. By Lemma 4.2 we get

$$\zeta > (n_2 + 1) \left(\frac{1}{2}\right)^d + n_3 \left(\frac{1}{2}\right)^d + n_b \left(\frac{1}{2}\right)^d + n_v \left(\frac{2}{3}\right)^d \ge (n+1) \left(\frac{1}{2}\right)^d.$$

SUBCASE 3c: $n_2 = 0$. If $n_b \ge 1$ (see Fig. 2, where $n_b = n$), then the total volume of the cubes packed into *b*-cubes is greater then

$$(n_b - 1)\left(\frac{1}{2}\right)^d + 2\left(\frac{1}{2}\right)^d - q_z^d = (n_b + 1)\left(\frac{1}{2}\right)^d - q_z^d.$$

Hence

$$\zeta > (n_b + 1) \left(\frac{1}{2}\right)^d - q_z^d + n_3 \left(\frac{1}{2}\right)^d + n_v \left(\frac{2}{3}\right)^d + q_z^d \ge (n+1) \left(\frac{1}{2}\right)^d.$$

Fig. 2. Q_z is 2-small and $n_b = n$.

If $n_b = 0$, then

$$\zeta > (n_3 - 1) \left(\frac{3}{4}\right)^d + n_v \left(\frac{2}{3}\right)^d \ge (n - 1) \left(\frac{2}{3}\right)^d > (n + 1) \left(\frac{1}{2}\right)^d.$$

CASE 4: Q_z is 3-small. This implies that $n_b = 0$.

SUBCASE 4a: $n_3 \ge 1$. The total volume of the cubes packed into 3cubes is greater than $n_3(3/4)^d - q_z^d$. It is easy to verify that if $n_3 \ge 1$, then $n_3(3/4)^d > (n_3 + 2)(1/2)^d$ for $d \ge 3$. If $n_2 \ge 1$, then it is possible that one unit 2-cube is almost empty. Thus

$$\zeta > (n_2 - 1) \left(\frac{1}{2}\right)^d + (n_3 + 2) \left(\frac{1}{2}\right)^d + n_v \left(\frac{2}{3}\right)^d \ge (n+1) \left(\frac{1}{2}\right)^d.$$

If $n_2 = 0$, then

$$\zeta > (n_3 + 2) \left(\frac{1}{2}\right)^d + n_v \left(\frac{2}{3}\right)^d > (n+1) \left(\frac{1}{2}\right)^d$$

SUBCASE 4b: $n_3 = 0$. If no big cube is packed into 2-cubes, then

$$\zeta > (n_2 - 1) \left(\frac{2}{3}\right)^d + n_v \left(\frac{2}{3}\right)^d = (n - 1) \left(\frac{2}{3}\right)^d > (n + 1) \left(\frac{1}{2}\right)^d.$$

If a big cube is packed into 2-cubes and $n_v \ge 1$, then

$$\zeta > [(n_2 - 1) + 1] \left(\frac{1}{2}\right)^d + n_v \left(\frac{2}{3}\right)^d > (n_2 + n_v + 1) \left(\frac{1}{2}\right)^d = (n+1) \left(\frac{1}{2}\right)^d.$$

If a big cube is packed into 2-cubes and $n_v = 0$ $(n_2 = n)$, then both a big cube and a 2-small cube are packed into I_n . By Lemma 4.2 we get

$$\zeta > [(n_2 - 1) + 1] \left(\frac{1}{2}\right)^d + \left(\frac{1}{2}\right)^d = (n+1) \left(\frac{1}{2}\right)^d.$$

5. Packing algorithm for $d \ge 5$. Let $d \ge 5$ and let (Q_i) be a sequence of cubes $q_i I$, where $q_i \in (0, 1]$. We consider the following types of cubes:

- Q_i is f-small if $q_i \leq 1 \frac{1}{4} \sqrt[d]{2}$;
- Q_i is f-big if $q_i > 1 \frac{1}{4}\sqrt[d]{2}$.

A unit cube $I_k \subset J_n$ is said to be *empty* if no cube has been packed into it. A unit cube $I_k \subset J_n$ is said to be an *s*-cube if an *f*-small cube has been packed into it. A unit cube $I_k \subset J_n$ is said to be an *l*-cube if an *f*-big cube has been packed into it.

We pack f-small cubes by the method described in [8]. If Q_1 is f-small, then we pack it into I_1 . Clearly, I_1 is now an s-cube. Assume that i > 1 and Q_i is f-small. If there is an s-cube into which Q_i can be packed, then we pack it into this s-cube. Otherwise, we find the smallest $k \in \{1, \ldots, n\}$ such that I_k is empty. We pack Q_i into I_k by the method described in [8]. Now I_k is an s-cube.

If Q_i is f-big, then we find the greatest $k \in \{1, \ldots, n\}$ such that I_k is empty and pack Q_i into I_k . Now I_k is an *l*-cube.

6. Efficiency of the packing algorithm for $d \ge 5$

LEMMA 6.1 (see [8]). If $d \ge 5$, then every sequence of d-dimensional cubes of total volume at most $2\left(\frac{1}{2}\right)^d$ can be on-line packed into the unit cube I.

LEMMA 6.2. Denote by n_s the number of s-cubes in J_n . If $d \ge 5$ and if a sequence of f-small cubes cannot be on-line packed into s-cubes by the method described in Section 5, then the total volume of the cubes exceeds $(n_s + 1) \cdot 2^{-d}$.

Proof. Let (Q_i) be a sequence of f-small cubes as in the statement. Denote by Q_z the first cube from the sequence which cannot be packed into s-cubes.

CASE 1: $n_s = 1$. By Lemma 6.1 we get

$$\sum_{i=1}^{z} |Q_i| > 2\left(\frac{1}{2}\right)^d = (n_s + 1)\left(\frac{1}{2}\right)^d.$$

CASE 2: $n_s \ge 2$ and $q_z \le 1/2$. Obviously $q_z^d \le \left(\frac{1}{2}\right)^d$. We get

$$\sum_{i=1}^{z} |Q_i| > n_s \left(2\left(\frac{1}{2}\right)^d - q_z^d \right) + q_z^d = 2n_s \left(\frac{1}{2}\right)^d - (n_s - 1)q_z^d$$
$$\ge (n_s + 1)\left(\frac{1}{2}\right)^d.$$

CASE 3: $n_s \ge 2$ and $q_z > 1/2$. Note that the total volume of the cubes packed into any two s-cubes is greater than $2(1/2)^d$.

SUBCASE 3a: n_s is even. We get

$$\sum_{i=1}^{z} |Q_i| > \frac{n_s}{2} \cdot 2\left(\frac{1}{2}\right)^d + q_z^d > n_s\left(\frac{1}{2}\right)^d + \left(\frac{1}{2}\right)^d = (n_s + 1)\left(\frac{1}{2}\right)^d.$$

SUBCASE 3b: n_s is odd. The total volume of the cubes packed into an s-cube I_j with the greatest number j is greater than $2(1/2)^d - q_z^d$. The total volume of the cubes packed into $n_s - 1$ other s-cubes is greater than

$$\frac{n_s - 1}{2} \cdot 2\left(\frac{1}{2}\right)^d = (n_s - 1)\left(\frac{1}{2}\right)^d.$$

Consequently,

$$\sum_{i=1}^{z} |Q_i| > (n_s - 1) \left(\frac{1}{2}\right)^d + 2 \left(\frac{1}{2}\right)^d - q_z^d + q_z^d = (n_s + 1) \left(\frac{1}{2}\right)^d. \bullet$$

THEOREM 6.3. If $n \ge 1$ and $d \ge 5$, then any sequence of d-dimensional cubes of edge lengths not greater than 1 whose total volume does not exceed $(n+1) \cdot 2^{-d}$ can be on-line packed into J_n .

Proof. Let $n \geq 1$ and let (Q_i) be a sequence of *d*-dimensional cubes as in the statement. We pack the cubes by the method described in Section 5. Suppose that, contrary to the statement, it is impossible to pack Q_1, Q_2, \ldots into J_n by this method. Let Q_z be the cube which stops the packing process and let

$$\zeta = \sum_{i=1}^{z} |Q_i|.$$

We show that this leads to the false inequality

$$\zeta > (n+1) \cdot 2^{-d}.$$

Denote by n_s, n_l the number of s- and l-cubes, respectively. Obviously we have $n_s + n_l = n$. It is easy to verify that

$$\left(1 - \frac{1}{4}\sqrt[d]{2}\right)^d > 2\left(\frac{1}{2}\right)^d$$

for $d \ge 5$. This implies that the total volume of the cubes packed into *l*-cubes is greater than $n_l \cdot 2(1/2)^d$. We consider two cases.

CASE 1: Q_z is f-small. By Lemma 6.2 we get

$$\zeta > (n_s + 1) \left(\frac{1}{2}\right)^d + n_l \cdot 2 \left(\frac{1}{2}\right)^d \ge (n+1) \left(\frac{1}{2}\right)^d.$$

CASE 2: Q_z is *f*-big. Obviously $q_z^d > 2(1/2)^d$. It is possible that one of the *s*-cubes is almost empty.

SUBCASE 2a: n = 1. We get

$$\zeta > q_z^d > 2\left(\frac{1}{2}\right)^d = (n+1)\left(\frac{1}{2}\right)^d.$$

SUBCASE 2b: $n \ge 2$. By Lemma 6.2 we get

$$\begin{split} \zeta &> (n_s - 1) \cdot \left(\frac{1}{2}\right)^d + n_l \cdot 2\left(\frac{1}{2}\right)^d + q_z^d > (n - 1)\left(\frac{1}{2}\right)^d + 2\left(\frac{1}{2}\right)^d \\ &= (n + 1)\left(\frac{1}{2}\right)^d. \quad \bullet \end{split}$$

References

- K. Böröczky, Jr., *Finite Packing and Covering*, Cambridge Tracts in Math. 154, Cambridge Univ. Press, Cambridge, 2004.
- [2] B. Brubach, Improved online square-into-square packing, arXiv:1401.5583 (2014).
- B. Brubach, Improved bound for online square-into-square packing, in: Proc. 12th Workshop on Approximation and Online Algorithms (WAOA), 2014, 47–58.
- [4] S. Fekete and H. Hoffmann, Online Square-into-Square Packing, in: Proc. 16th Int. Workshop on Approximation Algorithms for Combinatorial Optimization Problems, 2013, 126–141.
- [5] G. Fejes Tóth and W. Kuperberg, *Packing and covering with convex sets*, in: Handbook of Convex Geometry, P. M. Gruber and J. M. Wills (eds.), North-Holland, 1993, 799–860.
- X. Han, K. Iwama and G. Zhang, Online removable square packing, Theory Comput. Systems 43 (2008), 38–55.
- J. Januszewski, On-line packing squares into n unit squares, Bull. Polish Acad. Sci. Math. 56 (2010) 137–145.
- [8] J. Januszewski and M. Lassak, On-line packing sequences of cubes in the unit cube, Geom. Dedicata 67 (1997), 285–293.
- [9] M. Lassak, A survey of algorithms for on-line packing and covering by sequences of convex bodies, in: Intuitive Geometry (Budapest, 1995), Bolyai Soc. Math. Stud. 6, János Bolyai Math. Soc., Budapest, 1997, 129–157.

Lukasz Zielonka Institute of Mathematics and Physics UTP University of Science and Technology Kaliskiego 7 85-789 Bydgoszcz, Poland E-mail: Lukasz.Zielonka@utp.edu.pl