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On subspaces of invariant vectors

by

Tatiana Shulman (Warszawa)

Abstract. Let Xπ be the subspace of fixed vectors for a uniformly bounded repre-
sentation π of a group G on a Banach space X. We study the problem of the existence and
uniqueness of a subspace Y that complements Xπ in X. Similar questions for G-invariant
complement to Xπ are considered. We prove that every non-amenable discrete group G
has a representation with non-complemented Xπ and find some conditions that provide
a G-invariant complement. A special attention is given to representations on C(K) that
arise from an action of G on a metric compact K.

Introduction. The subspaces of vectors which are invariant under
group representations have recently attracted renewed attention because
of their use in the Banach space version of Kazhdan’s property (T) (see [1],
[10]). In the Hilbert space case, arguments used for studying property (T)
rely heavily on the existence of orthogonal complements of subspaces (of
invariant vectors). In the Banach space setting, the lack of orthogonality
immediately causes difficulties. It is not even clear if the subspace of in-
variant vectors is always complemented, as mentioned in [10]. In fact, the
existence of a complementing subspace allows one to reduce a representa-
tion to a triangular form, with two representations on the diagonal and a
1-cocycle in the corner, so for concrete groups cohomological techniques can
be used for a further study of the representation.

Therefore, a complement to the subspace of invariant vectors is a nat-
ural object of interest. If a Banach space is super-reflexive, then for any
uniformly bounded representation, the subspace of invariant vectors is com-
plemented [1]. Moreover in this case there is a complement which is invariant
under the representation. Namely it is proved in [1] that if π is a uniformly
bounded representation of a group G on a super-reflexive space X, then
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X decomposes into the sum

X = Xπ ⊕Ann(X∗π̄),

where Xπ is the subspace of invariant vectors, X∗π̄ is the subspace of vectors
invariant under the dual representation π̄ and Ann(X∗π̄) is its preannihilator.
It is easy to check that Ann(X∗π̄) is G-invariant.

Of course, when Xπ is finite-dimensional, as is often the case in ergodic
theory, it is complemented. However, in this note we show that the sub-
space of invariant vectors need not be complemented. What is more, in
Section 1 we prove that each non-amenable group admits an isometric rep-
resentation such that the subspace of invariant vectors is not complemented
(Theorem 1).

In Section 2 we study the decomposition X = Xπ ⊕Ann(X∗π̄), and more
generally, the question of the existence and uniqueness of an invariant com-
plement to Xπ. In fact, the decomposition is strongly connected with ab-
stract ergodic theorems and is often called the ergodic decomposition. It
was first considered by Yosida [14] (and independently by Kakutani) for
power-bounded operators T on reflexive spaces. It was shown that

X = XT ⊕ (1− T )X.

Duality considerations were introduced by Heyneman [7]. In fact, he proved
that

Ann(X∗π̄) = span{(1− π(g))X | g ∈ G}.

Eberlein [5] studied bounded semigroups of operators with conditionally
weakly compact orbits and called such semigroups weakly almost periodic.
The generalization of Yosida’s theorem to continuous group representations
is due to Ryll-Nardzewski [12, Theorem 5]; it essentially says that for a
weakly almost periodic representation π, there is a projection M on the
subspace of invariant vectors which commutes with π and is such that for
any x ∈ X, Mx is in the closed convex hull of the orbit of x (the full
formulation of the theorem is given in Section 2).

It is easy to deduce from this theorem that the decomposition X =
Xπ ⊕ Ann(X∗π̄) holds for strongly continuous representations of compact
groups (Corollary 6) and for uniformly bounded representations on reflexive
Banach spaces (Corollary 5), which yields [1, Prop. 2.6], where such de-
composition is obtained on super-reflexive Banach spaces (recall that super-
reflexivity implies reflexivity). In these cases, if the representation is iso-
metric, then the corresponding projection onto Xπ has norm 1. Though
in general a G-invariant complement need not be unique (Example 13), in
the cases above it is unique. We also show that for any uniformly bounded
representation of an amenable group, the subspaces Xπ and Ann(X∗π̄) have
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trivial intersection (Theorem 10). For non-amenable groups this is not true
in general [1, Ex. 2.29].

In Sections 3 and 4 we focus on representations induced by group actions
on compact metric spaces. Though for such representations the decomposi-
tion X = Xπ ⊕ Ann(X∗π̄) need not hold in general, it is shown that it does
hold if the action is nice, namely Lyapunov stable (Theorem 17). Lyapunov
stable actions were introduced in [8]. It was shown there that if an action
is Lyapunov stable, then there is a conditional expectation on the subspace
(actually, subalgebra) of invariant functions. In Theorem 17 we give a new
proof of this fact. Moreover, we construct a conditional expectation commut-
ing with the representation and show that such an expectation is unique.
Along the way we give a short proof of the assertion in [8] on the unique-
ness of invariant measures. In Section 4 we introduce lower semicontinuous
actions, a class of actions wider than the Lyapunov stable ones. We show
that for lower semicontinuous actions the subspace of invariant functions is
complemented.

1. The subspace of invariant vectors need not be complemented.
Let G be a group and X be a Banach space. By a representation of G on X
we will mean a homomorphism from G into the group Binv(X) of bounded
invertible operators on X. A representation π is isometric if π(g) is an
isometry for each g ∈ G, and uniformly bounded if supg∈G ‖π(g)‖ <∞.

Below, for any family S ⊆ B(H) of operators on a Hilbert space, we
denote by S′ its commutant, that is S′ = {T ∈ B(H) | TA = AT for any
A ∈ S}. Recall that the group von Neumann algebra L(G) of a group G is

L(G) = {λ(g) | g ∈ G}′′,

where λ is the left regular representation of G.

Theorem 1. Any discrete non-amenable group admits an isometric rep-
resentation such that the set of invariant vectors is not complemented.

Proof. Let G be a discrete non-amenable group, H = l2(G) and λ :
G→ B(H) the left regular representation. Define a representation λ̃ : G→
B(H ⊗H) by

λ̃(g) = λ(g)⊗ Id,

where Id denotes the identity operator. Let X = B(H ⊗H). Define a rep-
resentation π : G→ Binv(X) by

π(g)x = λ̃(g)xλ̃(g)−1, x ∈ X.
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Let N be the set of π-invariant vectors. Then

(1) N = {x ∈ X | λ̃(g)xλ̃(g)−1 = x, ∀g ∈ G}
= {λ̃(g) | g ∈ G}′ = {λ(g)⊗ Id | g ∈ G}′

= {T ⊗ Id | T ∈ L(G)}′ = (L(G)⊗ Id)′.

As is well known, a von Neumann algebra is injective if and only if its
commutant is injective [4]. SinceG in non-amenable, L(G) is not injective [2].
Since injectivity is preserved by ∗-isomorphisms, L(G)⊗ Id is not injective
either and we conclude that N is not injective. Since

(L(G)⊗ Id)′ = L(G)′ ⊗B(H),

we have

M2(N) ∼= N,

where M2(N) is the algebra of 2×2-matrices over N . By [6, Corollary 4.6],
if N were complemented then there would exist a completely bounded pro-
jection from B(H ⊗ H) onto N , and this is equivalent to injectivity of N
(see [3, Theorem 3.1] and [11]). Thus N is not complemented.

Question. Does there exist a group which admits a uniformly bounded
representation on a separable Banach space such that the set of invariant
vectors is not complemented?

Question. Does there exist an amenable group which admits a uni-
formly bounded representation such that the set of invariant vectors is not
complemented?

2. On the decomposition X = Xπ⊕Ann(X∗π̄). For a representation π,
one can define the adjoint representation π̄ of G on the dual space X∗ by

(π̄(g)f)(x) = f(π(g−1)x), x ∈ X, f ∈ X∗.
It is easy to see that if π is uniformly bounded or isometric, then π̄ is
uniformly bounded or isometric respectively.

For a subspace Y ⊆ X, we denote by Ann(Y ) its annihilator in X∗, that
is,

Ann(Y ) = {f ∈ X∗ | f(x) = 0 for each x ∈ Y }.
For a subspace Y ⊆ X∗, its preannihilator in X will also be denoted by
Ann(Y ):

Ann(Y ) = {x ∈ X | f(x) = 0 for each f ∈ Y },
since it will always be clear from the context what we mean.

Let Xπ be the subspace of π-invariant vectors,

Xπ = {x ∈ X | π(g)x = x for all g ∈ G}.
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Proposition 2. If Xπ has a π(G)-invariant complement Y , then Y ⊇
Ann(X∗π̄).

Proof. Let P be the projection onto Xπ parallel to Y . Since Y is π(G)-
invariant, [P, π(g)] = 0 for all g ∈ G. Hence, for any x ∈ X,

P (π(g)x− x) = π(g)Px− Px = 0.

Thus π(g)x − x ∈ Y . Let f ∈ X∗ with f |Y = 0. Then f(π(g)x − x) = 0
for all g ∈ G and x ∈ X, that is, f ∈ X∗π̄. Hence Ann(Y ) ⊆ X∗π̄, whence
Y ⊇ Ann(X∗π̄).

We will use the following theorem of Ryll-Nardzewski [12].

Theorem 3 (Ryll-Nardzewski [12]). If G is an equicontinuous group of
endomorphisms of a locally convex linear space X and if OG(x) denotes the
closed convex hull of all vectors of the form Tx where T runs over G, then

(i) if OG(x) is weakly compact, then there exists exactly one G-invari-
ant element in OG(x) (it will be denoted by Mx);

(ii) the set X0 of all vectors x ∈ X such that OG(x) is weakly compact
forms a closed linear subspace of X;

(iii) the operator M (defined in (i)) has the following properties on X0:
it is linear, continuous and TM = MT = M2 = M .

Proposition 4. For any uniformly bounded representation π such that
all the orbits are weakly precompact,

X = Xπ ⊕Ann(X∗π̄).

The corresponding projection onto Xπ has norm at most supg∈G ‖π(g)‖.

Proof. Let M be the projection of Theorem 3. Since for each x ∈ X,
Mx is in the closed convex hull of the orbit of x, it is easy to see that
(1 −M)X ⊆ Ann(X∗π̄). Since M commutes with π, (1 −M)X is a π(G)-
invariant subspace, and by Proposition 2, (1 − M)X ⊇ Ann(X∗π̄). Thus
(1−M)X = Ann(X∗π̄) and we obtain

X = MX ⊕ (1−M)X = Xπ ⊕Ann(X∗π̄).

Since for each x ∈ X, Mx is in the closed convex hull of the orbit of x, we
conclude that ‖Mx‖ ≤ supg∈G ‖π(g)x‖ and the last statement follows.

Corollary 5. For any uniformly bounded representation π on a reflex-
ive Banach space X,

X = Xπ ⊕Ann(X∗π̄).

The corresponding projection onto Xπ has norm at most supg∈G ‖π(g)‖.
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Corollary 6. For any strongly continuous representation π of a com-
pact group on a Banach space X,

X = Xπ ⊕Ann(X∗π̄).

The corresponding projection onto Xπ has norm at most supg∈G ‖π(g)‖.
Proof. Since the group is compact and the representation is strongly

continuous, all the orbits are compact. Hence, by the uniform boundedness
principle, π is uniformly bounded. The statement now follows from Propo-
sition 4.

Remark 7. As was pointed out to me by one of the referees, under the
assumptions of Corollary 6 one can construct the relevant projection on Xπ

as the average x 7→
	
G π(g)x dg with respect to the Haar measure.

Remark 8. It follows from Proposition 2 that in Corollaries 5 and 6 the
space Xπ has a unique π(G)-invariant complement. In general a π(G)-invari-
ant complement need not be unique, as shown by Example 13 in Section 3.

Lemma 9. Let π be a representation of a group G on a Banach space X.
Suppose that for any f ∈ X∗, the ∗-weakly closed convex hull Ew(f) of the
π̄-orbit O(f) of f contains a π̄-invariant vector. Then

X∗ = X∗π̄ + Ann(Xπ).

Proof. By assumption, for every f ∈ X∗, there is an invariant functional
f0 ∈ Ew(f). Let x ∈ Xπ. Then all functionals from O(f) take the same
value at x as f . Hence the same is true for all functionals in Ew(f), and thus
f(x) = f0(x). Therefore f − f0 ∈ Ann(Xπ), and so X∗ = X∗π̄ + Ann(Xπ).

Theorem 10. If π is a uniformly bounded representation of an amenable
group on a Banach space X then

(i) X∗ = X∗π̄ + Ann(Xπ),
(ii) Xπ ∩Ann(X∗π̄) = {0}.
Proof. (i) For each f ∈ X∗, the ∗-weakly closed convex span Ew(f) of

O(f) is ∗-weakly compact. Since all the operators π̄(g), g ∈ G, are ∗-weakly
continuous, it follows from amenability that Ew(f) contains a fixed point
of π̄. Now by Lemma 9 we conclude that X∗ = X∗π̄ + Ann(Xπ).

(ii) It is easy to see that X∗π̄ + Ann(Xπ) annihilates Xπ ∩Ann(X∗π̄).

Remark 11. Note that the decomposition in (i) is not necessarily direct.
For example if X = l1(Z), G = Z and π(n)f(k) = f(n + k) then Xπ = 0,
Ann(Xπ) = X∗, X∗π̄ is the space of constant sequences, and hence

Ann(Xπ) ∩X∗π̄ 6= {0}.
Also in this example Xπ + Ann(X∗π̄) is a closed subspace of X and X 6=
Xπ + Ann(X∗π̄).
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Remark 12. (i) A necessary condition for Xπ ⊕ Ann(X∗π̄) to be dense
in X is that Xπ separates X∗π̄. In particular, the separation is necessary for
the ergodic decomposition X = Xπ ⊕Ann(X∗π̄).

(ii) Theorem 1.7 of [9] yields the following result: Let π be a bounded
continuous representation of a locally compact amenable group G in a Ba-
nach space X. The ergodic decomposition X = Xπ ⊕Ann(X∗π̄) holds if and
only if Xπ separates X∗π̄. These conditions are satisfied if and only if the
closed convex hull of every orbit contains an invariant vector.

3. Lyapunov stable actions. Let K be a compact metric space and
suppose a group G act continuously on K.

Define a representation π of G on C(K) by

π(g)φ(x) = φ(g−1x).

It is easy to see that π is isometric. The following example shows that the
decomposition

C(K) = C(K)π ⊕Ann(C(K)∗π̄)

does not hold in general, even when the group is abelian. It also shows that
a π(G)-invariant complement need not be unique.

Example 13. Let K = [0, 1] and define a Z-action α on K as

α(n)(x) = x2n .

Then as above we define a representation π of Z on C(K) by

π(n)φ(x) = φ(α(−n)x).

Let us show that C(K)π is the subspace of constant functions. For each
x ∈ [0, 1), 0 ∈ O(x). Hence for φ ∈ C(K)π and each x ∈ [0, 1), φ(x) = φ(0).
Thus φ = const. We will show now that Ann(C(K)∗π̄) ⊆ C0(0, 1). Define
hi ∈ C(K)∗, i = 1, 2, by h1(φ) = φ(0), h2(φ) = φ(1), for any φ ∈ C(K). It
is easy to see that hi, i = 1, 2, are constant on orbits of functions in C(K),
and so hi ∈ C(K)∗π̄, i = 1, 2. Hence

Ann(C(K)∗π̄) ⊆ Ann(h1) ∩Ann(h2) = C0(0, 1] ∩ C0[0, 1) = C0(0, 1).

Thus Ann(C(K)∗π̄) does not complement C(K)π. However C(K)π has π(G)-
invariant complements C0(0, 1] = {φ ∈ C(K) | φ(0) = 0} and C0[0, 1) =
{φ ∈ C(K) | φ(1) = 0} (and many others).

However, we will show that if an action is nice enough (namely, Lyapunov
stable) then the decomposition

C(K) = C(K)π ⊕Ann(C(K)∗π̄)

does hold.
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Definition 14 ([8]). An action of G on K is Lyapunov stable if for any
ε > 0 there is δ = δ(ε) > 0 such that d(x, y) < δ implies d(gx, gy) < ε for
all g ∈ G.

Remark 15. The original definition in [8] was different: for any x ∈ K
and ε > 0 there must exist δ = δ(x, ε) > 0 such that d(x, y) < δ implies
d(gx, gy) < ε for all g ∈ G. But a standard compactness argument shows
that for compact K the two definitions coincide. Indeed, for each x ∈ K,
let Ux = {y ∈ K : d(y, x) < δ(x, ε/2)/2} and choose a finite subcovering
Ux1 , . . . , Uxn . Let δ = mini δ(xi, ε/2)/2, i = 1, . . . , n. If d(x, y) ≤ δ, and one
takes i with x ∈ Uxi , then d(y, xi) ≤ δ + δ(xi, ε/2)/2 ≤ δ(xi, ε/2). It follows
that d(gx, gxi) ≤ ε/2 and d(gy, gxi) ≤ ε/2, whence d(gx, gy) ≤ ε.

Usually in the literature Lyapunov stable actions are called equicontin-
uous, but in [8] the authors use the term “equicontinuous” for a different
class of actions.

Below, π will always be the representation induced by some group action
on a compact metric space K.

Lemma 16. Let an action of G on K be Lyapunov stable and π be as
above. Then for any φ ∈ C(K), its orbit O(φ) is precompact.

Proof. It is easy to see that Lyapunov stability implies that for any
φ ∈ C(K), O(φ) is an equicontinuous family of functions. Since O(φ) is
bounded, it is precompact by the Arzelà–Ascoli theorem.

Theorem 17. Let an action of G on K be Lyapunov stable and π be as
above. Then

C(K) = C(K)π ⊕Ann(C(K)∗π̄).

The corresponding projection onto C(K)π is a conditional expectation.

Proof. Lemma 16 and Proposition 4 imply that the decomposition C(K)
= C(K)π⊕Ann(C(K)∗π̄) holds, and since the representation is isometric, the
corresponding projection onto C(K)π has norm 1. Since C(K) and C(K)π
are C∗-algebras, by [13] it is a conditional expectation.

Now we obtain a short proof of an assertion in [8] on the uniqueness
of invariant measures. Our proof also implies the existence of an invariant
measure.

Corollary 18 ([8, Lemma 6.1]). Suppose a group G acts on a compact
metric space K in such a way that the orbit of some point a ∈ K is dense
in K. If the action is Lyapunov stable, then K carries no more than one
invariant regular probability measure.
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Proof. Since the orbit of a ∈ K is dense in K, the only invariant func-
tions are constants, so C(K)π = C. By Theorem 17 this implies that
codim(Ann(C(K)∗π̄)) = 1. Hence dimC(K)∗π̄ = 1. The latter means that
there is exactly one invariant regular measure on K, because regular meas-
ures are in one-to-one correspondence with points of C(K)∗ by the Riesz
theorem.

4. Lower semicontinuous actions. Now we will show that for actions
more general than Lyapunov stable ones, namely for lower semicontinuous
actions, the subspace C(K)π is complemented.

Let K be a compact metric space and M be a partition of K into closed
subsets (parts). For x ∈ K, let M(x) denote the part which contains x.
According to the standard definitions, M is called lower semicontinuous if
{x ∈ K |M(x) ∩ U 6= ∅} is an open set in K, for every open set U in K.

If P ⊆ C(K) is a subspace, then the P -partition of K is the partition
associated with the following equivalence relation R:

(x, y) ∈ R if and only if p(x) = p(y) for every p ∈ P.

Definition 19. We will say that an action is lower semicontinuous if
the corresponding C(K)π-partition is lower semicontinuous.

We do not know any example of an action that is not lower semicon-
tinuous. Let us show that this class of actions contains all Lyapunov stable
actions.

We are going to use the following result from [8].

Theorem 20 ([8, Lemma 3.1]). For a Lyapunov stable action, any two
orbits are either separated from each other, or have the same closure. The
quotient space of closures of orbits is Hausdorff.

The following corollary shows that for Lyapunov stable actions the par-
tition into closures of orbits and the C(K)π-partition are the same.

Corollary 21. Suppose we have a Lyapunov stable action and let R be
the equivalence relation defining the C(K)π-partition of K. Then (x, y) ∈ R
if and only if O(x) = O(y).

Proof. Since the functions in C(K)π are those which are constant on
orbits, the “if” part follows.

To prove the “only if” part, assume that O(x) 6=O(y). Then by Urysohn’s
lemma and Theorem 20, there is a continuous function ψ on the orbit space
K/s such that ψ(O(x)) 6= ψ(O(y)). Define φ ∈ C(K) by φ(x) = ψ(O(x)).
Then φ ∈ C(K)π and φ(x) 6= φ(y), hence (x, y) /∈ R.

Theorem 22. Lyapunov stable actions are lower semicontinuous.



10 T. Shulman

Proof. For any open U ⊆ K we need to check that the set

E = {x ∈ K | (x, u) ∈ R for some u ∈ U}
is open. By Corollary 21 and Theorem 20,

E = {x | O(x) = O(u) for some u ∈ U}

= {x | O(x) ∩ U 6= ∅} = {x | O(x) ∩ U 6= ∅} =
⋃
g∈G

gU,

which is obviously open.

An easy example of a lower semicontinuous action which is not Lyapunov
stable, is the action from Example 13. Indeed, for this action C(K)π is the
subspace of constant functions, and hence the C(K)π-partition consists of
only one member, the whole interval [0, 1], which implies that the action is
lower semicontinuous. On the other hand, this action is not Lyapunov stable
because the ergodic decomposition fails for it.

For any subspace P of C(K), let

(2) K(P ) =
⋃
{K ′ ⊆ K | K ′ is a member of the P -partition of K,

and K ′ contains more than one point of K}
(in other words K(P ) is the complement of the union of all one-element
parts). According to [15], P has a lower semicontinuous quotient if the re-
striction of the P -partition to K(P ) is lower semicontinuous.

Lemma 23. Let P ⊆ C(K) be a subspace such that the P -partition of K
is lower semicontinuous. Then P has a lower semicontinuous quotient.

Proof. It suffices to show that a subpartition of a lower semicontinuous
partition is lower semicontinuous. Let M be a lower semicontinuous partition
and M0 be its subpartition. Let K0 be the closure of the union of all members
of M0. Suppose that U is open in K0. We need to show that {x ∈ K0 |
M0(x) ∩ U 6= ∅} is open in K0. Since U ∪ {K \K0} is open in K (because
its complement is K0 \ U) and M is lower semicontinuous, the set

{x ∈ K |M(x) ∩ (U ∪ {K \K0}) 6= ∅}
is open, whence

{x ∈ K0 |M0(x) ∩ U 6= ∅} = {x ∈ K |M(x) ∩ (U ∪ {K \K0}) 6= ∅} ∩K0

is open in K0.

Proposition 24. Suppose a G-action on K is lower semicontinuous.
Then C(K)π is complemented.

Proof. Obviously C(K)π is a C∗-subalgebra of C(K), and hence is iso-
morphic to C(Z) for some Hausdorff space Z. The statement now follows
from Lemma 23 and [15, Th. 4].
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